llvm-6502/include/llvm/IR/DebugInfo.h
Adrian Prantl 8dd4cf1581 Fix DwarfExpression::AddMachineRegExpression so it doesn't read past the
end of an expression that ends with DW_OP_plus.
Caught by the ASAN build bots.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231260 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-04 17:39:33 +00:00

1326 lines
46 KiB
C++

//===- DebugInfo.h - Debug Information Helpers ------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a bunch of datatypes that are useful for creating and
// walking debug info in LLVM IR form. They essentially provide wrappers around
// the information in the global variables that's needed when constructing the
// DWARF information.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_DEBUGINFO_H
#define LLVM_IR_DEBUGINFO_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
#include <iterator>
namespace llvm {
class BasicBlock;
class Constant;
class Function;
class GlobalVariable;
class Module;
class Type;
class Value;
class DbgDeclareInst;
class DbgValueInst;
class Instruction;
class Metadata;
class MDNode;
class MDString;
class NamedMDNode;
class LLVMContext;
class raw_ostream;
class DIFile;
class DISubprogram;
class DILexicalBlock;
class DILexicalBlockFile;
class DIVariable;
class DIType;
class DIScope;
class DIObjCProperty;
/// \brief Maps from type identifier to the actual MDNode.
typedef DenseMap<const MDString *, MDNode *> DITypeIdentifierMap;
class DIHeaderFieldIterator
: public std::iterator<std::input_iterator_tag, StringRef, std::ptrdiff_t,
const StringRef *, StringRef> {
StringRef Header;
StringRef Current;
public:
DIHeaderFieldIterator() {}
explicit DIHeaderFieldIterator(StringRef Header)
: Header(Header), Current(Header.slice(0, Header.find('\0'))) {}
StringRef operator*() const { return Current; }
const StringRef *operator->() const { return &Current; }
DIHeaderFieldIterator &operator++() {
increment();
return *this;
}
DIHeaderFieldIterator operator++(int) {
DIHeaderFieldIterator X(*this);
increment();
return X;
}
bool operator==(const DIHeaderFieldIterator &X) const {
return Current.data() == X.Current.data();
}
bool operator!=(const DIHeaderFieldIterator &X) const {
return !(*this == X);
}
StringRef getHeader() const { return Header; }
StringRef getCurrent() const { return Current; }
StringRef getPrefix() const {
if (Current.begin() == Header.begin())
return StringRef();
return Header.slice(0, Current.begin() - Header.begin() - 1);
}
StringRef getSuffix() const {
if (Current.end() == Header.end())
return StringRef();
return Header.slice(Current.end() - Header.begin() + 1, StringRef::npos);
}
/// \brief Get the current field as a number.
///
/// Convert the current field into a number. Return \c 0 on error.
template <class T> T getNumber() const {
T Int;
if (getCurrent().getAsInteger(0, Int))
return 0;
return Int;
}
private:
void increment() {
assert(Current.data() != nullptr && "Cannot increment past the end");
StringRef Suffix = getSuffix();
Current = Suffix.slice(0, Suffix.find('\0'));
}
};
/// \brief A thin wraper around MDNode to access encoded debug info.
///
/// This should not be stored in a container, because the underlying MDNode may
/// change in certain situations.
class DIDescriptor {
// Befriends DIRef so DIRef can befriend the protected member
// function: getFieldAs<DIRef>.
template <typename T> friend class DIRef;
public:
/// \brief Accessibility flags.
///
/// The three accessibility flags are mutually exclusive and rolled together
/// in the first two bits.
enum {
#define HANDLE_DI_FLAG(ID, NAME) Flag##NAME = ID,
#include "llvm/IR/DebugInfoFlags.def"
FlagAccessibility = FlagPrivate | FlagProtected | FlagPublic
};
static unsigned getFlag(StringRef Flag);
static const char *getFlagString(unsigned Flag);
/// \brief Split up a flags bitfield.
///
/// Split \c Flags into \c SplitFlags, a vector of its components. Returns
/// any remaining (unrecognized) bits.
static unsigned splitFlags(unsigned Flags,
SmallVectorImpl<unsigned> &SplitFlags);
protected:
const MDNode *DbgNode;
StringRef getStringField(unsigned Elt) const;
unsigned getUnsignedField(unsigned Elt) const {
return (unsigned)getUInt64Field(Elt);
}
uint64_t getUInt64Field(unsigned Elt) const;
int64_t getInt64Field(unsigned Elt) const;
DIDescriptor getDescriptorField(unsigned Elt) const;
template <typename DescTy> DescTy getFieldAs(unsigned Elt) const {
return DescTy(getDescriptorField(Elt));
}
GlobalVariable *getGlobalVariableField(unsigned Elt) const;
Constant *getConstantField(unsigned Elt) const;
Function *getFunctionField(unsigned Elt) const;
public:
explicit DIDescriptor(const MDNode *N = nullptr) : DbgNode(N) {}
bool Verify() const;
MDNode *get() const { return const_cast<MDNode *>(DbgNode); }
operator MDNode *() const { return get(); }
MDNode *operator->() const { return get(); }
// An explicit operator bool so that we can do testing of DI values
// easily.
// FIXME: This operator bool isn't actually protecting anything at the
// moment due to the conversion operator above making DIDescriptor nodes
// implicitly convertable to bool.
explicit operator bool() const { return DbgNode != nullptr; }
bool operator==(DIDescriptor Other) const { return DbgNode == Other.DbgNode; }
bool operator!=(DIDescriptor Other) const { return !operator==(Other); }
StringRef getHeader() const { return getStringField(0); }
size_t getNumHeaderFields() const {
return std::distance(DIHeaderFieldIterator(getHeader()),
DIHeaderFieldIterator());
}
DIHeaderFieldIterator header_begin() const {
return DIHeaderFieldIterator(getHeader());
}
DIHeaderFieldIterator header_end() const { return DIHeaderFieldIterator(); }
DIHeaderFieldIterator getHeaderIterator(unsigned Index) const {
// Since callers expect an empty string for out-of-range accesses, we can't
// use std::advance() here.
for (auto I = header_begin(), E = header_end(); I != E; ++I, --Index)
if (!Index)
return I;
return header_end();
}
StringRef getHeaderField(unsigned Index) const {
return *getHeaderIterator(Index);
}
template <class T> T getHeaderFieldAs(unsigned Index) const {
return getHeaderIterator(Index).getNumber<T>();
}
uint16_t getTag() const {
if (auto *N = dyn_cast_or_null<DebugNode>(get()))
return N->getTag();
return 0;
}
bool isDerivedType() const { return get() && isa<MDDerivedTypeBase>(get()); }
bool isCompositeType() const {
return get() && isa<MDCompositeTypeBase>(get());
}
bool isSubroutineType() const {
return get() && isa<MDSubroutineType>(get());
}
bool isBasicType() const { return get() && isa<MDBasicType>(get()); }
bool isVariable() const { return get() && isa<MDLocalVariable>(get()); }
bool isSubprogram() const { return get() && isa<MDSubprogram>(get()); }
bool isGlobalVariable() const {
return get() && isa<MDGlobalVariable>(get());
}
bool isScope() const { return get() && isa<MDScope>(get()); }
bool isFile() const { return get() && isa<MDFile>(get()); }
bool isCompileUnit() const { return get() && isa<MDCompileUnit>(get()); }
bool isNameSpace() const{ return get() && isa<MDNamespace>(get()); }
bool isLexicalBlockFile() const {
return get() && isa<MDLexicalBlockFile>(get());
}
bool isLexicalBlock() const {
return get() && isa<MDLexicalBlockBase>(get());
}
bool isSubrange() const { return get() && isa<MDSubrange>(get()); }
bool isEnumerator() const { return get() && isa<MDEnumerator>(get()); }
bool isType() const { return get() && isa<MDType>(get()); }
bool isTemplateTypeParameter() const {
return get() && isa<MDTemplateTypeParameter>(get());
}
bool isTemplateValueParameter() const {
return get() && isa<MDTemplateValueParameter>(get());
}
bool isObjCProperty() const { return get() && isa<MDObjCProperty>(get()); }
bool isImportedEntity() const {
return get() && isa<MDImportedEntity>(get());
}
bool isExpression() const { return get() && isa<MDExpression>(get()); }
void print(raw_ostream &OS) const;
void dump() const;
/// \brief Replace all uses of debug info referenced by this descriptor.
void replaceAllUsesWith(LLVMContext &VMContext, DIDescriptor D);
void replaceAllUsesWith(MDNode *D);
};
#define RETURN_FROM_RAW(VALID, DEFAULT) \
do { \
if (auto *N = getRaw()) \
return VALID; \
return DEFAULT; \
} while (false)
#define RETURN_DESCRIPTOR_FROM_RAW(DESC, VALID) \
do { \
if (auto *N = getRaw()) \
return DESC(dyn_cast_or_null<MDNode>(VALID)); \
return DESC(static_cast<const MDNode *>(nullptr)); \
} while (false)
#define RETURN_REF_FROM_RAW(REF, VALID) \
do { \
if (auto *N = getRaw()) \
return REF::get(VALID); \
return REF::get(nullptr); \
} while (false)
/// \brief This is used to represent ranges, for array bounds.
class DISubrange : public DIDescriptor {
MDSubrange *getRaw() const { return dyn_cast_or_null<MDSubrange>(get()); }
public:
explicit DISubrange(const MDNode *N = nullptr) : DIDescriptor(N) {}
DISubrange(const MDSubrange *N) : DIDescriptor(N) {}
int64_t getLo() const { RETURN_FROM_RAW(N->getLo(), 0); }
int64_t getCount() const { RETURN_FROM_RAW(N->getCount(), 0); }
bool Verify() const;
};
/// \brief This descriptor holds an array of nodes with type T.
template <typename T> class DITypedArray : public DIDescriptor {
public:
explicit DITypedArray(const MDNode *N = nullptr) : DIDescriptor(N) {}
unsigned getNumElements() const {
return DbgNode ? DbgNode->getNumOperands() : 0;
}
T getElement(unsigned Idx) const { return getFieldAs<T>(Idx); }
};
typedef DITypedArray<DIDescriptor> DIArray;
/// \brief A wrapper for an enumerator (e.g. X and Y in 'enum {X,Y}').
///
/// FIXME: it seems strange that this doesn't have either a reference to the
/// type/precision or a file/line pair for location info.
class DIEnumerator : public DIDescriptor {
MDEnumerator *getRaw() const { return dyn_cast_or_null<MDEnumerator>(get()); }
public:
explicit DIEnumerator(const MDNode *N = nullptr) : DIDescriptor(N) {}
DIEnumerator(const MDEnumerator *N) : DIDescriptor(N) {}
StringRef getName() const { RETURN_FROM_RAW(N->getName(), ""); }
int64_t getEnumValue() const { RETURN_FROM_RAW(N->getValue(), 0); }
bool Verify() const;
};
template <typename T> class DIRef;
typedef DIRef<DIDescriptor> DIDescriptorRef;
typedef DIRef<DIScope> DIScopeRef;
typedef DIRef<DIType> DITypeRef;
typedef DITypedArray<DITypeRef> DITypeArray;
/// \brief A base class for various scopes.
///
/// Although, implementation-wise, DIScope is the parent class of most
/// other DIxxx classes, including DIType and its descendants, most of
/// DIScope's descendants are not a substitutable subtype of
/// DIScope. The DIDescriptor::isScope() method only is true for
/// DIScopes that are scopes in the strict lexical scope sense
/// (DICompileUnit, DISubprogram, etc.), but not for, e.g., a DIType.
class DIScope : public DIDescriptor {
protected:
MDScope *getRaw() const { return dyn_cast_or_null<MDScope>(get()); }
public:
explicit DIScope(const MDNode *N = nullptr) : DIDescriptor(N) {}
DIScope(const MDScope *N) : DIDescriptor(N) {}
/// \brief Get the parent scope.
///
/// Gets the parent scope for this scope node or returns a default
/// constructed scope.
DIScopeRef getContext() const;
/// \brief Get the scope name.
///
/// If the scope node has a name, return that, else return an empty string.
StringRef getName() const;
StringRef getFilename() const;
StringRef getDirectory() const;
/// \brief Generate a reference to this DIScope.
///
/// Uses the type identifier instead of the actual MDNode if possible, to
/// help type uniquing.
DIScopeRef getRef() const;
};
/// \brief Represents reference to a DIDescriptor.
///
/// Abstracts over direct and identifier-based metadata references.
template <typename T> class DIRef {
template <typename DescTy>
friend DescTy DIDescriptor::getFieldAs(unsigned Elt) const;
friend DIScopeRef DIScope::getContext() const;
friend DIScopeRef DIScope::getRef() const;
friend class DIType;
/// \brief Val can be either a MDNode or a MDString.
///
/// In the latter, MDString specifies the type identifier.
const Metadata *Val;
explicit DIRef(const Metadata *V);
public:
T resolve(const DITypeIdentifierMap &Map) const;
StringRef getName() const;
operator Metadata *() const { return const_cast<Metadata *>(Val); }
static DIRef get(const Metadata *MD) { return DIRef(MD); }
};
template <typename T>
T DIRef<T>::resolve(const DITypeIdentifierMap &Map) const {
if (!Val)
return T();
if (const MDNode *MD = dyn_cast<MDNode>(Val))
return T(MD);
const MDString *MS = cast<MDString>(Val);
// Find the corresponding MDNode.
DITypeIdentifierMap::const_iterator Iter = Map.find(MS);
assert(Iter != Map.end() && "Identifier not in the type map?");
assert(DIDescriptor(Iter->second).isType() &&
"MDNode in DITypeIdentifierMap should be a DIType.");
return T(Iter->second);
}
template <typename T> StringRef DIRef<T>::getName() const {
if (!Val)
return StringRef();
if (const MDNode *MD = dyn_cast<MDNode>(Val))
return T(MD).getName();
const MDString *MS = cast<MDString>(Val);
return MS->getString();
}
/// \brief Handle fields that are references to DIDescriptors.
template <>
DIDescriptorRef DIDescriptor::getFieldAs<DIDescriptorRef>(unsigned Elt) const;
/// \brief Specialize DIRef constructor for DIDescriptorRef.
template <> DIRef<DIDescriptor>::DIRef(const Metadata *V);
/// \brief Handle fields that are references to DIScopes.
template <> DIScopeRef DIDescriptor::getFieldAs<DIScopeRef>(unsigned Elt) const;
/// \brief Specialize DIRef constructor for DIScopeRef.
template <> DIRef<DIScope>::DIRef(const Metadata *V);
/// \brief Handle fields that are references to DITypes.
template <> DITypeRef DIDescriptor::getFieldAs<DITypeRef>(unsigned Elt) const;
/// \brief Specialize DIRef constructor for DITypeRef.
template <> DIRef<DIType>::DIRef(const Metadata *V);
/// \brief This is a wrapper for a type.
///
/// FIXME: Types should be factored much better so that CV qualifiers and
/// others do not require a huge and empty descriptor full of zeros.
class DIType : public DIScope {
MDType *getRaw() const { return dyn_cast_or_null<MDType>(get()); }
public:
explicit DIType(const MDNode *N = nullptr) : DIScope(N) {}
DIType(const MDType *N) : DIScope(N) {}
operator DITypeRef() const {
assert(isType() &&
"constructing DITypeRef from an MDNode that is not a type");
return DITypeRef(&*getRef());
}
bool Verify() const;
DIScopeRef getContext() const {
RETURN_REF_FROM_RAW(DIScopeRef, N->getScope());
}
StringRef getName() const { RETURN_FROM_RAW(N->getName(), ""); }
unsigned getLineNumber() const { RETURN_FROM_RAW(N->getLine(), 0); }
uint64_t getSizeInBits() const { RETURN_FROM_RAW(N->getSizeInBits(), 0); }
uint64_t getAlignInBits() const { RETURN_FROM_RAW(N->getAlignInBits(), 0); }
// FIXME: Offset is only used for DW_TAG_member nodes. Making every type
// carry this is just plain insane.
uint64_t getOffsetInBits() const { RETURN_FROM_RAW(N->getOffsetInBits(), 0); }
unsigned getFlags() const { RETURN_FROM_RAW(N->getFlags(), 0); }
bool isPrivate() const {
return (getFlags() & FlagAccessibility) == FlagPrivate;
}
bool isProtected() const {
return (getFlags() & FlagAccessibility) == FlagProtected;
}
bool isPublic() const {
return (getFlags() & FlagAccessibility) == FlagPublic;
}
bool isForwardDecl() const { return (getFlags() & FlagFwdDecl) != 0; }
bool isAppleBlockExtension() const {
return (getFlags() & FlagAppleBlock) != 0;
}
bool isBlockByrefStruct() const {
return (getFlags() & FlagBlockByrefStruct) != 0;
}
bool isVirtual() const { return (getFlags() & FlagVirtual) != 0; }
bool isArtificial() const { return (getFlags() & FlagArtificial) != 0; }
bool isObjectPointer() const { return (getFlags() & FlagObjectPointer) != 0; }
bool isObjcClassComplete() const {
return (getFlags() & FlagObjcClassComplete) != 0;
}
bool isVector() const { return (getFlags() & FlagVector) != 0; }
bool isStaticMember() const { return (getFlags() & FlagStaticMember) != 0; }
bool isLValueReference() const {
return (getFlags() & FlagLValueReference) != 0;
}
bool isRValueReference() const {
return (getFlags() & FlagRValueReference) != 0;
}
bool isValid() const { return DbgNode && isType(); }
};
/// \brief A basic type, like 'int' or 'float'.
class DIBasicType : public DIType {
MDBasicType *getRaw() const { return dyn_cast_or_null<MDBasicType>(get()); }
public:
explicit DIBasicType(const MDNode *N = nullptr) : DIType(N) {}
DIBasicType(const MDBasicType *N) : DIType(N) {}
unsigned getEncoding() const { RETURN_FROM_RAW(N->getEncoding(), 0); }
bool Verify() const;
};
/// \brief A simple derived type
///
/// Like a const qualified type, a typedef, a pointer or reference, et cetera.
/// Or, a data member of a class/struct/union.
class DIDerivedType : public DIType {
MDDerivedTypeBase *getRaw() const {
return dyn_cast_or_null<MDDerivedTypeBase>(get());
}
public:
explicit DIDerivedType(const MDNode *N = nullptr) : DIType(N) {}
DIDerivedType(const MDDerivedTypeBase *N) : DIType(N) {}
DITypeRef getTypeDerivedFrom() const {
RETURN_REF_FROM_RAW(DITypeRef, N->getBaseType());
}
/// \brief Return property node, if this ivar is associated with one.
MDNode *getObjCProperty() const {
if (auto *N = dyn_cast_or_null<MDDerivedType>(get()))
return dyn_cast_or_null<MDNode>(N->getExtraData());
return nullptr;
}
DITypeRef getClassType() const {
assert(getTag() == dwarf::DW_TAG_ptr_to_member_type);
if (auto *N = dyn_cast_or_null<MDDerivedType>(get()))
return DITypeRef::get(N->getExtraData());
return DITypeRef::get(nullptr);
}
Constant *getConstant() const {
assert((getTag() == dwarf::DW_TAG_member) && isStaticMember());
if (auto *N = dyn_cast_or_null<MDDerivedType>(get()))
if (auto *C = dyn_cast_or_null<ConstantAsMetadata>(N->getExtraData()))
return C->getValue();
return nullptr;
}
bool Verify() const;
};
/// \brief Types that refer to multiple other types.
///
/// This descriptor holds a type that can refer to multiple other types, like a
/// function or struct.
///
/// DICompositeType is derived from DIDerivedType because some
/// composite types (such as enums) can be derived from basic types
// FIXME: Make this derive from DIType directly & just store the
// base type in a single DIType field.
class DICompositeType : public DIDerivedType {
friend class DIBuilder;
/// \brief Set the array of member DITypes.
void setArraysHelper(MDNode *Elements, MDNode *TParams);
MDCompositeTypeBase *getRaw() const {
return dyn_cast_or_null<MDCompositeTypeBase>(get());
}
public:
explicit DICompositeType(const MDNode *N = nullptr) : DIDerivedType(N) {}
DICompositeType(const MDCompositeTypeBase *N) : DIDerivedType(N) {}
DIArray getElements() const {
assert(!isSubroutineType() && "no elements for DISubroutineType");
RETURN_DESCRIPTOR_FROM_RAW(DIArray, N->getElements());
}
private:
template <typename T>
void setArrays(DITypedArray<T> Elements, DIArray TParams = DIArray()) {
assert(
(!TParams || DbgNode->getNumOperands() == 8) &&
"If you're setting the template parameters this should include a slot "
"for that!");
setArraysHelper(Elements, TParams);
}
public:
unsigned getRunTimeLang() const { RETURN_FROM_RAW(N->getRuntimeLang(), 0); }
DITypeRef getContainingType() const {
RETURN_REF_FROM_RAW(DITypeRef, N->getVTableHolder());
}
private:
/// \brief Set the containing type.
void setContainingType(DICompositeType ContainingType);
public:
DIArray getTemplateParams() const {
RETURN_DESCRIPTOR_FROM_RAW(DIArray, N->getTemplateParams());
}
MDString *getIdentifier() const {
RETURN_FROM_RAW(N->getRawIdentifier(), nullptr);
}
bool Verify() const;
};
class DISubroutineType : public DICompositeType {
MDSubroutineType *getRaw() const {
return dyn_cast_or_null<MDSubroutineType>(get());
}
public:
explicit DISubroutineType(const MDNode *N = nullptr) : DICompositeType(N) {}
DISubroutineType(const MDSubroutineType *N) : DICompositeType(N) {}
DITypedArray<DITypeRef> getTypeArray() const {
RETURN_DESCRIPTOR_FROM_RAW(DITypedArray<DITypeRef>, N->getTypeArray());
}
};
/// \brief This is a wrapper for a file.
class DIFile : public DIScope {
MDFile *getRaw() const { return dyn_cast_or_null<MDFile>(get()); }
public:
explicit DIFile(const MDNode *N = nullptr) : DIScope(N) {}
DIFile(const MDFile *N) : DIScope(N) {}
/// \brief Retrieve the MDNode for the directory/file pair.
MDNode *getFileNode() const { return get(); }
bool Verify() const;
};
/// \brief A wrapper for a compile unit.
class DICompileUnit : public DIScope {
MDCompileUnit *getRaw() const {
return dyn_cast_or_null<MDCompileUnit>(get());
}
public:
explicit DICompileUnit(const MDNode *N = nullptr) : DIScope(N) {}
DICompileUnit(const MDCompileUnit *N) : DIScope(N) {}
dwarf::SourceLanguage getLanguage() const {
RETURN_FROM_RAW(static_cast<dwarf::SourceLanguage>(N->getSourceLanguage()),
static_cast<dwarf::SourceLanguage>(0));
}
StringRef getProducer() const { RETURN_FROM_RAW(N->getProducer(), ""); }
bool isOptimized() const { RETURN_FROM_RAW(N->isOptimized(), false); }
StringRef getFlags() const { RETURN_FROM_RAW(N->getFlags(), ""); }
unsigned getRunTimeVersion() const {
RETURN_FROM_RAW(N->getRuntimeVersion(), 0);
}
DIArray getEnumTypes() const {
RETURN_DESCRIPTOR_FROM_RAW(DIArray, N->getEnumTypes());
}
DIArray getRetainedTypes() const {
RETURN_DESCRIPTOR_FROM_RAW(DIArray, N->getRetainedTypes());
}
DIArray getSubprograms() const {
RETURN_DESCRIPTOR_FROM_RAW(DIArray, N->getSubprograms());
}
DIArray getGlobalVariables() const {
RETURN_DESCRIPTOR_FROM_RAW(DIArray, N->getGlobalVariables());
}
DIArray getImportedEntities() const {
RETURN_DESCRIPTOR_FROM_RAW(DIArray, N->getImportedEntities());
}
void replaceSubprograms(DIArray Subprograms);
void replaceGlobalVariables(DIArray GlobalVariables);
StringRef getSplitDebugFilename() const {
RETURN_FROM_RAW(N->getSplitDebugFilename(), "");
}
unsigned getEmissionKind() const { RETURN_FROM_RAW(N->getEmissionKind(), 0); }
bool Verify() const;
};
/// \brief This is a wrapper for a subprogram (e.g. a function).
class DISubprogram : public DIScope {
MDSubprogram *getRaw() const { return dyn_cast_or_null<MDSubprogram>(get()); }
public:
explicit DISubprogram(const MDNode *N = nullptr) : DIScope(N) {}
DISubprogram(const MDSubprogram *N) : DIScope(N) {}
StringRef getName() const { RETURN_FROM_RAW(N->getName(), ""); }
StringRef getDisplayName() const { RETURN_FROM_RAW(N->getDisplayName(), ""); }
StringRef getLinkageName() const { RETURN_FROM_RAW(N->getLinkageName(), ""); }
unsigned getLineNumber() const { RETURN_FROM_RAW(N->getLine(), 0); }
/// \brief Check if this is local (like 'static' in C).
unsigned isLocalToUnit() const { RETURN_FROM_RAW(N->isLocalToUnit(), 0); }
unsigned isDefinition() const { RETURN_FROM_RAW(N->isDefinition(), 0); }
unsigned getVirtuality() const { RETURN_FROM_RAW(N->getVirtuality(), 0); }
unsigned getVirtualIndex() const { RETURN_FROM_RAW(N->getVirtualIndex(), 0); }
unsigned getFlags() const { RETURN_FROM_RAW(N->getFlags(), 0); }
unsigned isOptimized() const { RETURN_FROM_RAW(N->isOptimized(), 0); }
/// \brief Get the beginning of the scope of the function (not the name).
unsigned getScopeLineNumber() const { RETURN_FROM_RAW(N->getScopeLine(), 0); }
DIScopeRef getContext() const {
RETURN_REF_FROM_RAW(DIScopeRef, N->getScope());
}
DISubroutineType getType() const {
RETURN_DESCRIPTOR_FROM_RAW(DISubroutineType, N->getType());
}
DITypeRef getContainingType() const {
RETURN_REF_FROM_RAW(DITypeRef, N->getContainingType());
}
bool Verify() const;
/// \brief Check if this provides debugging information for the function F.
bool describes(const Function *F);
Function *getFunction() const;
void replaceFunction(Function *F) {
if (auto *N = getRaw())
N->replaceFunction(F);
}
DIArray getTemplateParams() const {
RETURN_DESCRIPTOR_FROM_RAW(DIArray, N->getTemplateParams());
}
DISubprogram getFunctionDeclaration() const {
RETURN_DESCRIPTOR_FROM_RAW(DISubprogram, N->getDeclaration());
}
MDNode *getVariablesNodes() const { return getVariables(); }
DIArray getVariables() const {
RETURN_DESCRIPTOR_FROM_RAW(DIArray, N->getVariables());
}
unsigned isArtificial() const { return (getFlags() & FlagArtificial) != 0; }
/// \brief Check for the "private" access specifier.
bool isPrivate() const {
return (getFlags() & FlagAccessibility) == FlagPrivate;
}
/// \brief Check for the "protected" access specifier.
bool isProtected() const {
return (getFlags() & FlagAccessibility) == FlagProtected;
}
/// \brief Check for the "public" access specifier.
bool isPublic() const {
return (getFlags() & FlagAccessibility) == FlagPublic;
}
/// \brief Check for "explicit".
bool isExplicit() const { return (getFlags() & FlagExplicit) != 0; }
/// \brief Check if this is prototyped.
bool isPrototyped() const { return (getFlags() & FlagPrototyped) != 0; }
/// \brief Check if this is reference-qualified.
///
/// Return true if this subprogram is a C++11 reference-qualified non-static
/// member function (void foo() &).
unsigned isLValueReference() const {
return (getFlags() & FlagLValueReference) != 0;
}
/// \brief Check if this is rvalue-reference-qualified.
///
/// Return true if this subprogram is a C++11 rvalue-reference-qualified
/// non-static member function (void foo() &&).
unsigned isRValueReference() const {
return (getFlags() & FlagRValueReference) != 0;
}
};
/// \brief This is a wrapper for a lexical block.
class DILexicalBlock : public DIScope {
MDLexicalBlockBase *getRaw() const {
return dyn_cast_or_null<MDLexicalBlockBase>(get());
}
public:
explicit DILexicalBlock(const MDNode *N = nullptr) : DIScope(N) {}
DILexicalBlock(const MDLexicalBlock *N) : DIScope(N) {}
DIScope getContext() const {
RETURN_DESCRIPTOR_FROM_RAW(DIScope, N->getScope());
}
unsigned getLineNumber() const {
if (auto *N = dyn_cast_or_null<MDLexicalBlock>(get()))
return N->getLine();
return 0;
}
unsigned getColumnNumber() const {
if (auto *N = dyn_cast_or_null<MDLexicalBlock>(get()))
return N->getColumn();
return 0;
}
bool Verify() const;
};
/// \brief This is a wrapper for a lexical block with a filename change.
class DILexicalBlockFile : public DIScope {
MDLexicalBlockFile *getRaw() const {
return dyn_cast_or_null<MDLexicalBlockFile>(get());
}
public:
explicit DILexicalBlockFile(const MDNode *N = nullptr) : DIScope(N) {}
DILexicalBlockFile(const MDLexicalBlockFile *N) : DIScope(N) {}
DIScope getContext() const {
// FIXME: This logic is horrible. getScope() returns a DILexicalBlock, but
// then we check if it's a subprogram? WHAT?!?
if (getScope().isSubprogram())
return getScope();
return getScope().getContext();
}
unsigned getLineNumber() const { return getScope().getLineNumber(); }
unsigned getColumnNumber() const { return getScope().getColumnNumber(); }
DILexicalBlock getScope() const {
RETURN_DESCRIPTOR_FROM_RAW(DILexicalBlock, N->getScope());
}
unsigned getDiscriminator() const {
RETURN_FROM_RAW(N->getDiscriminator(), 0);
}
bool Verify() const;
};
/// \brief A wrapper for a C++ style name space.
class DINameSpace : public DIScope {
MDNamespace *getRaw() const { return dyn_cast_or_null<MDNamespace>(get()); }
public:
explicit DINameSpace(const MDNode *N = nullptr) : DIScope(N) {}
DINameSpace(const MDNamespace *N) : DIScope(N) {}
StringRef getName() const { RETURN_FROM_RAW(N->getName(), ""); }
unsigned getLineNumber() const { RETURN_FROM_RAW(N->getLine(), 0); }
DIScope getContext() const {
RETURN_DESCRIPTOR_FROM_RAW(DIScope, N->getScope());
}
bool Verify() const;
};
/// \brief This is a wrapper for template type parameter.
class DITemplateTypeParameter : public DIDescriptor {
MDTemplateTypeParameter *getRaw() const {
return dyn_cast_or_null<MDTemplateTypeParameter>(get());
}
public:
explicit DITemplateTypeParameter(const MDNode *N = nullptr)
: DIDescriptor(N) {}
DITemplateTypeParameter(const MDTemplateTypeParameter *N) : DIDescriptor(N) {}
StringRef getName() const { RETURN_FROM_RAW(N->getName(), ""); }
DITypeRef getType() const { RETURN_REF_FROM_RAW(DITypeRef, N->getType()); }
bool Verify() const;
};
/// \brief This is a wrapper for template value parameter.
class DITemplateValueParameter : public DIDescriptor {
MDTemplateValueParameter *getRaw() const {
return dyn_cast_or_null<MDTemplateValueParameter>(get());
}
public:
explicit DITemplateValueParameter(const MDNode *N = nullptr)
: DIDescriptor(N) {}
DITemplateValueParameter(const MDTemplateValueParameter *N)
: DIDescriptor(N) {}
StringRef getName() const { RETURN_FROM_RAW(N->getName(), ""); }
DITypeRef getType() const { RETURN_REF_FROM_RAW(DITypeRef, N->getType()); }
Metadata *getValue() const { RETURN_FROM_RAW(N->getValue(), nullptr); }
bool Verify() const;
};
/// \brief This is a wrapper for a global variable.
class DIGlobalVariable : public DIDescriptor {
MDGlobalVariable *getRaw() const {
return dyn_cast_or_null<MDGlobalVariable>(get());
}
DIFile getFile() const { RETURN_DESCRIPTOR_FROM_RAW(DIFile, N->getFile()); }
public:
explicit DIGlobalVariable(const MDNode *N = nullptr) : DIDescriptor(N) {}
DIGlobalVariable(const MDGlobalVariable *N) : DIDescriptor(N) {}
StringRef getName() const { RETURN_FROM_RAW(N->getName(), ""); }
StringRef getDisplayName() const { RETURN_FROM_RAW(N->getDisplayName(), ""); }
StringRef getLinkageName() const { RETURN_FROM_RAW(N->getLinkageName(), ""); }
unsigned getLineNumber() const { RETURN_FROM_RAW(N->getLine(), 0); }
unsigned isLocalToUnit() const { RETURN_FROM_RAW(N->isLocalToUnit(), 0); }
unsigned isDefinition() const { RETURN_FROM_RAW(N->isDefinition(), 0); }
DIScope getContext() const {
RETURN_DESCRIPTOR_FROM_RAW(DIScope, N->getScope());
}
StringRef getFilename() const { return getFile().getFilename(); }
StringRef getDirectory() const { return getFile().getDirectory(); }
DITypeRef getType() const { RETURN_REF_FROM_RAW(DITypeRef, N->getType()); }
GlobalVariable *getGlobal() const;
Constant *getConstant() const {
if (auto *N = getRaw())
if (auto *C = dyn_cast_or_null<ConstantAsMetadata>(N->getVariable()))
return C->getValue();
return nullptr;
}
DIDerivedType getStaticDataMemberDeclaration() const {
RETURN_DESCRIPTOR_FROM_RAW(DIDerivedType,
N->getStaticDataMemberDeclaration());
}
bool Verify() const;
};
/// \brief This is a wrapper for a variable (e.g. parameter, local, global etc).
class DIVariable : public DIDescriptor {
MDLocalVariable *getRaw() const {
return dyn_cast_or_null<MDLocalVariable>(get());
}
unsigned getFlags() const { RETURN_FROM_RAW(N->getFlags(), 0); }
public:
explicit DIVariable(const MDNode *N = nullptr) : DIDescriptor(N) {}
DIVariable(const MDLocalVariable *N) : DIDescriptor(N) {}
StringRef getName() const { RETURN_FROM_RAW(N->getName(), ""); }
unsigned getLineNumber() const { RETURN_FROM_RAW(N->getLine(), 0); }
unsigned getArgNumber() const { RETURN_FROM_RAW(N->getArg(), 0); }
DIScope getContext() const {
RETURN_DESCRIPTOR_FROM_RAW(DIScope, N->getScope());
}
DIFile getFile() const { RETURN_DESCRIPTOR_FROM_RAW(DIFile, N->getFile()); }
DITypeRef getType() const { RETURN_REF_FROM_RAW(DITypeRef, N->getType()); }
/// \brief Return true if this variable is marked as "artificial".
bool isArtificial() const {
return (getFlags() & FlagArtificial) != 0;
}
bool isObjectPointer() const {
return (getFlags() & FlagObjectPointer) != 0;
}
/// \brief If this variable is inlined then return inline location.
MDNode *getInlinedAt() const {
RETURN_DESCRIPTOR_FROM_RAW(DIDescriptor, N->getInlinedAt());
}
bool Verify() const;
/// \brief Check if this is a "__block" variable (Apple Blocks).
bool isBlockByrefVariable(const DITypeIdentifierMap &Map) const {
return (getType().resolve(Map)).isBlockByrefStruct();
}
/// \brief Check if this is an inlined function argument.
bool isInlinedFnArgument(const Function *CurFn);
/// \brief Return the size reported by the variable's type.
unsigned getSizeInBits(const DITypeIdentifierMap &Map);
void printExtendedName(raw_ostream &OS) const;
};
/// \brief A complex location expression in postfix notation.
///
/// This is (almost) a DWARF expression that modifies the location of a
/// variable or (or the location of a single piece of a variable).
///
/// FIXME: Instead of DW_OP_plus taking an argument, this should use DW_OP_const
/// and have DW_OP_plus consume the topmost elements on the stack.
class DIExpression : public DIDescriptor {
MDExpression *getRaw() const { return dyn_cast_or_null<MDExpression>(get()); }
public:
explicit DIExpression(const MDNode *N = nullptr) : DIDescriptor(N) {}
DIExpression(const MDExpression *N) : DIDescriptor(N) {}
bool Verify() const;
/// \brief Return the number of elements in the complex expression.
unsigned getNumElements() const { RETURN_FROM_RAW(N->getNumElements(), 0); }
/// \brief return the Idx'th complex address element.
uint64_t getElement(unsigned I) const {
return cast<MDExpression>(get())->getElement(I);
}
/// \brief Return whether this is a piece of an aggregate variable.
bool isBitPiece() const;
/// \brief Return the offset of this piece in bits.
uint64_t getBitPieceOffset() const;
/// \brief Return the size of this piece in bits.
uint64_t getBitPieceSize() const;
class iterator;
/// \brief A lightweight wrapper around an element of a DIExpression.
class Operand {
friend class iterator;
MDExpression::element_iterator I;
Operand() {}
Operand(MDExpression::element_iterator I) : I(I) {}
public:
/// \brief Operands such as DW_OP_piece have explicit (non-stack) arguments.
/// Argument 0 is the operand itself.
uint64_t getArg(unsigned N) const {
MDExpression::element_iterator In = I;
std::advance(In, N);
return *In;
}
operator uint64_t () const { return *I; }
/// \brief Returns underlying MDExpression::element_iterator.
const MDExpression::element_iterator &getBase() const { return I; }
/// \brief Returns the next operand.
iterator getNext() const;
};
/// \brief An iterator for DIExpression elements.
class iterator : public std::iterator<std::input_iterator_tag, StringRef,
unsigned, const Operand*, Operand> {
friend class Operand;
MDExpression::element_iterator I;
Operand Tmp;
public:
iterator(MDExpression::element_iterator I) : I(I) {}
const Operand &operator*() { return Tmp = Operand(I); }
const Operand *operator->() { return &(Tmp = Operand(I)); }
iterator &operator++() {
increment();
return *this;
}
iterator operator++(int) {
iterator X(*this);
increment();
return X;
}
bool operator==(const iterator &X) const { return I == X.I; }
bool operator!=(const iterator &X) const { return !(*this == X); }
private:
void increment() {
switch (**this) {
case dwarf::DW_OP_bit_piece: std::advance(I, 3); break;
case dwarf::DW_OP_plus: std::advance(I, 2); break;
case dwarf::DW_OP_deref: std::advance(I, 1); break;
default:
llvm_unreachable("unsupported operand");
}
}
};
iterator begin() const { return cast<MDExpression>(get())->elements_begin(); }
iterator end() const { return cast<MDExpression>(get())->elements_end(); }
};
/// \brief This object holds location information.
///
/// This object is not associated with any DWARF tag.
class DILocation : public DIDescriptor {
MDLocation *getRaw() const { return dyn_cast_or_null<MDLocation>(get()); }
public:
explicit DILocation(const MDNode *N) : DIDescriptor(N) {}
unsigned getLineNumber() const { RETURN_FROM_RAW(N->getLine(), 0); }
unsigned getColumnNumber() const { RETURN_FROM_RAW(N->getColumn(), 0); }
DIScope getScope() const {
RETURN_DESCRIPTOR_FROM_RAW(DIScope, N->getScope());
}
DILocation getOrigLocation() const {
RETURN_DESCRIPTOR_FROM_RAW(DILocation, N->getInlinedAt());
}
StringRef getFilename() const { return getScope().getFilename(); }
StringRef getDirectory() const { return getScope().getDirectory(); }
bool Verify() const;
bool atSameLineAs(const DILocation &Other) const {
return (getLineNumber() == Other.getLineNumber() &&
getFilename() == Other.getFilename());
}
/// \brief Get the DWAF discriminator.
///
/// DWARF discriminators are used to distinguish identical file locations for
/// instructions that are on different basic blocks. If two instructions are
/// inside the same lexical block and are in different basic blocks, we
/// create a new lexical block with identical location as the original but
/// with a different discriminator value
/// (lib/Transforms/Util/AddDiscriminators.cpp for details).
unsigned getDiscriminator() const {
// Since discriminators are associated with lexical blocks, make
// sure this location is a lexical block before retrieving its
// value.
return getScope().isLexicalBlockFile()
? DILexicalBlockFile(
cast<MDNode>(cast<MDLocation>(DbgNode)->getScope()))
.getDiscriminator()
: 0;
}
/// \brief Generate a new discriminator value for this location.
unsigned computeNewDiscriminator(LLVMContext &Ctx);
/// \brief Return a copy of this location with a different scope.
DILocation copyWithNewScope(LLVMContext &Ctx, DILexicalBlockFile NewScope);
};
class DIObjCProperty : public DIDescriptor {
MDObjCProperty *getRaw() const {
return dyn_cast_or_null<MDObjCProperty>(get());
}
public:
explicit DIObjCProperty(const MDNode *N) : DIDescriptor(N) {}
DIObjCProperty(const MDObjCProperty *N) : DIDescriptor(N) {}
StringRef getObjCPropertyName() const { RETURN_FROM_RAW(N->getName(), ""); }
DIFile getFile() const { RETURN_DESCRIPTOR_FROM_RAW(DIFile, N->getFile()); }
unsigned getLineNumber() const { RETURN_FROM_RAW(N->getLine(), 0); }
StringRef getObjCPropertyGetterName() const {
RETURN_FROM_RAW(N->getGetterName(), "");
}
StringRef getObjCPropertySetterName() const {
RETURN_FROM_RAW(N->getSetterName(), "");
}
unsigned getAttributes() const { RETURN_FROM_RAW(N->getAttributes(), 0); }
bool isReadOnlyObjCProperty() const {
return (getAttributes() & dwarf::DW_APPLE_PROPERTY_readonly) != 0;
}
bool isReadWriteObjCProperty() const {
return (getAttributes() & dwarf::DW_APPLE_PROPERTY_readwrite) != 0;
}
bool isAssignObjCProperty() const {
return (getAttributes() & dwarf::DW_APPLE_PROPERTY_assign) != 0;
}
bool isRetainObjCProperty() const {
return (getAttributes() & dwarf::DW_APPLE_PROPERTY_retain) != 0;
}
bool isCopyObjCProperty() const {
return (getAttributes() & dwarf::DW_APPLE_PROPERTY_copy) != 0;
}
bool isNonAtomicObjCProperty() const {
return (getAttributes() & dwarf::DW_APPLE_PROPERTY_nonatomic) != 0;
}
/// \brief Get the type.
///
/// \note Objective-C doesn't have an ODR, so there is no benefit in storing
/// the type as a DITypeRef here.
DIType getType() const { RETURN_DESCRIPTOR_FROM_RAW(DIType, N->getType()); }
bool Verify() const;
};
/// \brief An imported module (C++ using directive or similar).
class DIImportedEntity : public DIDescriptor {
MDImportedEntity *getRaw() const {
return dyn_cast_or_null<MDImportedEntity>(get());
}
public:
DIImportedEntity() = default;
explicit DIImportedEntity(const MDNode *N) : DIDescriptor(N) {}
DIImportedEntity(const MDImportedEntity *N) : DIDescriptor(N) {}
DIScope getContext() const {
RETURN_DESCRIPTOR_FROM_RAW(DIScope, N->getScope());
}
DIDescriptorRef getEntity() const {
RETURN_REF_FROM_RAW(DIDescriptorRef, N->getEntity());
}
unsigned getLineNumber() const { RETURN_FROM_RAW(N->getLine(), 0); }
StringRef getName() const { RETURN_FROM_RAW(N->getName(), ""); }
bool Verify() const;
};
#undef RETURN_FROM_RAW
#undef RETURN_DESCRIPTOR_FROM_RAW
#undef RETURN_REF_FROM_RAW
/// \brief Find subprogram that is enclosing this scope.
DISubprogram getDISubprogram(const MDNode *Scope);
/// \brief Find debug info for a given function.
/// \returns a valid DISubprogram, if found. Otherwise, it returns an empty
/// DISubprogram.
DISubprogram getDISubprogram(const Function *F);
/// \brief Find underlying composite type.
DICompositeType getDICompositeType(DIType T);
/// \brief Create a new inlined variable based on current variable.
///
/// @param DV Current Variable.
/// @param InlinedScope Location at current variable is inlined.
DIVariable createInlinedVariable(MDNode *DV, MDNode *InlinedScope,
LLVMContext &VMContext);
/// \brief Remove inlined scope from the variable.
DIVariable cleanseInlinedVariable(MDNode *DV, LLVMContext &VMContext);
/// \brief Generate map by visiting all retained types.
DITypeIdentifierMap generateDITypeIdentifierMap(const NamedMDNode *CU_Nodes);
/// \brief Strip debug info in the module if it exists.
///
/// To do this, we remove all calls to the debugger intrinsics and any named
/// metadata for debugging. We also remove debug locations for instructions.
/// Return true if module is modified.
bool StripDebugInfo(Module &M);
/// \brief Return Debug Info Metadata Version by checking module flags.
unsigned getDebugMetadataVersionFromModule(const Module &M);
/// \brief Utility to find all debug info in a module.
///
/// DebugInfoFinder tries to list all debug info MDNodes used in a module. To
/// list debug info MDNodes used by an instruction, DebugInfoFinder uses
/// processDeclare, processValue and processLocation to handle DbgDeclareInst,
/// DbgValueInst and DbgLoc attached to instructions. processModule will go
/// through all DICompileUnits in llvm.dbg.cu and list debug info MDNodes
/// used by the CUs.
class DebugInfoFinder {
public:
DebugInfoFinder() : TypeMapInitialized(false) {}
/// \brief Process entire module and collect debug info anchors.
void processModule(const Module &M);
/// \brief Process DbgDeclareInst.
void processDeclare(const Module &M, const DbgDeclareInst *DDI);
/// \brief Process DbgValueInst.
void processValue(const Module &M, const DbgValueInst *DVI);
/// \brief Process DILocation.
void processLocation(const Module &M, DILocation Loc);
/// \brief Process DIExpression.
void processExpression(DIExpression Expr);
/// \brief Clear all lists.
void reset();
private:
void InitializeTypeMap(const Module &M);
void processType(DIType DT);
void processSubprogram(DISubprogram SP);
void processScope(DIScope Scope);
bool addCompileUnit(DICompileUnit CU);
bool addGlobalVariable(DIGlobalVariable DIG);
bool addSubprogram(DISubprogram SP);
bool addType(DIType DT);
bool addScope(DIScope Scope);
public:
typedef SmallVectorImpl<DICompileUnit>::const_iterator compile_unit_iterator;
typedef SmallVectorImpl<DISubprogram>::const_iterator subprogram_iterator;
typedef SmallVectorImpl<DIGlobalVariable>::const_iterator
global_variable_iterator;
typedef SmallVectorImpl<DIType>::const_iterator type_iterator;
typedef SmallVectorImpl<DIScope>::const_iterator scope_iterator;
iterator_range<compile_unit_iterator> compile_units() const {
return iterator_range<compile_unit_iterator>(CUs.begin(), CUs.end());
}
iterator_range<subprogram_iterator> subprograms() const {
return iterator_range<subprogram_iterator>(SPs.begin(), SPs.end());
}
iterator_range<global_variable_iterator> global_variables() const {
return iterator_range<global_variable_iterator>(GVs.begin(), GVs.end());
}
iterator_range<type_iterator> types() const {
return iterator_range<type_iterator>(TYs.begin(), TYs.end());
}
iterator_range<scope_iterator> scopes() const {
return iterator_range<scope_iterator>(Scopes.begin(), Scopes.end());
}
unsigned compile_unit_count() const { return CUs.size(); }
unsigned global_variable_count() const { return GVs.size(); }
unsigned subprogram_count() const { return SPs.size(); }
unsigned type_count() const { return TYs.size(); }
unsigned scope_count() const { return Scopes.size(); }
private:
SmallVector<DICompileUnit, 8> CUs;
SmallVector<DISubprogram, 8> SPs;
SmallVector<DIGlobalVariable, 8> GVs;
SmallVector<DIType, 8> TYs;
SmallVector<DIScope, 8> Scopes;
SmallPtrSet<MDNode *, 64> NodesSeen;
DITypeIdentifierMap TypeIdentifierMap;
/// \brief Specify if TypeIdentifierMap is initialized.
bool TypeMapInitialized;
};
DenseMap<const Function *, DISubprogram> makeSubprogramMap(const Module &M);
} // end namespace llvm
#endif