Peter Collingbourne 394be6c159 LTO: introduce object file-based on-disk module format.
This format is simply a regular object file with the bitcode stored in a
section named ".llvmbc", plus any number of other (non-allocated) sections.

One immediate use case for this is to accommodate compilation processes
which expect the object file to contain metadata in non-allocated sections,
such as the ".go_export" section used by some Go compilers [1], although I
imagine that in the future we could consider compiling parts of the module
(such as large non-inlinable functions) directly into the object file to
improve LTO efficiency.

[1] http://golang.org/doc/install/gccgo#Imports

Differential Revision: http://reviews.llvm.org/D4371

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218078 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-18 21:28:49 +00:00
2014-08-14 15:15:09 +00:00
2014-09-02 22:28:02 +00:00
2014-09-12 11:08:59 +00:00
2014-04-07 03:57:04 +00:00
2014-03-02 13:08:46 +00:00
2014-06-25 13:13:36 +00:00
2014-08-14 15:15:09 +00:00
2014-03-12 22:40:22 +00:00
2014-07-16 16:50:34 +00:00
2014-04-26 19:05:45 +00:00

Low Level Virtual Machine (LLVM)
================================

This directory and its subdirectories contain source code for the Low Level
Virtual Machine, a toolkit for the construction of highly optimized compilers,
optimizers, and runtime environments.

LLVM is open source software. You may freely distribute it under the terms of
the license agreement found in LICENSE.txt.

Please see the documentation provided in docs/ for further
assistance with LLVM, and in particular docs/GettingStarted.rst for getting
started with LLVM and docs/README.txt for an overview of LLVM's
documentation setup.

If you're writing a package for LLVM, see docs/Packaging.rst for our
suggestions.
Description
LLVM backend for 6502
Readme 277 MiB
Languages
C++ 48.7%
LLVM 38.5%
Assembly 10.2%
C 0.9%
Python 0.4%
Other 1.2%