llvm-6502/include/llvm/CodeGen/PBQP/Graph.h
Lang Hames 397afeb1fb Dereference the node iterator when dumping the PBQP graph structure in DOT
format.

Thanks to Arnaud A. de Grandmaison for the patch!



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195316 91177308-0d34-0410-b5e6-96231b3b80d8
2013-11-21 06:30:14 +00:00

479 lines
15 KiB
C++

//===-------------------- Graph.h - PBQP Graph ------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// PBQP Graph class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_GRAPH_H
#define LLVM_CODEGEN_PBQP_GRAPH_H
#include "Math.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include <list>
#include <map>
#include <set>
namespace PBQP {
/// PBQP Graph class.
/// Instances of this class describe PBQP problems.
class Graph {
public:
typedef unsigned NodeId;
typedef unsigned EdgeId;
private:
typedef std::set<NodeId> AdjEdgeList;
public:
typedef AdjEdgeList::iterator AdjEdgeItr;
private:
class NodeEntry {
private:
Vector costs;
AdjEdgeList adjEdges;
void *data;
NodeEntry() : costs(0, 0) {}
public:
NodeEntry(const Vector &costs) : costs(costs), data(0) {}
Vector& getCosts() { return costs; }
const Vector& getCosts() const { return costs; }
unsigned getDegree() const { return adjEdges.size(); }
AdjEdgeItr edgesBegin() { return adjEdges.begin(); }
AdjEdgeItr edgesEnd() { return adjEdges.end(); }
AdjEdgeItr addEdge(EdgeId e) {
return adjEdges.insert(adjEdges.end(), e);
}
void removeEdge(AdjEdgeItr ae) {
adjEdges.erase(ae);
}
void setData(void *data) { this->data = data; }
void* getData() { return data; }
};
class EdgeEntry {
private:
NodeId node1, node2;
Matrix costs;
AdjEdgeItr node1AEItr, node2AEItr;
void *data;
EdgeEntry() : costs(0, 0, 0), data(0) {}
public:
EdgeEntry(NodeId node1, NodeId node2, const Matrix &costs)
: node1(node1), node2(node2), costs(costs) {}
NodeId getNode1() const { return node1; }
NodeId getNode2() const { return node2; }
Matrix& getCosts() { return costs; }
const Matrix& getCosts() const { return costs; }
void setNode1AEItr(AdjEdgeItr ae) { node1AEItr = ae; }
AdjEdgeItr getNode1AEItr() { return node1AEItr; }
void setNode2AEItr(AdjEdgeItr ae) { node2AEItr = ae; }
AdjEdgeItr getNode2AEItr() { return node2AEItr; }
void setData(void *data) { this->data = data; }
void *getData() { return data; }
};
// ----- MEMBERS -----
typedef std::vector<NodeEntry> NodeVector;
typedef std::vector<NodeId> FreeNodeVector;
NodeVector nodes;
FreeNodeVector freeNodes;
typedef std::vector<EdgeEntry> EdgeVector;
typedef std::vector<EdgeId> FreeEdgeVector;
EdgeVector edges;
FreeEdgeVector freeEdges;
// ----- INTERNAL METHODS -----
NodeEntry& getNode(NodeId nId) { return nodes[nId]; }
const NodeEntry& getNode(NodeId nId) const { return nodes[nId]; }
EdgeEntry& getEdge(EdgeId eId) { return edges[eId]; }
const EdgeEntry& getEdge(EdgeId eId) const { return edges[eId]; }
NodeId addConstructedNode(const NodeEntry &n) {
NodeId nodeId = 0;
if (!freeNodes.empty()) {
nodeId = freeNodes.back();
freeNodes.pop_back();
nodes[nodeId] = n;
} else {
nodeId = nodes.size();
nodes.push_back(n);
}
return nodeId;
}
EdgeId addConstructedEdge(const EdgeEntry &e) {
assert(findEdge(e.getNode1(), e.getNode2()) == invalidEdgeId() &&
"Attempt to add duplicate edge.");
EdgeId edgeId = 0;
if (!freeEdges.empty()) {
edgeId = freeEdges.back();
freeEdges.pop_back();
edges[edgeId] = e;
} else {
edgeId = edges.size();
edges.push_back(e);
}
EdgeEntry &ne = getEdge(edgeId);
NodeEntry &n1 = getNode(ne.getNode1());
NodeEntry &n2 = getNode(ne.getNode2());
// Sanity check on matrix dimensions:
assert((n1.getCosts().getLength() == ne.getCosts().getRows()) &&
(n2.getCosts().getLength() == ne.getCosts().getCols()) &&
"Edge cost dimensions do not match node costs dimensions.");
ne.setNode1AEItr(n1.addEdge(edgeId));
ne.setNode2AEItr(n2.addEdge(edgeId));
return edgeId;
}
Graph(const Graph &other) {}
void operator=(const Graph &other) {}
public:
class NodeItr {
public:
NodeItr(NodeId nodeId, const Graph &g)
: nodeId(nodeId), endNodeId(g.nodes.size()), freeNodes(g.freeNodes) {
this->nodeId = findNextInUse(nodeId); // Move to the first in-use nodeId
}
bool operator==(const NodeItr& n) const { return nodeId == n.nodeId; }
bool operator!=(const NodeItr& n) const { return !(*this == n); }
NodeItr& operator++() { nodeId = findNextInUse(++nodeId); return *this; }
NodeId operator*() const { return nodeId; }
private:
NodeId findNextInUse(NodeId n) const {
while (n < endNodeId &&
std::find(freeNodes.begin(), freeNodes.end(), n) !=
freeNodes.end()) {
++n;
}
return n;
}
NodeId nodeId, endNodeId;
const FreeNodeVector& freeNodes;
};
class EdgeItr {
public:
EdgeItr(EdgeId edgeId, const Graph &g)
: edgeId(edgeId), endEdgeId(g.edges.size()), freeEdges(g.freeEdges) {
this->edgeId = findNextInUse(edgeId); // Move to the first in-use edgeId
}
bool operator==(const EdgeItr& n) const { return edgeId == n.edgeId; }
bool operator!=(const EdgeItr& n) const { return !(*this == n); }
EdgeItr& operator++() { edgeId = findNextInUse(++edgeId); return *this; }
EdgeId operator*() const { return edgeId; }
private:
EdgeId findNextInUse(EdgeId n) const {
while (n < endEdgeId &&
std::find(freeEdges.begin(), freeEdges.end(), n) !=
freeEdges.end()) {
++n;
}
return n;
}
EdgeId edgeId, endEdgeId;
const FreeEdgeVector& freeEdges;
};
/// \brief Construct an empty PBQP graph.
Graph() {}
/// \brief Add a node with the given costs.
/// @param costs Cost vector for the new node.
/// @return Node iterator for the added node.
NodeId addNode(const Vector &costs) {
return addConstructedNode(NodeEntry(costs));
}
/// \brief Add an edge between the given nodes with the given costs.
/// @param n1Id First node.
/// @param n2Id Second node.
/// @return Edge iterator for the added edge.
EdgeId addEdge(NodeId n1Id, NodeId n2Id, const Matrix &costs) {
assert(getNodeCosts(n1Id).getLength() == costs.getRows() &&
getNodeCosts(n2Id).getLength() == costs.getCols() &&
"Matrix dimensions mismatch.");
return addConstructedEdge(EdgeEntry(n1Id, n2Id, costs));
}
/// \brief Get the number of nodes in the graph.
/// @return Number of nodes in the graph.
unsigned getNumNodes() const { return nodes.size() - freeNodes.size(); }
/// \brief Get the number of edges in the graph.
/// @return Number of edges in the graph.
unsigned getNumEdges() const { return edges.size() - freeEdges.size(); }
/// \brief Get a node's cost vector.
/// @param nId Node id.
/// @return Node cost vector.
Vector& getNodeCosts(NodeId nId) { return getNode(nId).getCosts(); }
/// \brief Get a node's cost vector (const version).
/// @param nId Node id.
/// @return Node cost vector.
const Vector& getNodeCosts(NodeId nId) const {
return getNode(nId).getCosts();
}
/// \brief Set a node's data pointer.
/// @param nId Node id.
/// @param data Pointer to node data.
///
/// Typically used by a PBQP solver to attach data to aid in solution.
void setNodeData(NodeId nId, void *data) { getNode(nId).setData(data); }
/// \brief Get the node's data pointer.
/// @param nId Node id.
/// @return Pointer to node data.
void* getNodeData(NodeId nId) { return getNode(nId).getData(); }
/// \brief Get an edge's cost matrix.
/// @param eId Edge id.
/// @return Edge cost matrix.
Matrix& getEdgeCosts(EdgeId eId) { return getEdge(eId).getCosts(); }
/// \brief Get an edge's cost matrix (const version).
/// @param eId Edge id.
/// @return Edge cost matrix.
const Matrix& getEdgeCosts(EdgeId eId) const {
return getEdge(eId).getCosts();
}
/// \brief Set an edge's data pointer.
/// @param eId Edge id.
/// @param data Pointer to edge data.
///
/// Typically used by a PBQP solver to attach data to aid in solution.
void setEdgeData(EdgeId eId, void *data) { getEdge(eId).setData(data); }
/// \brief Get an edge's data pointer.
/// @param eId Edge id.
/// @return Pointer to edge data.
void* getEdgeData(EdgeId eId) { return getEdge(eId).getData(); }
/// \brief Get a node's degree.
/// @param nId Node id.
/// @return The degree of the node.
unsigned getNodeDegree(NodeId nId) const {
return getNode(nId).getDegree();
}
/// \brief Begin iterator for node set.
NodeItr nodesBegin() const { return NodeItr(0, *this); }
/// \brief End iterator for node set.
NodeItr nodesEnd() const { return NodeItr(nodes.size(), *this); }
/// \brief Begin iterator for edge set.
EdgeItr edgesBegin() const { return EdgeItr(0, *this); }
/// \brief End iterator for edge set.
EdgeItr edgesEnd() const { return EdgeItr(edges.size(), *this); }
/// \brief Get begin iterator for adjacent edge set.
/// @param nId Node id.
/// @return Begin iterator for the set of edges connected to the given node.
AdjEdgeItr adjEdgesBegin(NodeId nId) {
return getNode(nId).edgesBegin();
}
/// \brief Get end iterator for adjacent edge set.
/// @param nId Node id.
/// @return End iterator for the set of edges connected to the given node.
AdjEdgeItr adjEdgesEnd(NodeId nId) {
return getNode(nId).edgesEnd();
}
/// \brief Get the first node connected to this edge.
/// @param eId Edge id.
/// @return The first node connected to the given edge.
NodeId getEdgeNode1(EdgeId eId) {
return getEdge(eId).getNode1();
}
/// \brief Get the second node connected to this edge.
/// @param eId Edge id.
/// @return The second node connected to the given edge.
NodeId getEdgeNode2(EdgeId eId) {
return getEdge(eId).getNode2();
}
/// \brief Get the "other" node connected to this edge.
/// @param eId Edge id.
/// @param nId Node id for the "given" node.
/// @return The iterator for the "other" node connected to this edge.
NodeId getEdgeOtherNode(EdgeId eId, NodeId nId) {
EdgeEntry &e = getEdge(eId);
if (e.getNode1() == nId) {
return e.getNode2();
} // else
return e.getNode1();
}
EdgeId invalidEdgeId() const {
return std::numeric_limits<EdgeId>::max();
}
/// \brief Get the edge connecting two nodes.
/// @param n1Id First node id.
/// @param n2Id Second node id.
/// @return An id for edge (n1Id, n2Id) if such an edge exists,
/// otherwise returns an invalid edge id.
EdgeId findEdge(NodeId n1Id, NodeId n2Id) {
for (AdjEdgeItr aeItr = adjEdgesBegin(n1Id), aeEnd = adjEdgesEnd(n1Id);
aeItr != aeEnd; ++aeItr) {
if ((getEdgeNode1(*aeItr) == n2Id) ||
(getEdgeNode2(*aeItr) == n2Id)) {
return *aeItr;
}
}
return invalidEdgeId();
}
/// \brief Remove a node from the graph.
/// @param nId Node id.
void removeNode(NodeId nId) {
NodeEntry &n = getNode(nId);
for (AdjEdgeItr itr = n.edgesBegin(), end = n.edgesEnd(); itr != end; ++itr) {
EdgeId eId = *itr;
removeEdge(eId);
}
freeNodes.push_back(nId);
}
/// \brief Remove an edge from the graph.
/// @param eId Edge id.
void removeEdge(EdgeId eId) {
EdgeEntry &e = getEdge(eId);
NodeEntry &n1 = getNode(e.getNode1());
NodeEntry &n2 = getNode(e.getNode2());
n1.removeEdge(e.getNode1AEItr());
n2.removeEdge(e.getNode2AEItr());
freeEdges.push_back(eId);
}
/// \brief Remove all nodes and edges from the graph.
void clear() {
nodes.clear();
freeNodes.clear();
edges.clear();
freeEdges.clear();
}
/// \brief Dump a graph to an output stream.
template <typename OStream>
void dump(OStream &os) {
os << getNumNodes() << " " << getNumEdges() << "\n";
for (NodeItr nodeItr = nodesBegin(), nodeEnd = nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
const Vector& v = getNodeCosts(*nodeItr);
os << "\n" << v.getLength() << "\n";
assert(v.getLength() != 0 && "Empty vector in graph.");
os << v[0];
for (unsigned i = 1; i < v.getLength(); ++i) {
os << " " << v[i];
}
os << "\n";
}
for (EdgeItr edgeItr = edgesBegin(), edgeEnd = edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
NodeId n1 = getEdgeNode1(*edgeItr);
NodeId n2 = getEdgeNode2(*edgeItr);
assert(n1 != n2 && "PBQP graphs shound not have self-edges.");
const Matrix& m = getEdgeCosts(*edgeItr);
os << "\n" << n1 << " " << n2 << "\n"
<< m.getRows() << " " << m.getCols() << "\n";
assert(m.getRows() != 0 && "No rows in matrix.");
assert(m.getCols() != 0 && "No cols in matrix.");
for (unsigned i = 0; i < m.getRows(); ++i) {
os << m[i][0];
for (unsigned j = 1; j < m.getCols(); ++j) {
os << " " << m[i][j];
}
os << "\n";
}
}
}
/// \brief Print a representation of this graph in DOT format.
/// @param os Output stream to print on.
template <typename OStream>
void printDot(OStream &os) {
os << "graph {\n";
for (NodeItr nodeItr = nodesBegin(), nodeEnd = nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
os << " node" << *nodeItr << " [ label=\""
<< *nodeItr << ": " << getNodeCosts(*nodeItr) << "\" ]\n";
}
os << " edge [ len=" << getNumNodes() << " ]\n";
for (EdgeItr edgeItr = edgesBegin(), edgeEnd = edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
os << " node" << getEdgeNode1(*edgeItr)
<< " -- node" << getEdgeNode2(*edgeItr)
<< " [ label=\"";
const Matrix &edgeCosts = getEdgeCosts(*edgeItr);
for (unsigned i = 0; i < edgeCosts.getRows(); ++i) {
os << edgeCosts.getRowAsVector(i) << "\\n";
}
os << "\" ]\n";
}
os << "}\n";
}
};
// void Graph::copyFrom(const Graph &other) {
// std::map<Graph::ConstNodeItr, Graph::NodeItr,
// NodeItrComparator> nodeMap;
// for (Graph::ConstNodeItr nItr = other.nodesBegin(),
// nEnd = other.nodesEnd();
// nItr != nEnd; ++nItr) {
// nodeMap[nItr] = addNode(other.getNodeCosts(nItr));
// }
// }
}
#endif // LLVM_CODEGEN_PBQP_GRAPH_HPP