llvm-6502/lib/Target/X86/X86Subtarget.cpp
Bill Wendling 0ea8bf3590 - s/DOUT/DEBUG(errs()/g
- Tidy up some headers.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77929 91177308-0d34-0410-b5e6-96231b3b80d8
2009-08-03 00:11:34 +00:00

503 lines
16 KiB
C++

//===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "subtarget"
#include "X86Subtarget.h"
#include "X86InstrInfo.h"
#include "X86GenSubtarget.inc"
#include "llvm/GlobalValue.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
#if defined(_MSC_VER)
#include <intrin.h>
#endif
static cl::opt<X86Subtarget::AsmWriterFlavorTy>
AsmWriterFlavor("x86-asm-syntax", cl::init(X86Subtarget::Unset),
cl::desc("Choose style of code to emit from X86 backend:"),
cl::values(
clEnumValN(X86Subtarget::ATT, "att", "Emit AT&T-style assembly"),
clEnumValN(X86Subtarget::Intel, "intel", "Emit Intel-style assembly"),
clEnumValEnd));
/// ClassifyGlobalReference - Classify a global variable reference for the
/// current subtarget according to how we should reference it in a non-pcrel
/// context.
unsigned char X86Subtarget::
ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
// DLLImport only exists on windows, it is implemented as a load from a
// DLLIMPORT stub.
if (GV->hasDLLImportLinkage())
return X86II::MO_DLLIMPORT;
// GV with ghost linkage (in JIT lazy compilation mode) do not require an
// extra load from stub.
bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode();
// X86-64 in PIC mode.
if (isPICStyleRIPRel()) {
// Large model never uses stubs.
if (TM.getCodeModel() == CodeModel::Large)
return X86II::MO_NO_FLAG;
if (isTargetDarwin()) {
// If symbol visibility is hidden, the extra load is not needed if
// target is x86-64 or the symbol is definitely defined in the current
// translation unit.
if (GV->hasDefaultVisibility() &&
(isDecl || GV->isWeakForLinker()))
return X86II::MO_GOTPCREL;
} else {
assert(isTargetELF() && "Unknown rip-relative target");
// Extra load is needed for all externally visible.
if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
return X86II::MO_GOTPCREL;
}
return X86II::MO_NO_FLAG;
}
if (isPICStyleGOT()) { // 32-bit ELF targets.
// Extra load is needed for all externally visible.
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
return X86II::MO_GOTOFF;
return X86II::MO_GOT;
}
if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode.
// Determine whether we have a stub reference and/or whether the reference
// is relative to the PIC base or not.
// If this is a strong reference to a definition, it is definitely not
// through a stub.
if (!isDecl && !GV->isWeakForLinker())
return X86II::MO_PIC_BASE_OFFSET;
// Unless we have a symbol with hidden visibility, we have to go through a
// normal $non_lazy_ptr stub because this symbol might be resolved late.
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
// If symbol visibility is hidden, we have a stub for common symbol
// references and external declarations.
if (isDecl || GV->hasCommonLinkage()) {
// Hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
}
// Otherwise, no stub.
return X86II::MO_PIC_BASE_OFFSET;
}
if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode.
// Determine whether we have a stub reference.
// If this is a strong reference to a definition, it is definitely not
// through a stub.
if (!isDecl && !GV->isWeakForLinker())
return X86II::MO_NO_FLAG;
// Unless we have a symbol with hidden visibility, we have to go through a
// normal $non_lazy_ptr stub because this symbol might be resolved late.
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_NONLAZY;
// If symbol visibility is hidden, we have a stub for common symbol
// references and external declarations.
if (isDecl || GV->hasCommonLinkage()) {
// Hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_HIDDEN_NONLAZY;
}
// Otherwise, no stub.
return X86II::MO_NO_FLAG;
}
// Direct static reference to global.
return X86II::MO_NO_FLAG;
}
/// getBZeroEntry - This function returns the name of a function which has an
/// interface like the non-standard bzero function, if such a function exists on
/// the current subtarget and it is considered prefereable over memset with zero
/// passed as the second argument. Otherwise it returns null.
const char *X86Subtarget::getBZeroEntry() const {
// Darwin 10 has a __bzero entry point for this purpose.
if (getDarwinVers() >= 10)
return "__bzero";
return 0;
}
/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
/// to immediate address.
bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
if (Is64Bit)
return false;
return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
}
/// getSpecialAddressLatency - For targets where it is beneficial to
/// backschedule instructions that compute addresses, return a value
/// indicating the number of scheduling cycles of backscheduling that
/// should be attempted.
unsigned X86Subtarget::getSpecialAddressLatency() const {
// For x86 out-of-order targets, back-schedule address computations so
// that loads and stores aren't blocked.
// This value was chosen arbitrarily.
return 200;
}
/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
/// specified arguments. If we can't run cpuid on the host, return true.
bool X86::GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
unsigned *rECX, unsigned *rEDX) {
#if defined(__x86_64__) || defined(_M_AMD64)
#if defined(__GNUC__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
asm ("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(_MSC_VER)
int registers[4];
__cpuid(registers, value);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#endif
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
#if defined(__GNUC__)
asm ("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(_MSC_VER)
__asm {
mov eax,value
cpuid
mov esi,rEAX
mov dword ptr [esi],eax
mov esi,rEBX
mov dword ptr [esi],ebx
mov esi,rECX
mov dword ptr [esi],ecx
mov esi,rEDX
mov dword ptr [esi],edx
}
return false;
#endif
#endif
return true;
}
static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) {
Family = (EAX >> 8) & 0xf; // Bits 8 - 11
Model = (EAX >> 4) & 0xf; // Bits 4 - 7
if (Family == 6 || Family == 0xf) {
if (Family == 0xf)
// Examine extended family ID if family ID is F.
Family += (EAX >> 20) & 0xff; // Bits 20 - 27
// Examine extended model ID if family ID is 6 or F.
Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
}
}
void X86Subtarget::AutoDetectSubtargetFeatures() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
union {
unsigned u[3];
char c[12];
} text;
if (X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
return;
X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
if ((EDX >> 23) & 0x1) X86SSELevel = MMX;
if ((EDX >> 25) & 0x1) X86SSELevel = SSE1;
if ((EDX >> 26) & 0x1) X86SSELevel = SSE2;
if (ECX & 0x1) X86SSELevel = SSE3;
if ((ECX >> 9) & 0x1) X86SSELevel = SSSE3;
if ((ECX >> 19) & 0x1) X86SSELevel = SSE41;
if ((ECX >> 20) & 0x1) X86SSELevel = SSE42;
bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
HasFMA3 = IsIntel && ((ECX >> 12) & 0x1);
HasAVX = ((ECX >> 28) & 0x1);
if (IsIntel || IsAMD) {
// Determine if bit test memory instructions are slow.
unsigned Family = 0;
unsigned Model = 0;
DetectFamilyModel(EAX, Family, Model);
IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13);
X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
HasX86_64 = (EDX >> 29) & 0x1;
HasSSE4A = IsAMD && ((ECX >> 6) & 0x1);
HasFMA4 = IsAMD && ((ECX >> 16) & 0x1);
}
}
static const char *GetCurrentX86CPU() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
if (X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
return "generic";
unsigned Family = 0;
unsigned Model = 0;
DetectFamilyModel(EAX, Family, Model);
X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
bool Em64T = (EDX >> 29) & 0x1;
bool HasSSE3 = (ECX & 0x1);
union {
unsigned u[3];
char c[12];
} text;
X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
if (memcmp(text.c, "GenuineIntel", 12) == 0) {
switch (Family) {
case 3:
return "i386";
case 4:
return "i486";
case 5:
switch (Model) {
case 4: return "pentium-mmx";
default: return "pentium";
}
case 6:
switch (Model) {
case 1: return "pentiumpro";
case 3:
case 5:
case 6: return "pentium2";
case 7:
case 8:
case 10:
case 11: return "pentium3";
case 9:
case 13: return "pentium-m";
case 14: return "yonah";
case 15:
case 22: // Celeron M 540
return "core2";
case 23: // 45nm: Penryn , Wolfdale, Yorkfield (XE)
return "penryn";
default: return "i686";
}
case 15: {
switch (Model) {
case 3:
case 4:
case 6: // same as 4, but 65nm
return (Em64T) ? "nocona" : "prescott";
case 26:
return "corei7";
case 28:
return "atom";
default:
return (Em64T) ? "x86-64" : "pentium4";
}
}
default:
return "generic";
}
} else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
// FIXME: this poorly matches the generated SubtargetFeatureKV table. There
// appears to be no way to generate the wide variety of AMD-specific targets
// from the information returned from CPUID.
switch (Family) {
case 4:
return "i486";
case 5:
switch (Model) {
case 6:
case 7: return "k6";
case 8: return "k6-2";
case 9:
case 13: return "k6-3";
default: return "pentium";
}
case 6:
switch (Model) {
case 4: return "athlon-tbird";
case 6:
case 7:
case 8: return "athlon-mp";
case 10: return "athlon-xp";
default: return "athlon";
}
case 15:
if (HasSSE3) {
return "k8-sse3";
} else {
switch (Model) {
case 1: return "opteron";
case 5: return "athlon-fx"; // also opteron
default: return "athlon64";
}
}
case 16:
return "amdfam10";
default:
return "generic";
}
} else {
return "generic";
}
}
X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS,
bool is64Bit)
: AsmFlavor(AsmWriterFlavor)
, PICStyle(PICStyles::None)
, X86SSELevel(NoMMXSSE)
, X863DNowLevel(NoThreeDNow)
, HasX86_64(false)
, HasSSE4A(false)
, HasAVX(false)
, HasFMA3(false)
, HasFMA4(false)
, IsBTMemSlow(false)
, DarwinVers(0)
, IsLinux(false)
, stackAlignment(8)
// FIXME: this is a known good value for Yonah. How about others?
, MaxInlineSizeThreshold(128)
, Is64Bit(is64Bit)
, TargetType(isELF) { // Default to ELF unless otherwise specified.
// default to hard float ABI
if (FloatABIType == FloatABI::Default)
FloatABIType = FloatABI::Hard;
// Determine default and user specified characteristics
if (!FS.empty()) {
// If feature string is not empty, parse features string.
std::string CPU = GetCurrentX86CPU();
ParseSubtargetFeatures(FS, CPU);
// All X86-64 CPUs also have SSE2, however user might request no SSE via
// -mattr, so don't force SSELevel here.
} else {
// Otherwise, use CPUID to auto-detect feature set.
AutoDetectSubtargetFeatures();
// Make sure SSE2 is enabled; it is available on all X86-64 CPUs.
if (Is64Bit && X86SSELevel < SSE2)
X86SSELevel = SSE2;
}
// If requesting codegen for X86-64, make sure that 64-bit features
// are enabled.
if (Is64Bit)
HasX86_64 = true;
DEBUG(errs() << "Subtarget features: SSELevel " << X86SSELevel
<< ", 3DNowLevel " << X863DNowLevel
<< ", 64bit " << HasX86_64 << "\n");
assert((!Is64Bit || HasX86_64) &&
"64-bit code requested on a subtarget that doesn't support it!");
// Set the boolean corresponding to the current target triple, or the default
// if one cannot be determined, to true.
if (TT.length() > 5) {
size_t Pos;
if ((Pos = TT.find("-darwin")) != std::string::npos) {
TargetType = isDarwin;
// Compute the darwin version number.
if (isdigit(TT[Pos+7]))
DarwinVers = atoi(&TT[Pos+7]);
else
DarwinVers = 8; // Minimum supported darwin is Tiger.
} else if (TT.find("linux") != std::string::npos) {
// Linux doesn't imply ELF, but we don't currently support anything else.
TargetType = isELF;
IsLinux = true;
} else if (TT.find("cygwin") != std::string::npos) {
TargetType = isCygwin;
} else if (TT.find("mingw") != std::string::npos) {
TargetType = isMingw;
} else if (TT.find("win32") != std::string::npos) {
TargetType = isWindows;
} else if (TT.find("windows") != std::string::npos) {
TargetType = isWindows;
}
else if (TT.find("-cl") != std::string::npos) {
TargetType = isDarwin;
DarwinVers = 9;
}
} else if (TT.empty()) {
#if defined(__CYGWIN__)
TargetType = isCygwin;
#elif defined(__MINGW32__) || defined(__MINGW64__)
TargetType = isMingw;
#elif defined(__APPLE__)
TargetType = isDarwin;
#if __APPLE_CC__ > 5400
DarwinVers = 9; // GCC 5400+ is Leopard.
#else
DarwinVers = 8; // Minimum supported darwin is Tiger.
#endif
#elif defined(_WIN32) || defined(_WIN64)
TargetType = isWindows;
#elif defined(__linux__)
// Linux doesn't imply ELF, but we don't currently support anything else.
TargetType = isELF;
IsLinux = true;
#endif
}
// If the asm syntax hasn't been overridden on the command line, use whatever
// the target wants.
if (AsmFlavor == X86Subtarget::Unset) {
AsmFlavor = (TargetType == isWindows)
? X86Subtarget::Intel : X86Subtarget::ATT;
}
// Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64
// bit targets.
if (TargetType == isDarwin || Is64Bit)
stackAlignment = 16;
if (StackAlignment)
stackAlignment = StackAlignment;
}