mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-16 14:31:59 +00:00
c95c1465fd
live out. This doesn't prevent us from inserting a loop preheader later on, if that is better. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117424 91177308-0d34-0410-b5e6-96231b3b80d8
1112 lines
40 KiB
C++
1112 lines
40 KiB
C++
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the SplitAnalysis class as well as mutator functions for
|
|
// live range splitting.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "splitter"
|
|
#include "SplitKit.h"
|
|
#include "LiveRangeEdit.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/CodeGen/CalcSpillWeights.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
AllowSplit("spiller-splits-edges",
|
|
cl::desc("Allow critical edge splitting during spilling"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Split Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
|
|
const LiveIntervals &lis,
|
|
const MachineLoopInfo &mli)
|
|
: mf_(mf),
|
|
lis_(lis),
|
|
loops_(mli),
|
|
tii_(*mf.getTarget().getInstrInfo()),
|
|
curli_(0) {}
|
|
|
|
void SplitAnalysis::clear() {
|
|
usingInstrs_.clear();
|
|
usingBlocks_.clear();
|
|
usingLoops_.clear();
|
|
curli_ = 0;
|
|
}
|
|
|
|
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
|
|
MachineBasicBlock *T, *F;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
|
|
}
|
|
|
|
/// analyzeUses - Count instructions, basic blocks, and loops using curli.
|
|
void SplitAnalysis::analyzeUses() {
|
|
const MachineRegisterInfo &MRI = mf_.getRegInfo();
|
|
for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
|
|
MachineInstr *MI = I.skipInstruction();) {
|
|
if (MI->isDebugValue() || !usingInstrs_.insert(MI))
|
|
continue;
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
if (usingBlocks_[MBB]++)
|
|
continue;
|
|
for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
|
|
Loop = Loop->getParentLoop())
|
|
usingLoops_[Loop]++;
|
|
}
|
|
DEBUG(dbgs() << " counted "
|
|
<< usingInstrs_.size() << " instrs, "
|
|
<< usingBlocks_.size() << " blocks, "
|
|
<< usingLoops_.size() << " loops.\n");
|
|
}
|
|
|
|
void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
|
|
for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
|
|
unsigned count = usingBlocks_.lookup(*I);
|
|
OS << " BB#" << (*I)->getNumber();
|
|
if (count)
|
|
OS << '(' << count << ')';
|
|
}
|
|
}
|
|
|
|
// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
|
|
// predecessor blocks, and exit blocks.
|
|
void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
|
|
Blocks.clear();
|
|
|
|
// Blocks in the loop.
|
|
Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
|
|
|
|
// Predecessor blocks.
|
|
const MachineBasicBlock *Header = Loop->getHeader();
|
|
for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
|
|
E = Header->pred_end(); I != E; ++I)
|
|
if (!Blocks.Loop.count(*I))
|
|
Blocks.Preds.insert(*I);
|
|
|
|
// Exit blocks.
|
|
for (MachineLoop::block_iterator I = Loop->block_begin(),
|
|
E = Loop->block_end(); I != E; ++I) {
|
|
const MachineBasicBlock *MBB = *I;
|
|
for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
|
|
SE = MBB->succ_end(); SI != SE; ++SI)
|
|
if (!Blocks.Loop.count(*SI))
|
|
Blocks.Exits.insert(*SI);
|
|
}
|
|
}
|
|
|
|
void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
|
|
OS << "Loop:";
|
|
print(B.Loop, OS);
|
|
OS << ", preds:";
|
|
print(B.Preds, OS);
|
|
OS << ", exits:";
|
|
print(B.Exits, OS);
|
|
}
|
|
|
|
/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
|
|
/// and around the Loop.
|
|
SplitAnalysis::LoopPeripheralUse SplitAnalysis::
|
|
analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
|
|
LoopPeripheralUse use = ContainedInLoop;
|
|
for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
|
|
I != E; ++I) {
|
|
const MachineBasicBlock *MBB = I->first;
|
|
// Is this a peripheral block?
|
|
if (use < MultiPeripheral &&
|
|
(Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
|
|
if (I->second > 1) use = MultiPeripheral;
|
|
else use = SinglePeripheral;
|
|
continue;
|
|
}
|
|
// Is it a loop block?
|
|
if (Blocks.Loop.count(MBB))
|
|
continue;
|
|
// It must be an unrelated block.
|
|
DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
|
|
return OutsideLoop;
|
|
}
|
|
return use;
|
|
}
|
|
|
|
/// getCriticalExits - It may be necessary to partially break critical edges
|
|
/// leaving the loop if an exit block has predecessors from outside the loop
|
|
/// periphery.
|
|
void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
|
|
BlockPtrSet &CriticalExits) {
|
|
CriticalExits.clear();
|
|
|
|
// A critical exit block has curli live-in, and has a predecessor that is not
|
|
// in the loop nor a loop predecessor. For such an exit block, the edges
|
|
// carrying the new variable must be moved to a new pre-exit block.
|
|
for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
|
|
I != E; ++I) {
|
|
const MachineBasicBlock *Exit = *I;
|
|
// A single-predecessor exit block is definitely not a critical edge.
|
|
if (Exit->pred_size() == 1)
|
|
continue;
|
|
// This exit may not have curli live in at all. No need to split.
|
|
if (!lis_.isLiveInToMBB(*curli_, Exit))
|
|
continue;
|
|
// Does this exit block have a predecessor that is not a loop block or loop
|
|
// predecessor?
|
|
for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
|
|
PE = Exit->pred_end(); PI != PE; ++PI) {
|
|
const MachineBasicBlock *Pred = *PI;
|
|
if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
|
|
continue;
|
|
// This is a critical exit block, and we need to split the exit edge.
|
|
CriticalExits.insert(Exit);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
|
|
BlockPtrSet &CriticalPreds) {
|
|
CriticalPreds.clear();
|
|
|
|
// A critical predecessor block has curli live-out, and has a successor that
|
|
// has curli live-in and is not in the loop nor a loop exit block. For such a
|
|
// predecessor block, we must carry the value in both the 'inside' and
|
|
// 'outside' registers.
|
|
for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end();
|
|
I != E; ++I) {
|
|
const MachineBasicBlock *Pred = *I;
|
|
// Definitely not a critical edge.
|
|
if (Pred->succ_size() == 1)
|
|
continue;
|
|
// This block may not have curli live out at all if there is a PHI.
|
|
if (!lis_.isLiveOutOfMBB(*curli_, Pred))
|
|
continue;
|
|
// Does this block have a successor outside the loop?
|
|
for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(),
|
|
SE = Pred->succ_end(); SI != SE; ++SI) {
|
|
const MachineBasicBlock *Succ = *SI;
|
|
if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ))
|
|
continue;
|
|
if (!lis_.isLiveInToMBB(*curli_, Succ))
|
|
continue;
|
|
// This is a critical predecessor block.
|
|
CriticalPreds.insert(Pred);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// canSplitCriticalExits - Return true if it is possible to insert new exit
|
|
/// blocks before the blocks in CriticalExits.
|
|
bool
|
|
SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
|
|
BlockPtrSet &CriticalExits) {
|
|
// If we don't allow critical edge splitting, require no critical exits.
|
|
if (!AllowSplit)
|
|
return CriticalExits.empty();
|
|
|
|
for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
|
|
I != E; ++I) {
|
|
const MachineBasicBlock *Succ = *I;
|
|
// We want to insert a new pre-exit MBB before Succ, and change all the
|
|
// in-loop blocks to branch to the pre-exit instead of Succ.
|
|
// Check that all the in-loop predecessors can be changed.
|
|
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
|
|
PE = Succ->pred_end(); PI != PE; ++PI) {
|
|
const MachineBasicBlock *Pred = *PI;
|
|
// The external predecessors won't be altered.
|
|
if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
|
|
continue;
|
|
if (!canAnalyzeBranch(Pred))
|
|
return false;
|
|
}
|
|
|
|
// If Succ's layout predecessor falls through, that too must be analyzable.
|
|
// We need to insert the pre-exit block in the gap.
|
|
MachineFunction::const_iterator MFI = Succ;
|
|
if (MFI == mf_.begin())
|
|
continue;
|
|
if (!canAnalyzeBranch(--MFI))
|
|
return false;
|
|
}
|
|
// No problems found.
|
|
return true;
|
|
}
|
|
|
|
void SplitAnalysis::analyze(const LiveInterval *li) {
|
|
clear();
|
|
curli_ = li;
|
|
analyzeUses();
|
|
}
|
|
|
|
const MachineLoop *SplitAnalysis::getBestSplitLoop() {
|
|
assert(curli_ && "Call analyze() before getBestSplitLoop");
|
|
if (usingLoops_.empty())
|
|
return 0;
|
|
|
|
LoopPtrSet Loops;
|
|
LoopBlocks Blocks;
|
|
BlockPtrSet CriticalExits;
|
|
|
|
// We split around loops where curli is used outside the periphery.
|
|
for (LoopCountMap::const_iterator I = usingLoops_.begin(),
|
|
E = usingLoops_.end(); I != E; ++I) {
|
|
const MachineLoop *Loop = I->first;
|
|
getLoopBlocks(Loop, Blocks);
|
|
DEBUG({ dbgs() << " "; print(Blocks, dbgs()); });
|
|
|
|
switch(analyzeLoopPeripheralUse(Blocks)) {
|
|
case OutsideLoop:
|
|
break;
|
|
case MultiPeripheral:
|
|
// FIXME: We could split a live range with multiple uses in a peripheral
|
|
// block and still make progress. However, it is possible that splitting
|
|
// another live range will insert copies into a peripheral block, and
|
|
// there is a small chance we can enter an infinity loop, inserting copies
|
|
// forever.
|
|
// For safety, stick to splitting live ranges with uses outside the
|
|
// periphery.
|
|
DEBUG(dbgs() << ": multiple peripheral uses\n");
|
|
break;
|
|
case ContainedInLoop:
|
|
DEBUG(dbgs() << ": fully contained\n");
|
|
continue;
|
|
case SinglePeripheral:
|
|
DEBUG(dbgs() << ": single peripheral use\n");
|
|
continue;
|
|
}
|
|
// Will it be possible to split around this loop?
|
|
getCriticalExits(Blocks, CriticalExits);
|
|
DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
|
|
if (!canSplitCriticalExits(Blocks, CriticalExits))
|
|
continue;
|
|
// This is a possible split.
|
|
Loops.insert(Loop);
|
|
}
|
|
|
|
DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size()
|
|
<< " candidate loops.\n");
|
|
|
|
if (Loops.empty())
|
|
return 0;
|
|
|
|
// Pick the earliest loop.
|
|
// FIXME: Are there other heuristics to consider?
|
|
const MachineLoop *Best = 0;
|
|
SlotIndex BestIdx;
|
|
for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
|
|
++I) {
|
|
SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
|
|
if (!Best || Idx < BestIdx)
|
|
Best = *I, BestIdx = Idx;
|
|
}
|
|
DEBUG(dbgs() << " getBestSplitLoop found " << *Best);
|
|
return Best;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LiveIntervalMap
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Work around the fact that the std::pair constructors are broken for pointer
|
|
// pairs in some implementations. makeVV(x, 0) works.
|
|
static inline std::pair<const VNInfo*, VNInfo*>
|
|
makeVV(const VNInfo *a, VNInfo *b) {
|
|
return std::make_pair(a, b);
|
|
}
|
|
|
|
void LiveIntervalMap::reset(LiveInterval *li) {
|
|
li_ = li;
|
|
valueMap_.clear();
|
|
}
|
|
|
|
bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
|
|
ValueMap::const_iterator i = valueMap_.find(ParentVNI);
|
|
return i != valueMap_.end() && i->second == 0;
|
|
}
|
|
|
|
// defValue - Introduce a li_ def for ParentVNI that could be later than
|
|
// ParentVNI->def.
|
|
VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
|
|
assert(li_ && "call reset first");
|
|
assert(ParentVNI && "Mapping NULL value");
|
|
assert(Idx.isValid() && "Invalid SlotIndex");
|
|
assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
|
|
|
|
// Create a new value.
|
|
VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
|
|
|
|
// Preserve the PHIDef bit.
|
|
if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
|
|
VNI->setIsPHIDef(true);
|
|
|
|
// Use insert for lookup, so we can add missing values with a second lookup.
|
|
std::pair<ValueMap::iterator,bool> InsP =
|
|
valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
|
|
|
|
// This is now a complex def. Mark with a NULL in valueMap.
|
|
if (!InsP.second)
|
|
InsP.first->second = 0;
|
|
|
|
return VNI;
|
|
}
|
|
|
|
|
|
// mapValue - Find the mapped value for ParentVNI at Idx.
|
|
// Potentially create phi-def values.
|
|
VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
|
bool *simple) {
|
|
assert(li_ && "call reset first");
|
|
assert(ParentVNI && "Mapping NULL value");
|
|
assert(Idx.isValid() && "Invalid SlotIndex");
|
|
assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
|
|
|
|
// Use insert for lookup, so we can add missing values with a second lookup.
|
|
std::pair<ValueMap::iterator,bool> InsP =
|
|
valueMap_.insert(makeVV(ParentVNI, 0));
|
|
|
|
// This was an unknown value. Create a simple mapping.
|
|
if (InsP.second) {
|
|
if (simple) *simple = true;
|
|
return InsP.first->second = li_->createValueCopy(ParentVNI,
|
|
lis_.getVNInfoAllocator());
|
|
}
|
|
|
|
// This was a simple mapped value.
|
|
if (InsP.first->second) {
|
|
if (simple) *simple = true;
|
|
return InsP.first->second;
|
|
}
|
|
|
|
// This is a complex mapped value. There may be multiple defs, and we may need
|
|
// to create phi-defs.
|
|
if (simple) *simple = false;
|
|
MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
|
|
assert(IdxMBB && "No MBB at Idx");
|
|
|
|
// Is there a def in the same MBB we can extend?
|
|
if (VNInfo *VNI = extendTo(IdxMBB, Idx))
|
|
return VNI;
|
|
|
|
// Now for the fun part. We know that ParentVNI potentially has multiple defs,
|
|
// and we may need to create even more phi-defs to preserve VNInfo SSA form.
|
|
// Perform a depth-first search for predecessor blocks where we know the
|
|
// dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
|
|
|
|
// Track MBBs where we have created or learned the dominating value.
|
|
// This may change during the DFS as we create new phi-defs.
|
|
typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap;
|
|
MBBValueMap DomValue;
|
|
typedef SplitAnalysis::BlockPtrSet BlockPtrSet;
|
|
BlockPtrSet Visited;
|
|
|
|
// Iterate over IdxMBB predecessors in a depth-first order.
|
|
// Skip begin() since that is always IdxMBB.
|
|
for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet>
|
|
IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)),
|
|
IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) {
|
|
MachineBasicBlock *MBB = *IDFI;
|
|
SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot();
|
|
|
|
// We are operating on the restricted CFG where ParentVNI is live.
|
|
if (parentli_.getVNInfoAt(End) != ParentVNI) {
|
|
IDFI.skipChildren();
|
|
continue;
|
|
}
|
|
|
|
// Do we have a dominating value in this block?
|
|
VNInfo *VNI = extendTo(MBB, End);
|
|
if (!VNI) {
|
|
++IDFI;
|
|
continue;
|
|
}
|
|
|
|
// Yes, VNI dominates MBB. Make sure we visit MBB again from other paths.
|
|
Visited.erase(MBB);
|
|
|
|
// Track the path back to IdxMBB, creating phi-defs
|
|
// as needed along the way.
|
|
for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) {
|
|
// Start from MBB's immediate successor. End at IdxMBB.
|
|
MachineBasicBlock *Succ = IDFI.getPath(PI-1);
|
|
std::pair<MBBValueMap::iterator, bool> InsP =
|
|
DomValue.insert(MBBValueMap::value_type(Succ, VNI));
|
|
|
|
// This is the first time we backtrack to Succ.
|
|
if (InsP.second)
|
|
continue;
|
|
|
|
// We reached Succ again with the same VNI. Nothing is going to change.
|
|
VNInfo *OVNI = InsP.first->second;
|
|
if (OVNI == VNI)
|
|
break;
|
|
|
|
// Succ already has a phi-def. No need to continue.
|
|
SlotIndex Start = lis_.getMBBStartIdx(Succ);
|
|
if (OVNI->def == Start)
|
|
break;
|
|
|
|
// We have a collision between the old and new VNI at Succ. That means
|
|
// neither dominates and we need a new phi-def.
|
|
VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
|
|
VNI->setIsPHIDef(true);
|
|
InsP.first->second = VNI;
|
|
|
|
// Replace OVNI with VNI in the remaining path.
|
|
for (; PI > 1 ; --PI) {
|
|
MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2));
|
|
if (I == DomValue.end() || I->second != OVNI)
|
|
break;
|
|
I->second = VNI;
|
|
}
|
|
}
|
|
|
|
// No need to search the children, we found a dominating value.
|
|
IDFI.skipChildren();
|
|
}
|
|
|
|
// The search should at least find a dominating value for IdxMBB.
|
|
assert(!DomValue.empty() && "Couldn't find a reaching definition");
|
|
|
|
// Since we went through the trouble of a full DFS visiting all reaching defs,
|
|
// the values in DomValue are now accurate. No more phi-defs are needed for
|
|
// these blocks, so we can color the live ranges.
|
|
// This makes the next mapValue call much faster.
|
|
VNInfo *IdxVNI = 0;
|
|
for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E;
|
|
++I) {
|
|
MachineBasicBlock *MBB = I->first;
|
|
VNInfo *VNI = I->second;
|
|
SlotIndex Start = lis_.getMBBStartIdx(MBB);
|
|
if (MBB == IdxMBB) {
|
|
// Don't add full liveness to IdxMBB, stop at Idx.
|
|
if (Start != Idx)
|
|
li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
|
|
// The caller had better add some liveness to IdxVNI, or it leaks.
|
|
IdxVNI = VNI;
|
|
} else
|
|
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
|
|
}
|
|
|
|
assert(IdxVNI && "Didn't find value for Idx");
|
|
return IdxVNI;
|
|
}
|
|
|
|
// extendTo - Find the last li_ value defined in MBB at or before Idx. The
|
|
// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
|
|
// Return the found VNInfo, or NULL.
|
|
VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
|
|
assert(li_ && "call reset first");
|
|
LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
|
|
if (I == li_->begin())
|
|
return 0;
|
|
--I;
|
|
if (I->end <= lis_.getMBBStartIdx(MBB))
|
|
return 0;
|
|
if (I->end <= Idx)
|
|
I->end = Idx.getNextSlot();
|
|
return I->valno;
|
|
}
|
|
|
|
// addSimpleRange - Add a simple range from parentli_ to li_.
|
|
// ParentVNI must be live in the [Start;End) interval.
|
|
void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
|
|
const VNInfo *ParentVNI) {
|
|
assert(li_ && "call reset first");
|
|
bool simple;
|
|
VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
|
|
// A simple mapping is easy.
|
|
if (simple) {
|
|
li_->addRange(LiveRange(Start, End, VNI));
|
|
return;
|
|
}
|
|
|
|
// ParentVNI is a complex value. We must map per MBB.
|
|
MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
|
|
MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
|
|
|
|
if (MBB == MBBE) {
|
|
li_->addRange(LiveRange(Start, End, VNI));
|
|
return;
|
|
}
|
|
|
|
// First block.
|
|
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
|
|
|
|
// Run sequence of full blocks.
|
|
for (++MBB; MBB != MBBE; ++MBB) {
|
|
Start = lis_.getMBBStartIdx(MBB);
|
|
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
|
|
mapValue(ParentVNI, Start)));
|
|
}
|
|
|
|
// Final block.
|
|
Start = lis_.getMBBStartIdx(MBB);
|
|
if (Start != End)
|
|
li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
|
|
}
|
|
|
|
/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
|
|
/// All needed values whose def is not inside [Start;End) must be defined
|
|
/// beforehand so mapValue will work.
|
|
void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
|
|
assert(li_ && "call reset first");
|
|
LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
|
|
LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
|
|
|
|
// Check if --I begins before Start and overlaps.
|
|
if (I != B) {
|
|
--I;
|
|
if (I->end > Start)
|
|
addSimpleRange(Start, std::min(End, I->end), I->valno);
|
|
++I;
|
|
}
|
|
|
|
// The remaining ranges begin after Start.
|
|
for (;I != E && I->start < End; ++I)
|
|
addSimpleRange(I->start, std::min(End, I->end), I->valno);
|
|
}
|
|
|
|
VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg,
|
|
const VNInfo *ParentVNI,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) {
|
|
const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()->
|
|
get(TargetOpcode::COPY);
|
|
MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg);
|
|
SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
|
|
VNInfo *VNI = defValue(ParentVNI, DefIdx);
|
|
VNI->setCopy(MI);
|
|
li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI));
|
|
return VNI;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Split Editor
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
|
|
SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
|
|
LiveRangeEdit &edit)
|
|
: sa_(sa), lis_(lis), vrm_(vrm),
|
|
mri_(vrm.getMachineFunction().getRegInfo()),
|
|
tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
|
|
edit_(edit),
|
|
dupli_(lis_, edit.getParent()),
|
|
openli_(lis_, edit.getParent())
|
|
{
|
|
}
|
|
|
|
bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
|
|
for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
|
|
if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Create a new virtual register and live interval.
|
|
void SplitEditor::openIntv() {
|
|
assert(!openli_.getLI() && "Previous LI not closed before openIntv");
|
|
|
|
if (!dupli_.getLI())
|
|
dupli_.reset(&edit_.create(mri_, lis_, vrm_));
|
|
|
|
openli_.reset(&edit_.create(mri_, lis_, vrm_));
|
|
}
|
|
|
|
/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
|
|
/// not live before Idx, a COPY is not inserted.
|
|
void SplitEditor::enterIntvBefore(SlotIndex Idx) {
|
|
assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
|
|
DEBUG(dbgs() << " enterIntvBefore " << Idx);
|
|
VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex());
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return;
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id);
|
|
truncatedValues.insert(ParentVNI);
|
|
MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
|
|
assert(MI && "enterIntvBefore called with invalid index");
|
|
VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
|
|
*MI->getParent(), MI);
|
|
openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
|
|
DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
|
|
}
|
|
|
|
/// enterIntvAtEnd - Enter openli at the end of MBB.
|
|
void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
|
|
assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
|
|
SlotIndex End = lis_.getMBBEndIdx(&MBB);
|
|
DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
|
|
VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot());
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return;
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id);
|
|
truncatedValues.insert(ParentVNI);
|
|
VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
|
|
MBB, MBB.getFirstTerminator());
|
|
// Make sure openli is live out of MBB.
|
|
openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI));
|
|
DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
|
|
}
|
|
|
|
/// useIntv - indicate that all instructions in MBB should use openli.
|
|
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
|
|
useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
|
|
}
|
|
|
|
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
|
|
assert(openli_.getLI() && "openIntv not called before useIntv");
|
|
openli_.addRange(Start, End);
|
|
DEBUG(dbgs() << " use [" << Start << ';' << End << "): "
|
|
<< *openli_.getLI() << '\n');
|
|
}
|
|
|
|
/// leaveIntvAfter - Leave openli after the instruction at Idx.
|
|
void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
|
|
assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
|
|
DEBUG(dbgs() << " leaveIntvAfter " << Idx);
|
|
|
|
// The interval must be live beyond the instruction at Idx.
|
|
VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex());
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return;
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id);
|
|
|
|
MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
|
|
MachineBasicBlock *MBB = MII->getParent();
|
|
VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB,
|
|
llvm::next(MII));
|
|
|
|
// Finally we must make sure that openli is properly extended from Idx to the
|
|
// new copy.
|
|
openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI);
|
|
DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
|
|
}
|
|
|
|
/// leaveIntvAtTop - Leave the interval at the top of MBB.
|
|
/// Currently, only one value can leave the interval.
|
|
void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
|
|
assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
|
|
SlotIndex Start = lis_.getMBBStartIdx(&MBB);
|
|
DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
|
|
|
|
VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return;
|
|
}
|
|
|
|
// We are going to insert a back copy, so we must have a dupli_.
|
|
VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
|
|
MBB, MBB.begin());
|
|
|
|
// Finally we must make sure that openli is properly extended from Start to
|
|
// the new copy.
|
|
openli_.addSimpleRange(Start, VNI->def, ParentVNI);
|
|
DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
|
|
}
|
|
|
|
/// closeIntv - Indicate that we are done editing the currently open
|
|
/// LiveInterval, and ranges can be trimmed.
|
|
void SplitEditor::closeIntv() {
|
|
assert(openli_.getLI() && "openIntv not called before closeIntv");
|
|
|
|
DEBUG(dbgs() << " closeIntv cleaning up\n");
|
|
DEBUG(dbgs() << " open " << *openli_.getLI() << '\n');
|
|
openli_.reset(0);
|
|
}
|
|
|
|
/// rewrite - Rewrite all uses of reg to use the new registers.
|
|
void SplitEditor::rewrite(unsigned reg) {
|
|
for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
|
|
RE = mri_.reg_end(); RI != RE;) {
|
|
MachineOperand &MO = RI.getOperand();
|
|
MachineInstr *MI = MO.getParent();
|
|
++RI;
|
|
if (MI->isDebugValue()) {
|
|
DEBUG(dbgs() << "Zapping " << *MI);
|
|
// FIXME: We can do much better with debug values.
|
|
MO.setReg(0);
|
|
continue;
|
|
}
|
|
SlotIndex Idx = lis_.getInstructionIndex(MI);
|
|
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
|
|
LiveInterval *LI = 0;
|
|
for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
|
|
++I) {
|
|
LiveInterval *testli = *I;
|
|
if (testli->liveAt(Idx)) {
|
|
LI = testli;
|
|
break;
|
|
}
|
|
}
|
|
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
|
|
assert(LI && "No register was live at use");
|
|
MO.setReg(LI->reg);
|
|
DEBUG(dbgs() << '\t' << *MI);
|
|
}
|
|
}
|
|
|
|
void
|
|
SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
|
|
// Build vector of iterator pairs from the intervals.
|
|
typedef std::pair<LiveInterval::const_iterator,
|
|
LiveInterval::const_iterator> IIPair;
|
|
SmallVector<IIPair, 8> Iters;
|
|
for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
|
|
++LI) {
|
|
if (*LI == dupli_.getLI())
|
|
continue;
|
|
LiveInterval::const_iterator I = (*LI)->find(Start);
|
|
LiveInterval::const_iterator E = (*LI)->end();
|
|
if (I != E)
|
|
Iters.push_back(std::make_pair(I, E));
|
|
}
|
|
|
|
SlotIndex sidx = Start;
|
|
// Break [Start;End) into segments that don't overlap any intervals.
|
|
for (;;) {
|
|
SlotIndex next = sidx, eidx = End;
|
|
// Find overlapping intervals.
|
|
for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
|
|
LiveInterval::const_iterator I = Iters[i].first;
|
|
// Interval I is overlapping [sidx;eidx). Trim sidx.
|
|
if (I->start <= sidx) {
|
|
sidx = I->end;
|
|
// Move to the next run, remove iters when all are consumed.
|
|
I = ++Iters[i].first;
|
|
if (I == Iters[i].second) {
|
|
Iters.erase(Iters.begin() + i);
|
|
--i;
|
|
continue;
|
|
}
|
|
}
|
|
// Trim eidx too if needed.
|
|
if (I->start >= eidx)
|
|
continue;
|
|
eidx = I->start;
|
|
next = I->end;
|
|
}
|
|
// Now, [sidx;eidx) doesn't overlap anything in intervals_.
|
|
if (sidx < eidx)
|
|
dupli_.addSimpleRange(sidx, eidx, VNI);
|
|
// If the interval end was truncated, we can try again from next.
|
|
if (next <= sidx)
|
|
break;
|
|
sidx = next;
|
|
}
|
|
}
|
|
|
|
void SplitEditor::computeRemainder() {
|
|
// First we need to fill in the live ranges in dupli.
|
|
// If values were redefined, we need a full recoloring with SSA update.
|
|
// If values were truncated, we only need to truncate the ranges.
|
|
// If values were partially rematted, we should shrink to uses.
|
|
// If values were fully rematted, they should be omitted.
|
|
// FIXME: If a single value is redefined, just move the def and truncate.
|
|
LiveInterval &parent = edit_.getParent();
|
|
|
|
// Values that are fully contained in the split intervals.
|
|
SmallPtrSet<const VNInfo*, 8> deadValues;
|
|
// Map all curli values that should have live defs in dupli.
|
|
for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
|
|
E = parent.vni_end(); I != E; ++I) {
|
|
const VNInfo *VNI = *I;
|
|
// Original def is contained in the split intervals.
|
|
if (intervalsLiveAt(VNI->def)) {
|
|
// Did this value escape?
|
|
if (dupli_.isMapped(VNI))
|
|
truncatedValues.insert(VNI);
|
|
else
|
|
deadValues.insert(VNI);
|
|
continue;
|
|
}
|
|
// Add minimal live range at the definition.
|
|
VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
|
|
dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
|
|
}
|
|
|
|
// Add all ranges to dupli.
|
|
for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
|
|
I != E; ++I) {
|
|
const LiveRange &LR = *I;
|
|
if (truncatedValues.count(LR.valno)) {
|
|
// recolor after removing intervals_.
|
|
addTruncSimpleRange(LR.start, LR.end, LR.valno);
|
|
} else if (!deadValues.count(LR.valno)) {
|
|
// recolor without truncation.
|
|
dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
|
|
}
|
|
}
|
|
|
|
// Extend dupli_ to be live out of any critical loop predecessors.
|
|
// This means we have multiple registers live out of those blocks.
|
|
// The alternative would be to split the critical edges.
|
|
if (criticalPreds_.empty())
|
|
return;
|
|
for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(),
|
|
E = criticalPreds_.end(); I != E; ++I)
|
|
dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot());
|
|
criticalPreds_.clear();
|
|
}
|
|
|
|
void SplitEditor::finish() {
|
|
assert(!openli_.getLI() && "Previous LI not closed before rewrite");
|
|
assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
|
|
|
|
// Complete dupli liveness.
|
|
computeRemainder();
|
|
|
|
// Get rid of unused values and set phi-kill flags.
|
|
for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
|
|
(*I)->RenumberValues(lis_);
|
|
|
|
// Rewrite instructions.
|
|
rewrite(edit_.getReg());
|
|
|
|
// Now check if any registers were separated into multiple components.
|
|
ConnectedVNInfoEqClasses ConEQ(lis_);
|
|
for (unsigned i = 0, e = edit_.size(); i != e; ++i) {
|
|
// Don't use iterators, they are invalidated by create() below.
|
|
LiveInterval *li = edit_.get(i);
|
|
unsigned NumComp = ConEQ.Classify(li);
|
|
if (NumComp <= 1)
|
|
continue;
|
|
DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
|
|
SmallVector<LiveInterval*, 8> dups;
|
|
dups.push_back(li);
|
|
for (unsigned i = 1; i != NumComp; ++i)
|
|
dups.push_back(&edit_.create(mri_, lis_, vrm_));
|
|
ConEQ.Distribute(&dups[0]);
|
|
// Rewrite uses to the new regs.
|
|
rewrite(li->reg);
|
|
}
|
|
|
|
// Calculate spill weight and allocation hints for new intervals.
|
|
VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
|
|
for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
|
|
LiveInterval &li = **I;
|
|
vrai.CalculateRegClass(li.reg);
|
|
vrai.CalculateWeightAndHint(li);
|
|
DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName()
|
|
<< ":" << li << '\n');
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loop Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
|
|
SplitAnalysis::LoopBlocks Blocks;
|
|
sa_.getLoopBlocks(Loop, Blocks);
|
|
|
|
DEBUG({
|
|
dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
|
|
});
|
|
|
|
// Break critical edges as needed.
|
|
SplitAnalysis::BlockPtrSet CriticalExits;
|
|
sa_.getCriticalExits(Blocks, CriticalExits);
|
|
assert(CriticalExits.empty() && "Cannot break critical exits yet");
|
|
|
|
// Get critical predecessors so computeRemainder can deal with them.
|
|
sa_.getCriticalPreds(Blocks, criticalPreds_);
|
|
|
|
// Create new live interval for the loop.
|
|
openIntv();
|
|
|
|
// Insert copies in the predecessors.
|
|
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
|
|
E = Blocks.Preds.end(); I != E; ++I) {
|
|
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
|
|
enterIntvAtEnd(MBB);
|
|
}
|
|
|
|
// Switch all loop blocks.
|
|
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
|
|
E = Blocks.Loop.end(); I != E; ++I)
|
|
useIntv(**I);
|
|
|
|
// Insert back copies in the exit blocks.
|
|
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
|
|
E = Blocks.Exits.end(); I != E; ++I) {
|
|
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
|
|
leaveIntvAtTop(MBB);
|
|
}
|
|
|
|
// Done.
|
|
closeIntv();
|
|
finish();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Single Block Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getMultiUseBlocks - if curli has more than one use in a basic block, it
|
|
/// may be an advantage to split curli for the duration of the block.
|
|
bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
|
|
// If curli is local to one block, there is no point to splitting it.
|
|
if (usingBlocks_.size() <= 1)
|
|
return false;
|
|
// Add blocks with multiple uses.
|
|
for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
|
|
I != E; ++I)
|
|
switch (I->second) {
|
|
case 0:
|
|
case 1:
|
|
continue;
|
|
case 2: {
|
|
// When there are only two uses and curli is both live in and live out,
|
|
// we don't really win anything by isolating the block since we would be
|
|
// inserting two copies.
|
|
// The remaing register would still have two uses in the block. (Unless it
|
|
// separates into disconnected components).
|
|
if (lis_.isLiveInToMBB(*curli_, I->first) &&
|
|
lis_.isLiveOutOfMBB(*curli_, I->first))
|
|
continue;
|
|
} // Fall through.
|
|
default:
|
|
Blocks.insert(I->first);
|
|
}
|
|
return !Blocks.empty();
|
|
}
|
|
|
|
/// splitSingleBlocks - Split curli into a separate live interval inside each
|
|
/// basic block in Blocks.
|
|
void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
|
|
DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
|
|
// Determine the first and last instruction using curli in each block.
|
|
typedef std::pair<SlotIndex,SlotIndex> IndexPair;
|
|
typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
|
|
IndexPairMap MBBRange;
|
|
for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
|
|
E = sa_.usingInstrs_.end(); I != E; ++I) {
|
|
const MachineBasicBlock *MBB = (*I)->getParent();
|
|
if (!Blocks.count(MBB))
|
|
continue;
|
|
SlotIndex Idx = lis_.getInstructionIndex(*I);
|
|
DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
|
|
IndexPair &IP = MBBRange[MBB];
|
|
if (!IP.first.isValid() || Idx < IP.first)
|
|
IP.first = Idx;
|
|
if (!IP.second.isValid() || Idx > IP.second)
|
|
IP.second = Idx;
|
|
}
|
|
|
|
// Create a new interval for each block.
|
|
for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
|
|
E = Blocks.end(); I != E; ++I) {
|
|
IndexPair &IP = MBBRange[*I];
|
|
DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": ["
|
|
<< IP.first << ';' << IP.second << ")\n");
|
|
assert(IP.first.isValid() && IP.second.isValid());
|
|
|
|
openIntv();
|
|
enterIntvBefore(IP.first);
|
|
useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
|
|
leaveIntvAfter(IP.second);
|
|
closeIntv();
|
|
}
|
|
finish();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sub Block Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getBlockForInsideSplit - If curli is contained inside a single basic block,
|
|
/// and it wou pay to subdivide the interval inside that block, return it.
|
|
/// Otherwise return NULL. The returned block can be passed to
|
|
/// SplitEditor::splitInsideBlock.
|
|
const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
|
|
// The interval must be exclusive to one block.
|
|
if (usingBlocks_.size() != 1)
|
|
return 0;
|
|
// Don't to this for less than 4 instructions. We want to be sure that
|
|
// splitting actually reduces the instruction count per interval.
|
|
if (usingInstrs_.size() < 4)
|
|
return 0;
|
|
return usingBlocks_.begin()->first;
|
|
}
|
|
|
|
/// splitInsideBlock - Split curli into multiple intervals inside MBB.
|
|
void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
|
|
SmallVector<SlotIndex, 32> Uses;
|
|
Uses.reserve(sa_.usingInstrs_.size());
|
|
for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
|
|
E = sa_.usingInstrs_.end(); I != E; ++I)
|
|
if ((*I)->getParent() == MBB)
|
|
Uses.push_back(lis_.getInstructionIndex(*I));
|
|
DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for "
|
|
<< Uses.size() << " instructions.\n");
|
|
assert(Uses.size() >= 3 && "Need at least 3 instructions");
|
|
array_pod_sort(Uses.begin(), Uses.end());
|
|
|
|
// Simple algorithm: Find the largest gap between uses as determined by slot
|
|
// indices. Create new intervals for instructions before the gap and after the
|
|
// gap.
|
|
unsigned bestPos = 0;
|
|
int bestGap = 0;
|
|
DEBUG(dbgs() << " dist (" << Uses[0]);
|
|
for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
|
|
int g = Uses[i-1].distance(Uses[i]);
|
|
DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
|
|
if (g > bestGap)
|
|
bestPos = i, bestGap = g;
|
|
}
|
|
DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
|
|
|
|
// bestPos points to the first use after the best gap.
|
|
assert(bestPos > 0 && "Invalid gap");
|
|
|
|
// FIXME: Don't create intervals for low densities.
|
|
|
|
// First interval before the gap. Don't create single-instr intervals.
|
|
if (bestPos > 1) {
|
|
openIntv();
|
|
enterIntvBefore(Uses.front());
|
|
useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
|
|
leaveIntvAfter(Uses[bestPos-1]);
|
|
closeIntv();
|
|
}
|
|
|
|
// Second interval after the gap.
|
|
if (bestPos < Uses.size()-1) {
|
|
openIntv();
|
|
enterIntvBefore(Uses[bestPos]);
|
|
useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
|
|
leaveIntvAfter(Uses.back());
|
|
closeIntv();
|
|
}
|
|
|
|
finish();
|
|
}
|