mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 04:30:12 +00:00
587daedce2
booleans. This gives a better indication of what the "addReg()" is doing. Remembering what all of those booleans mean isn't easy, especially if you aren't spending all of your time in that code. I took Jakob's suggestion and made it illegal to pass in "true" for the flag. This should hopefully prevent any unintended misuse of this (by reverting to the old way of using addReg()). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71722 91177308-0d34-0410-b5e6-96231b3b80d8
195 lines
7.3 KiB
C++
195 lines
7.3 KiB
C++
//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the TargetInstrInfoImpl class, it just provides default
|
|
// implementations of various methods.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
using namespace llvm;
|
|
|
|
// commuteInstruction - The default implementation of this method just exchanges
|
|
// operand 1 and 2.
|
|
MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
|
|
bool NewMI) const {
|
|
assert(MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
|
|
"This only knows how to commute register operands so far");
|
|
unsigned Reg1 = MI->getOperand(1).getReg();
|
|
unsigned Reg2 = MI->getOperand(2).getReg();
|
|
bool Reg1IsKill = MI->getOperand(1).isKill();
|
|
bool Reg2IsKill = MI->getOperand(2).isKill();
|
|
bool ChangeReg0 = false;
|
|
if (MI->getOperand(0).getReg() == Reg1) {
|
|
// Must be two address instruction!
|
|
assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
|
|
"Expecting a two-address instruction!");
|
|
Reg2IsKill = false;
|
|
ChangeReg0 = true;
|
|
}
|
|
|
|
if (NewMI) {
|
|
// Create a new instruction.
|
|
unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
|
|
bool Reg0IsDead = MI->getOperand(0).isDead();
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
|
|
.addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
|
|
.addReg(Reg2, getKillRegState(Reg2IsKill))
|
|
.addReg(Reg1, getKillRegState(Reg2IsKill));
|
|
}
|
|
|
|
if (ChangeReg0)
|
|
MI->getOperand(0).setReg(Reg2);
|
|
MI->getOperand(2).setReg(Reg1);
|
|
MI->getOperand(1).setReg(Reg2);
|
|
MI->getOperand(2).setIsKill(Reg1IsKill);
|
|
MI->getOperand(1).setIsKill(Reg2IsKill);
|
|
return MI;
|
|
}
|
|
|
|
/// CommuteChangesDestination - Return true if commuting the specified
|
|
/// instruction will also changes the destination operand. Also return the
|
|
/// current operand index of the would be new destination register by
|
|
/// reference. This can happen when the commutable instruction is also a
|
|
/// two-address instruction.
|
|
bool TargetInstrInfoImpl::CommuteChangesDestination(MachineInstr *MI,
|
|
unsigned &OpIdx) const{
|
|
assert(MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
|
|
"This only knows how to commute register operands so far");
|
|
if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
|
|
// Must be two address instruction!
|
|
assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
|
|
"Expecting a two-address instruction!");
|
|
OpIdx = 2;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
|
|
const SmallVectorImpl<MachineOperand> &Pred) const {
|
|
bool MadeChange = false;
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (!TID.isPredicable())
|
|
return false;
|
|
|
|
for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
if (TID.OpInfo[i].isPredicate()) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg()) {
|
|
MO.setReg(Pred[j].getReg());
|
|
MadeChange = true;
|
|
} else if (MO.isImm()) {
|
|
MO.setImm(Pred[j].getImm());
|
|
MadeChange = true;
|
|
} else if (MO.isMBB()) {
|
|
MO.setMBB(Pred[j].getMBB());
|
|
MadeChange = true;
|
|
}
|
|
++j;
|
|
}
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
unsigned DestReg,
|
|
const MachineInstr *Orig) const {
|
|
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
|
|
MI->getOperand(0).setReg(DestReg);
|
|
MBB.insert(I, MI);
|
|
}
|
|
|
|
unsigned
|
|
TargetInstrInfoImpl::GetFunctionSizeInBytes(const MachineFunction &MF) const {
|
|
unsigned FnSize = 0;
|
|
for (MachineFunction::const_iterator MBBI = MF.begin(), E = MF.end();
|
|
MBBI != E; ++MBBI) {
|
|
const MachineBasicBlock &MBB = *MBBI;
|
|
for (MachineBasicBlock::const_iterator I = MBB.begin(),E = MBB.end();
|
|
I != E; ++I)
|
|
FnSize += GetInstSizeInBytes(I);
|
|
}
|
|
return FnSize;
|
|
}
|
|
|
|
/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
|
|
/// slot into the specified machine instruction for the specified operand(s).
|
|
/// If this is possible, a new instruction is returned with the specified
|
|
/// operand folded, otherwise NULL is returned. The client is responsible for
|
|
/// removing the old instruction and adding the new one in the instruction
|
|
/// stream.
|
|
MachineInstr*
|
|
TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
|
|
MachineInstr* MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
int FrameIndex) const {
|
|
unsigned Flags = 0;
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
if (MI->getOperand(Ops[i]).isDef())
|
|
Flags |= MachineMemOperand::MOStore;
|
|
else
|
|
Flags |= MachineMemOperand::MOLoad;
|
|
|
|
// Ask the target to do the actual folding.
|
|
MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
|
|
if (!NewMI) return 0;
|
|
|
|
assert((!(Flags & MachineMemOperand::MOStore) ||
|
|
NewMI->getDesc().mayStore()) &&
|
|
"Folded a def to a non-store!");
|
|
assert((!(Flags & MachineMemOperand::MOLoad) ||
|
|
NewMI->getDesc().mayLoad()) &&
|
|
"Folded a use to a non-load!");
|
|
const MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
assert(MFI.getObjectOffset(FrameIndex) != -1);
|
|
MachineMemOperand MMO(PseudoSourceValue::getFixedStack(FrameIndex),
|
|
Flags,
|
|
MFI.getObjectOffset(FrameIndex),
|
|
MFI.getObjectSize(FrameIndex),
|
|
MFI.getObjectAlignment(FrameIndex));
|
|
NewMI->addMemOperand(MF, MMO);
|
|
|
|
return NewMI;
|
|
}
|
|
|
|
/// foldMemoryOperand - Same as the previous version except it allows folding
|
|
/// of any load and store from / to any address, not just from a specific
|
|
/// stack slot.
|
|
MachineInstr*
|
|
TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
|
|
MachineInstr* MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
MachineInstr* LoadMI) const {
|
|
assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!");
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
|
|
#endif
|
|
|
|
// Ask the target to do the actual folding.
|
|
MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
|
|
if (!NewMI) return 0;
|
|
|
|
// Copy the memoperands from the load to the folded instruction.
|
|
for (std::list<MachineMemOperand>::iterator I = LoadMI->memoperands_begin(),
|
|
E = LoadMI->memoperands_end(); I != E; ++I)
|
|
NewMI->addMemOperand(MF, *I);
|
|
|
|
return NewMI;
|
|
}
|