mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 04:30:12 +00:00
0b8c9a80f2
into their new header subdirectory: include/llvm/IR. This matches the directory structure of lib, and begins to correct a long standing point of file layout clutter in LLVM. There are still more header files to move here, but I wanted to handle them in separate commits to make tracking what files make sense at each layer easier. The only really questionable files here are the target intrinsic tablegen files. But that's a battle I'd rather not fight today. I've updated both CMake and Makefile build systems (I think, and my tests think, but I may have missed something). I've also re-sorted the includes throughout the project. I'll be committing updates to Clang, DragonEgg, and Polly momentarily. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
479 lines
15 KiB
C++
479 lines
15 KiB
C++
//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines various classes for working with Instructions and
|
|
// ConstantExprs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_OPERATOR_H
|
|
#define LLVM_OPERATOR_H
|
|
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
|
|
namespace llvm {
|
|
|
|
class GetElementPtrInst;
|
|
class BinaryOperator;
|
|
class ConstantExpr;
|
|
|
|
/// Operator - This is a utility class that provides an abstraction for the
|
|
/// common functionality between Instructions and ConstantExprs.
|
|
///
|
|
class Operator : public User {
|
|
private:
|
|
// Do not implement any of these. The Operator class is intended to be used
|
|
// as a utility, and is never itself instantiated.
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
void *operator new(size_t s) LLVM_DELETED_FUNCTION;
|
|
Operator() LLVM_DELETED_FUNCTION;
|
|
|
|
protected:
|
|
// NOTE: Cannot use LLVM_DELETED_FUNCTION because it's not legal to delete
|
|
// an overridden method that's not deleted in the base class. Cannot leave
|
|
// this unimplemented because that leads to an ODR-violation.
|
|
~Operator();
|
|
|
|
public:
|
|
/// getOpcode - Return the opcode for this Instruction or ConstantExpr.
|
|
///
|
|
unsigned getOpcode() const {
|
|
if (const Instruction *I = dyn_cast<Instruction>(this))
|
|
return I->getOpcode();
|
|
return cast<ConstantExpr>(this)->getOpcode();
|
|
}
|
|
|
|
/// getOpcode - If V is an Instruction or ConstantExpr, return its
|
|
/// opcode. Otherwise return UserOp1.
|
|
///
|
|
static unsigned getOpcode(const Value *V) {
|
|
if (const Instruction *I = dyn_cast<Instruction>(V))
|
|
return I->getOpcode();
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
|
|
return CE->getOpcode();
|
|
return Instruction::UserOp1;
|
|
}
|
|
|
|
static inline bool classof(const Instruction *) { return true; }
|
|
static inline bool classof(const ConstantExpr *) { return true; }
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) || isa<ConstantExpr>(V);
|
|
}
|
|
};
|
|
|
|
/// OverflowingBinaryOperator - Utility class for integer arithmetic operators
|
|
/// which may exhibit overflow - Add, Sub, and Mul. It does not include SDiv,
|
|
/// despite that operator having the potential for overflow.
|
|
///
|
|
class OverflowingBinaryOperator : public Operator {
|
|
public:
|
|
enum {
|
|
NoUnsignedWrap = (1 << 0),
|
|
NoSignedWrap = (1 << 1)
|
|
};
|
|
|
|
private:
|
|
friend class BinaryOperator;
|
|
friend class ConstantExpr;
|
|
void setHasNoUnsignedWrap(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
|
|
}
|
|
void setHasNoSignedWrap(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
|
|
}
|
|
|
|
public:
|
|
/// hasNoUnsignedWrap - Test whether this operation is known to never
|
|
/// undergo unsigned overflow, aka the nuw property.
|
|
bool hasNoUnsignedWrap() const {
|
|
return SubclassOptionalData & NoUnsignedWrap;
|
|
}
|
|
|
|
/// hasNoSignedWrap - Test whether this operation is known to never
|
|
/// undergo signed overflow, aka the nsw property.
|
|
bool hasNoSignedWrap() const {
|
|
return (SubclassOptionalData & NoSignedWrap) != 0;
|
|
}
|
|
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Add ||
|
|
I->getOpcode() == Instruction::Sub ||
|
|
I->getOpcode() == Instruction::Mul ||
|
|
I->getOpcode() == Instruction::Shl;
|
|
}
|
|
static inline bool classof(const ConstantExpr *CE) {
|
|
return CE->getOpcode() == Instruction::Add ||
|
|
CE->getOpcode() == Instruction::Sub ||
|
|
CE->getOpcode() == Instruction::Mul ||
|
|
CE->getOpcode() == Instruction::Shl;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
|
|
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
|
|
}
|
|
};
|
|
|
|
/// PossiblyExactOperator - A udiv or sdiv instruction, which can be marked as
|
|
/// "exact", indicating that no bits are destroyed.
|
|
class PossiblyExactOperator : public Operator {
|
|
public:
|
|
enum {
|
|
IsExact = (1 << 0)
|
|
};
|
|
|
|
private:
|
|
friend class BinaryOperator;
|
|
friend class ConstantExpr;
|
|
void setIsExact(bool B) {
|
|
SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
|
|
}
|
|
|
|
public:
|
|
/// isExact - Test whether this division is known to be exact, with
|
|
/// zero remainder.
|
|
bool isExact() const {
|
|
return SubclassOptionalData & IsExact;
|
|
}
|
|
|
|
static bool isPossiblyExactOpcode(unsigned OpC) {
|
|
return OpC == Instruction::SDiv ||
|
|
OpC == Instruction::UDiv ||
|
|
OpC == Instruction::AShr ||
|
|
OpC == Instruction::LShr;
|
|
}
|
|
static inline bool classof(const ConstantExpr *CE) {
|
|
return isPossiblyExactOpcode(CE->getOpcode());
|
|
}
|
|
static inline bool classof(const Instruction *I) {
|
|
return isPossiblyExactOpcode(I->getOpcode());
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
|
|
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
|
|
}
|
|
};
|
|
|
|
/// Convenience struct for specifying and reasoning about fast-math flags.
|
|
class FastMathFlags {
|
|
private:
|
|
friend class FPMathOperator;
|
|
unsigned Flags;
|
|
FastMathFlags(unsigned F) : Flags(F) { }
|
|
|
|
public:
|
|
enum {
|
|
UnsafeAlgebra = (1 << 0),
|
|
NoNaNs = (1 << 1),
|
|
NoInfs = (1 << 2),
|
|
NoSignedZeros = (1 << 3),
|
|
AllowReciprocal = (1 << 4)
|
|
};
|
|
|
|
FastMathFlags() : Flags(0)
|
|
{ }
|
|
|
|
/// Whether any flag is set
|
|
bool any() { return Flags != 0; }
|
|
|
|
/// Set all the flags to false
|
|
void clear() { Flags = 0; }
|
|
|
|
/// Flag queries
|
|
bool noNaNs() { return 0 != (Flags & NoNaNs); }
|
|
bool noInfs() { return 0 != (Flags & NoInfs); }
|
|
bool noSignedZeros() { return 0 != (Flags & NoSignedZeros); }
|
|
bool allowReciprocal() { return 0 != (Flags & AllowReciprocal); }
|
|
bool unsafeAlgebra() { return 0 != (Flags & UnsafeAlgebra); }
|
|
|
|
/// Flag setters
|
|
void setNoNaNs() { Flags |= NoNaNs; }
|
|
void setNoInfs() { Flags |= NoInfs; }
|
|
void setNoSignedZeros() { Flags |= NoSignedZeros; }
|
|
void setAllowReciprocal() { Flags |= AllowReciprocal; }
|
|
void setUnsafeAlgebra() {
|
|
Flags |= UnsafeAlgebra;
|
|
setNoNaNs();
|
|
setNoInfs();
|
|
setNoSignedZeros();
|
|
setAllowReciprocal();
|
|
}
|
|
};
|
|
|
|
|
|
/// FPMathOperator - Utility class for floating point operations which can have
|
|
/// information about relaxed accuracy requirements attached to them.
|
|
class FPMathOperator : public Operator {
|
|
private:
|
|
friend class Instruction;
|
|
|
|
void setHasUnsafeAlgebra(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~FastMathFlags::UnsafeAlgebra) |
|
|
(B * FastMathFlags::UnsafeAlgebra);
|
|
|
|
// Unsafe algebra implies all the others
|
|
if (B) {
|
|
setHasNoNaNs(true);
|
|
setHasNoInfs(true);
|
|
setHasNoSignedZeros(true);
|
|
setHasAllowReciprocal(true);
|
|
}
|
|
}
|
|
void setHasNoNaNs(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~FastMathFlags::NoNaNs) |
|
|
(B * FastMathFlags::NoNaNs);
|
|
}
|
|
void setHasNoInfs(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~FastMathFlags::NoInfs) |
|
|
(B * FastMathFlags::NoInfs);
|
|
}
|
|
void setHasNoSignedZeros(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
|
|
(B * FastMathFlags::NoSignedZeros);
|
|
}
|
|
void setHasAllowReciprocal(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
|
|
(B * FastMathFlags::AllowReciprocal);
|
|
}
|
|
|
|
/// Convenience function for setting all the fast-math flags
|
|
void setFastMathFlags(FastMathFlags FMF) {
|
|
SubclassOptionalData |= FMF.Flags;
|
|
}
|
|
|
|
public:
|
|
/// Test whether this operation is permitted to be
|
|
/// algebraically transformed, aka the 'A' fast-math property.
|
|
bool hasUnsafeAlgebra() const {
|
|
return (SubclassOptionalData & FastMathFlags::UnsafeAlgebra) != 0;
|
|
}
|
|
|
|
/// Test whether this operation's arguments and results are to be
|
|
/// treated as non-NaN, aka the 'N' fast-math property.
|
|
bool hasNoNaNs() const {
|
|
return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
|
|
}
|
|
|
|
/// Test whether this operation's arguments and results are to be
|
|
/// treated as NoN-Inf, aka the 'I' fast-math property.
|
|
bool hasNoInfs() const {
|
|
return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
|
|
}
|
|
|
|
/// Test whether this operation can treat the sign of zero
|
|
/// as insignificant, aka the 'S' fast-math property.
|
|
bool hasNoSignedZeros() const {
|
|
return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
|
|
}
|
|
|
|
/// Test whether this operation is permitted to use
|
|
/// reciprocal instead of division, aka the 'R' fast-math property.
|
|
bool hasAllowReciprocal() const {
|
|
return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
|
|
}
|
|
|
|
/// Convenience function for getting all the fast-math flags
|
|
FastMathFlags getFastMathFlags() const {
|
|
return FastMathFlags(SubclassOptionalData);
|
|
}
|
|
|
|
/// \brief Get the maximum error permitted by this operation in ULPs. An
|
|
/// accuracy of 0.0 means that the operation should be performed with the
|
|
/// default precision.
|
|
float getFPAccuracy() const;
|
|
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getType()->isFPOrFPVectorTy();
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
|
|
/// ConcreteOperator - A helper template for defining operators for individual
|
|
/// opcodes.
|
|
template<typename SuperClass, unsigned Opc>
|
|
class ConcreteOperator : public SuperClass {
|
|
public:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Opc;
|
|
}
|
|
static inline bool classof(const ConstantExpr *CE) {
|
|
return CE->getOpcode() == Opc;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
|
|
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
|
|
}
|
|
};
|
|
|
|
class AddOperator
|
|
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
|
|
};
|
|
class SubOperator
|
|
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
|
|
};
|
|
class MulOperator
|
|
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
|
|
};
|
|
class ShlOperator
|
|
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
|
|
};
|
|
|
|
|
|
class SDivOperator
|
|
: public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
|
|
};
|
|
class UDivOperator
|
|
: public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
|
|
};
|
|
class AShrOperator
|
|
: public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
|
|
};
|
|
class LShrOperator
|
|
: public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
|
|
};
|
|
|
|
|
|
|
|
class GEPOperator
|
|
: public ConcreteOperator<Operator, Instruction::GetElementPtr> {
|
|
enum {
|
|
IsInBounds = (1 << 0)
|
|
};
|
|
|
|
friend class GetElementPtrInst;
|
|
friend class ConstantExpr;
|
|
void setIsInBounds(bool B) {
|
|
SubclassOptionalData =
|
|
(SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
|
|
}
|
|
|
|
public:
|
|
/// isInBounds - Test whether this is an inbounds GEP, as defined
|
|
/// by LangRef.html.
|
|
bool isInBounds() const {
|
|
return SubclassOptionalData & IsInBounds;
|
|
}
|
|
|
|
inline op_iterator idx_begin() { return op_begin()+1; }
|
|
inline const_op_iterator idx_begin() const { return op_begin()+1; }
|
|
inline op_iterator idx_end() { return op_end(); }
|
|
inline const_op_iterator idx_end() const { return op_end(); }
|
|
|
|
Value *getPointerOperand() {
|
|
return getOperand(0);
|
|
}
|
|
const Value *getPointerOperand() const {
|
|
return getOperand(0);
|
|
}
|
|
static unsigned getPointerOperandIndex() {
|
|
return 0U; // get index for modifying correct operand
|
|
}
|
|
|
|
/// getPointerOperandType - Method to return the pointer operand as a
|
|
/// PointerType.
|
|
Type *getPointerOperandType() const {
|
|
return getPointerOperand()->getType();
|
|
}
|
|
|
|
/// getPointerAddressSpace - Method to return the address space of the
|
|
/// pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return cast<PointerType>(getPointerOperandType())->getAddressSpace();
|
|
}
|
|
|
|
unsigned getNumIndices() const { // Note: always non-negative
|
|
return getNumOperands() - 1;
|
|
}
|
|
|
|
bool hasIndices() const {
|
|
return getNumOperands() > 1;
|
|
}
|
|
|
|
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
|
|
/// zeros. If so, the result pointer and the first operand have the same
|
|
/// value, just potentially different types.
|
|
bool hasAllZeroIndices() const {
|
|
for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(I))
|
|
if (C->isZero())
|
|
continue;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
|
|
/// constant integers. If so, the result pointer and the first operand have
|
|
/// a constant offset between them.
|
|
bool hasAllConstantIndices() const {
|
|
for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
|
|
if (!isa<ConstantInt>(I))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \brief Accumulate the constant address offset of this GEP if possible.
|
|
///
|
|
/// This routine accepts an APInt into which it will accumulate the constant
|
|
/// offset of this GEP if the GEP is in fact constant. If the GEP is not
|
|
/// all-constant, it returns false and the value of the offset APInt is
|
|
/// undefined (it is *not* preserved!). The APInt passed into this routine
|
|
/// must be at least as wide as the IntPtr type for the address space of
|
|
/// the base GEP pointer.
|
|
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const {
|
|
assert(Offset.getBitWidth() ==
|
|
DL.getPointerSizeInBits(getPointerAddressSpace()) &&
|
|
"The offset must have exactly as many bits as our pointer.");
|
|
|
|
for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
|
|
GTI != GTE; ++GTI) {
|
|
ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
|
|
if (!OpC)
|
|
return false;
|
|
if (OpC->isZero())
|
|
continue;
|
|
|
|
// Handle a struct index, which adds its field offset to the pointer.
|
|
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
|
|
unsigned ElementIdx = OpC->getZExtValue();
|
|
const StructLayout *SL = DL.getStructLayout(STy);
|
|
Offset += APInt(Offset.getBitWidth(),
|
|
SL->getElementOffset(ElementIdx));
|
|
continue;
|
|
}
|
|
|
|
// For array or vector indices, scale the index by the size of the type.
|
|
APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
|
|
Offset += Index * APInt(Offset.getBitWidth(),
|
|
DL.getTypeAllocSize(GTI.getIndexedType()));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|