mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 17:32:19 +00:00
8239daf7c8
1. Fix pre-ra scheduler so it doesn't try to push instructions above calls to "optimize for latency". Call instructions don't have the right latency and this is more likely to use introduce spills. 2. Fix if-converter cost function. For ARM, it should use instruction latencies, not # of micro-ops since multi-latency instructions is completely executed even when the predicate is false. Also, some instruction will be "slower" when they are predicated due to the register def becoming implicit input. rdar://8598427 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118135 91177308-0d34-0410-b5e6-96231b3b80d8
668 lines
23 KiB
C++
668 lines
23 KiB
C++
//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the ScheduleDAG class, which is a base class used by
|
|
// scheduling implementation classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "pre-RA-sched"
|
|
#include "SDNodeDbgValue.h"
|
|
#include "ScheduleDAGSDNodes.h"
|
|
#include "InstrEmitter.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtarget.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(LoadsClustered, "Number of loads clustered together");
|
|
|
|
ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
|
|
: ScheduleDAG(mf),
|
|
InstrItins(mf.getTarget().getInstrItineraryData()) {}
|
|
|
|
/// Run - perform scheduling.
|
|
///
|
|
void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
|
|
MachineBasicBlock::iterator insertPos) {
|
|
DAG = dag;
|
|
ScheduleDAG::Run(bb, insertPos);
|
|
}
|
|
|
|
/// NewSUnit - Creates a new SUnit and return a ptr to it.
|
|
///
|
|
SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
|
|
#ifndef NDEBUG
|
|
const SUnit *Addr = 0;
|
|
if (!SUnits.empty())
|
|
Addr = &SUnits[0];
|
|
#endif
|
|
SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
|
|
assert((Addr == 0 || Addr == &SUnits[0]) &&
|
|
"SUnits std::vector reallocated on the fly!");
|
|
SUnits.back().OrigNode = &SUnits.back();
|
|
SUnit *SU = &SUnits.back();
|
|
const TargetLowering &TLI = DAG->getTargetLoweringInfo();
|
|
if (!N ||
|
|
(N->isMachineOpcode() &&
|
|
N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
|
|
SU->SchedulingPref = Sched::None;
|
|
else
|
|
SU->SchedulingPref = TLI.getSchedulingPreference(N);
|
|
return SU;
|
|
}
|
|
|
|
SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
|
|
SUnit *SU = NewSUnit(Old->getNode());
|
|
SU->OrigNode = Old->OrigNode;
|
|
SU->Latency = Old->Latency;
|
|
SU->isCall = Old->isCall;
|
|
SU->isTwoAddress = Old->isTwoAddress;
|
|
SU->isCommutable = Old->isCommutable;
|
|
SU->hasPhysRegDefs = Old->hasPhysRegDefs;
|
|
SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
|
|
SU->SchedulingPref = Old->SchedulingPref;
|
|
Old->isCloned = true;
|
|
return SU;
|
|
}
|
|
|
|
/// CheckForPhysRegDependency - Check if the dependency between def and use of
|
|
/// a specified operand is a physical register dependency. If so, returns the
|
|
/// register and the cost of copying the register.
|
|
static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
|
|
const TargetRegisterInfo *TRI,
|
|
const TargetInstrInfo *TII,
|
|
unsigned &PhysReg, int &Cost) {
|
|
if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
|
|
return;
|
|
|
|
unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
return;
|
|
|
|
unsigned ResNo = User->getOperand(2).getResNo();
|
|
if (Def->isMachineOpcode()) {
|
|
const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
|
|
if (ResNo >= II.getNumDefs() &&
|
|
II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
|
|
PhysReg = Reg;
|
|
const TargetRegisterClass *RC =
|
|
TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
|
|
Cost = RC->getCopyCost();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void AddFlags(SDNode *N, SDValue Flag, bool AddFlag,
|
|
SelectionDAG *DAG) {
|
|
SmallVector<EVT, 4> VTs;
|
|
SDNode *FlagDestNode = Flag.getNode();
|
|
|
|
// Don't add a flag from a node to itself.
|
|
if (FlagDestNode == N) return;
|
|
|
|
// Don't add a flag to something which already has a flag.
|
|
if (N->getValueType(N->getNumValues() - 1) == MVT::Flag) return;
|
|
|
|
for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
|
|
VTs.push_back(N->getValueType(I));
|
|
|
|
if (AddFlag)
|
|
VTs.push_back(MVT::Flag);
|
|
|
|
SmallVector<SDValue, 4> Ops;
|
|
for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
|
|
Ops.push_back(N->getOperand(I));
|
|
|
|
if (FlagDestNode)
|
|
Ops.push_back(Flag);
|
|
|
|
SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
|
|
MachineSDNode::mmo_iterator Begin = 0, End = 0;
|
|
MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
|
|
|
|
// Store memory references.
|
|
if (MN) {
|
|
Begin = MN->memoperands_begin();
|
|
End = MN->memoperands_end();
|
|
}
|
|
|
|
DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
|
|
|
|
// Reset the memory references
|
|
if (MN)
|
|
MN->setMemRefs(Begin, End);
|
|
}
|
|
|
|
/// ClusterNeighboringLoads - Force nearby loads together by "flagging" them.
|
|
/// This function finds loads of the same base and different offsets. If the
|
|
/// offsets are not far apart (target specific), it add MVT::Flag inputs and
|
|
/// outputs to ensure they are scheduled together and in order. This
|
|
/// optimization may benefit some targets by improving cache locality.
|
|
void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
|
|
SDNode *Chain = 0;
|
|
unsigned NumOps = Node->getNumOperands();
|
|
if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
|
|
Chain = Node->getOperand(NumOps-1).getNode();
|
|
if (!Chain)
|
|
return;
|
|
|
|
// Look for other loads of the same chain. Find loads that are loading from
|
|
// the same base pointer and different offsets.
|
|
SmallPtrSet<SDNode*, 16> Visited;
|
|
SmallVector<int64_t, 4> Offsets;
|
|
DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode.
|
|
bool Cluster = false;
|
|
SDNode *Base = Node;
|
|
for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
|
|
I != E; ++I) {
|
|
SDNode *User = *I;
|
|
if (User == Node || !Visited.insert(User))
|
|
continue;
|
|
int64_t Offset1, Offset2;
|
|
if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
|
|
Offset1 == Offset2)
|
|
// FIXME: Should be ok if they addresses are identical. But earlier
|
|
// optimizations really should have eliminated one of the loads.
|
|
continue;
|
|
if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
|
|
Offsets.push_back(Offset1);
|
|
O2SMap.insert(std::make_pair(Offset2, User));
|
|
Offsets.push_back(Offset2);
|
|
if (Offset2 < Offset1)
|
|
Base = User;
|
|
Cluster = true;
|
|
}
|
|
|
|
if (!Cluster)
|
|
return;
|
|
|
|
// Sort them in increasing order.
|
|
std::sort(Offsets.begin(), Offsets.end());
|
|
|
|
// Check if the loads are close enough.
|
|
SmallVector<SDNode*, 4> Loads;
|
|
unsigned NumLoads = 0;
|
|
int64_t BaseOff = Offsets[0];
|
|
SDNode *BaseLoad = O2SMap[BaseOff];
|
|
Loads.push_back(BaseLoad);
|
|
for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
|
|
int64_t Offset = Offsets[i];
|
|
SDNode *Load = O2SMap[Offset];
|
|
if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
|
|
break; // Stop right here. Ignore loads that are further away.
|
|
Loads.push_back(Load);
|
|
++NumLoads;
|
|
}
|
|
|
|
if (NumLoads == 0)
|
|
return;
|
|
|
|
// Cluster loads by adding MVT::Flag outputs and inputs. This also
|
|
// ensure they are scheduled in order of increasing addresses.
|
|
SDNode *Lead = Loads[0];
|
|
AddFlags(Lead, SDValue(0, 0), true, DAG);
|
|
|
|
SDValue InFlag = SDValue(Lead, Lead->getNumValues() - 1);
|
|
for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
|
|
bool OutFlag = I < E - 1;
|
|
SDNode *Load = Loads[I];
|
|
|
|
AddFlags(Load, InFlag, OutFlag, DAG);
|
|
|
|
if (OutFlag)
|
|
InFlag = SDValue(Load, Load->getNumValues() - 1);
|
|
|
|
++LoadsClustered;
|
|
}
|
|
}
|
|
|
|
/// ClusterNodes - Cluster certain nodes which should be scheduled together.
|
|
///
|
|
void ScheduleDAGSDNodes::ClusterNodes() {
|
|
for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
|
|
E = DAG->allnodes_end(); NI != E; ++NI) {
|
|
SDNode *Node = &*NI;
|
|
if (!Node || !Node->isMachineOpcode())
|
|
continue;
|
|
|
|
unsigned Opc = Node->getMachineOpcode();
|
|
const TargetInstrDesc &TID = TII->get(Opc);
|
|
if (TID.mayLoad())
|
|
// Cluster loads from "near" addresses into combined SUnits.
|
|
ClusterNeighboringLoads(Node);
|
|
}
|
|
}
|
|
|
|
void ScheduleDAGSDNodes::BuildSchedUnits() {
|
|
// During scheduling, the NodeId field of SDNode is used to map SDNodes
|
|
// to their associated SUnits by holding SUnits table indices. A value
|
|
// of -1 means the SDNode does not yet have an associated SUnit.
|
|
unsigned NumNodes = 0;
|
|
for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
|
|
E = DAG->allnodes_end(); NI != E; ++NI) {
|
|
NI->setNodeId(-1);
|
|
++NumNodes;
|
|
}
|
|
|
|
// Reserve entries in the vector for each of the SUnits we are creating. This
|
|
// ensure that reallocation of the vector won't happen, so SUnit*'s won't get
|
|
// invalidated.
|
|
// FIXME: Multiply by 2 because we may clone nodes during scheduling.
|
|
// This is a temporary workaround.
|
|
SUnits.reserve(NumNodes * 2);
|
|
|
|
// Add all nodes in depth first order.
|
|
SmallVector<SDNode*, 64> Worklist;
|
|
SmallPtrSet<SDNode*, 64> Visited;
|
|
Worklist.push_back(DAG->getRoot().getNode());
|
|
Visited.insert(DAG->getRoot().getNode());
|
|
|
|
while (!Worklist.empty()) {
|
|
SDNode *NI = Worklist.pop_back_val();
|
|
|
|
// Add all operands to the worklist unless they've already been added.
|
|
for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
|
|
if (Visited.insert(NI->getOperand(i).getNode()))
|
|
Worklist.push_back(NI->getOperand(i).getNode());
|
|
|
|
if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
|
|
continue;
|
|
|
|
// If this node has already been processed, stop now.
|
|
if (NI->getNodeId() != -1) continue;
|
|
|
|
SUnit *NodeSUnit = NewSUnit(NI);
|
|
|
|
// See if anything is flagged to this node, if so, add them to flagged
|
|
// nodes. Nodes can have at most one flag input and one flag output. Flags
|
|
// are required to be the last operand and result of a node.
|
|
|
|
// Scan up to find flagged preds.
|
|
SDNode *N = NI;
|
|
while (N->getNumOperands() &&
|
|
N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
|
|
N = N->getOperand(N->getNumOperands()-1).getNode();
|
|
assert(N->getNodeId() == -1 && "Node already inserted!");
|
|
N->setNodeId(NodeSUnit->NodeNum);
|
|
if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
|
|
NodeSUnit->isCall = true;
|
|
}
|
|
|
|
// Scan down to find any flagged succs.
|
|
N = NI;
|
|
while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
|
|
SDValue FlagVal(N, N->getNumValues()-1);
|
|
|
|
// There are either zero or one users of the Flag result.
|
|
bool HasFlagUse = false;
|
|
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
|
|
UI != E; ++UI)
|
|
if (FlagVal.isOperandOf(*UI)) {
|
|
HasFlagUse = true;
|
|
assert(N->getNodeId() == -1 && "Node already inserted!");
|
|
N->setNodeId(NodeSUnit->NodeNum);
|
|
N = *UI;
|
|
if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
|
|
NodeSUnit->isCall = true;
|
|
break;
|
|
}
|
|
if (!HasFlagUse) break;
|
|
}
|
|
|
|
// If there are flag operands involved, N is now the bottom-most node
|
|
// of the sequence of nodes that are flagged together.
|
|
// Update the SUnit.
|
|
NodeSUnit->setNode(N);
|
|
assert(N->getNodeId() == -1 && "Node already inserted!");
|
|
N->setNodeId(NodeSUnit->NodeNum);
|
|
|
|
// Assign the Latency field of NodeSUnit using target-provided information.
|
|
ComputeLatency(NodeSUnit);
|
|
}
|
|
}
|
|
|
|
void ScheduleDAGSDNodes::AddSchedEdges() {
|
|
const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
|
|
|
|
// Check to see if the scheduler cares about latencies.
|
|
bool UnitLatencies = ForceUnitLatencies();
|
|
|
|
// Pass 2: add the preds, succs, etc.
|
|
for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
|
|
SUnit *SU = &SUnits[su];
|
|
SDNode *MainNode = SU->getNode();
|
|
|
|
if (MainNode->isMachineOpcode()) {
|
|
unsigned Opc = MainNode->getMachineOpcode();
|
|
const TargetInstrDesc &TID = TII->get(Opc);
|
|
for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
|
|
if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
|
|
SU->isTwoAddress = true;
|
|
break;
|
|
}
|
|
}
|
|
if (TID.isCommutable())
|
|
SU->isCommutable = true;
|
|
}
|
|
|
|
// Find all predecessors and successors of the group.
|
|
for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) {
|
|
if (N->isMachineOpcode() &&
|
|
TII->get(N->getMachineOpcode()).getImplicitDefs()) {
|
|
SU->hasPhysRegClobbers = true;
|
|
unsigned NumUsed = InstrEmitter::CountResults(N);
|
|
while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
|
|
--NumUsed; // Skip over unused values at the end.
|
|
if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
|
|
SU->hasPhysRegDefs = true;
|
|
}
|
|
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
SDNode *OpN = N->getOperand(i).getNode();
|
|
if (isPassiveNode(OpN)) continue; // Not scheduled.
|
|
SUnit *OpSU = &SUnits[OpN->getNodeId()];
|
|
assert(OpSU && "Node has no SUnit!");
|
|
if (OpSU == SU) continue; // In the same group.
|
|
|
|
EVT OpVT = N->getOperand(i).getValueType();
|
|
assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
|
|
bool isChain = OpVT == MVT::Other;
|
|
|
|
unsigned PhysReg = 0;
|
|
int Cost = 1;
|
|
// Determine if this is a physical register dependency.
|
|
CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
|
|
assert((PhysReg == 0 || !isChain) &&
|
|
"Chain dependence via physreg data?");
|
|
// FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
|
|
// emits a copy from the physical register to a virtual register unless
|
|
// it requires a cross class copy (cost < 0). That means we are only
|
|
// treating "expensive to copy" register dependency as physical register
|
|
// dependency. This may change in the future though.
|
|
if (Cost >= 0)
|
|
PhysReg = 0;
|
|
|
|
// If this is a ctrl dep, latency is 1.
|
|
unsigned OpLatency = isChain ? 1 : OpSU->Latency;
|
|
const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
|
|
OpLatency, PhysReg);
|
|
if (!isChain && !UnitLatencies) {
|
|
ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
|
|
ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
|
|
}
|
|
|
|
SU->addPred(dep);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
|
|
/// are input. This SUnit graph is similar to the SelectionDAG, but
|
|
/// excludes nodes that aren't interesting to scheduling, and represents
|
|
/// flagged together nodes with a single SUnit.
|
|
void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
|
|
// Cluster certain nodes which should be scheduled together.
|
|
ClusterNodes();
|
|
// Populate the SUnits array.
|
|
BuildSchedUnits();
|
|
// Compute all the scheduling dependencies between nodes.
|
|
AddSchedEdges();
|
|
}
|
|
|
|
void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
|
|
// Check to see if the scheduler cares about latencies.
|
|
if (ForceUnitLatencies()) {
|
|
SU->Latency = 1;
|
|
return;
|
|
}
|
|
|
|
if (!InstrItins || InstrItins->isEmpty()) {
|
|
SU->Latency = 1;
|
|
return;
|
|
}
|
|
|
|
// Compute the latency for the node. We use the sum of the latencies for
|
|
// all nodes flagged together into this SUnit.
|
|
SU->Latency = 0;
|
|
for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode())
|
|
if (N->isMachineOpcode())
|
|
SU->Latency += TII->getInstrLatency(InstrItins, N);
|
|
}
|
|
|
|
void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
|
|
unsigned OpIdx, SDep& dep) const{
|
|
// Check to see if the scheduler cares about latencies.
|
|
if (ForceUnitLatencies())
|
|
return;
|
|
|
|
if (dep.getKind() != SDep::Data)
|
|
return;
|
|
|
|
unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
|
|
if (Use->isMachineOpcode())
|
|
// Adjust the use operand index by num of defs.
|
|
OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
|
|
int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
|
|
if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
|
|
!BB->succ_empty()) {
|
|
unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
// This copy is a liveout value. It is likely coalesced, so reduce the
|
|
// latency so not to penalize the def.
|
|
// FIXME: need target specific adjustment here?
|
|
Latency = (Latency > 1) ? Latency - 1 : 1;
|
|
}
|
|
if (Latency >= 0)
|
|
dep.setLatency(Latency);
|
|
}
|
|
|
|
void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
|
|
if (!SU->getNode()) {
|
|
dbgs() << "PHYS REG COPY\n";
|
|
return;
|
|
}
|
|
|
|
SU->getNode()->dump(DAG);
|
|
dbgs() << "\n";
|
|
SmallVector<SDNode *, 4> FlaggedNodes;
|
|
for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
|
|
FlaggedNodes.push_back(N);
|
|
while (!FlaggedNodes.empty()) {
|
|
dbgs() << " ";
|
|
FlaggedNodes.back()->dump(DAG);
|
|
dbgs() << "\n";
|
|
FlaggedNodes.pop_back();
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct OrderSorter {
|
|
bool operator()(const std::pair<unsigned, MachineInstr*> &A,
|
|
const std::pair<unsigned, MachineInstr*> &B) {
|
|
return A.first < B.first;
|
|
}
|
|
};
|
|
}
|
|
|
|
// ProcessSourceNode - Process nodes with source order numbers. These are added
|
|
// to a vector which EmitSchedule uses to determine how to insert dbg_value
|
|
// instructions in the right order.
|
|
static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
|
|
InstrEmitter &Emitter,
|
|
DenseMap<SDValue, unsigned> &VRBaseMap,
|
|
SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
|
|
SmallSet<unsigned, 8> &Seen) {
|
|
unsigned Order = DAG->GetOrdering(N);
|
|
if (!Order || !Seen.insert(Order))
|
|
return;
|
|
|
|
MachineBasicBlock *BB = Emitter.getBlock();
|
|
if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
|
|
// Did not insert any instruction.
|
|
Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
|
|
return;
|
|
}
|
|
|
|
Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
|
|
if (!N->getHasDebugValue())
|
|
return;
|
|
// Opportunistically insert immediate dbg_value uses, i.e. those with source
|
|
// order number right after the N.
|
|
MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
|
|
SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
|
|
for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
|
|
if (DVs[i]->isInvalidated())
|
|
continue;
|
|
unsigned DVOrder = DVs[i]->getOrder();
|
|
if (DVOrder == ++Order) {
|
|
MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
|
|
if (DbgMI) {
|
|
Orders.push_back(std::make_pair(DVOrder, DbgMI));
|
|
BB->insert(InsertPos, DbgMI);
|
|
}
|
|
DVs[i]->setIsInvalidated();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// EmitSchedule - Emit the machine code in scheduled order.
|
|
MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
|
|
InstrEmitter Emitter(BB, InsertPos);
|
|
DenseMap<SDValue, unsigned> VRBaseMap;
|
|
DenseMap<SUnit*, unsigned> CopyVRBaseMap;
|
|
SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
|
|
SmallSet<unsigned, 8> Seen;
|
|
bool HasDbg = DAG->hasDebugValues();
|
|
|
|
// If this is the first BB, emit byval parameter dbg_value's.
|
|
if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
|
|
SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
|
|
SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
|
|
for (; PDI != PDE; ++PDI) {
|
|
MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
|
|
if (DbgMI)
|
|
BB->insert(InsertPos, DbgMI);
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
|
|
SUnit *SU = Sequence[i];
|
|
if (!SU) {
|
|
// Null SUnit* is a noop.
|
|
EmitNoop();
|
|
continue;
|
|
}
|
|
|
|
// For pre-regalloc scheduling, create instructions corresponding to the
|
|
// SDNode and any flagged SDNodes and append them to the block.
|
|
if (!SU->getNode()) {
|
|
// Emit a copy.
|
|
EmitPhysRegCopy(SU, CopyVRBaseMap);
|
|
continue;
|
|
}
|
|
|
|
SmallVector<SDNode *, 4> FlaggedNodes;
|
|
for (SDNode *N = SU->getNode()->getFlaggedNode(); N;
|
|
N = N->getFlaggedNode())
|
|
FlaggedNodes.push_back(N);
|
|
while (!FlaggedNodes.empty()) {
|
|
SDNode *N = FlaggedNodes.back();
|
|
Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned,
|
|
VRBaseMap);
|
|
// Remember the source order of the inserted instruction.
|
|
if (HasDbg)
|
|
ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
|
|
FlaggedNodes.pop_back();
|
|
}
|
|
Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
|
|
VRBaseMap);
|
|
// Remember the source order of the inserted instruction.
|
|
if (HasDbg)
|
|
ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
|
|
Seen);
|
|
}
|
|
|
|
// Insert all the dbg_values which have not already been inserted in source
|
|
// order sequence.
|
|
if (HasDbg) {
|
|
MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
|
|
|
|
// Sort the source order instructions and use the order to insert debug
|
|
// values.
|
|
std::sort(Orders.begin(), Orders.end(), OrderSorter());
|
|
|
|
SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
|
|
SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
|
|
// Now emit the rest according to source order.
|
|
unsigned LastOrder = 0;
|
|
for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
|
|
unsigned Order = Orders[i].first;
|
|
MachineInstr *MI = Orders[i].second;
|
|
// Insert all SDDbgValue's whose order(s) are before "Order".
|
|
if (!MI)
|
|
continue;
|
|
#ifndef NDEBUG
|
|
unsigned LastDIOrder = 0;
|
|
#endif
|
|
for (; DI != DE &&
|
|
(*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
|
|
#ifndef NDEBUG
|
|
assert((*DI)->getOrder() >= LastDIOrder &&
|
|
"SDDbgValue nodes must be in source order!");
|
|
LastDIOrder = (*DI)->getOrder();
|
|
#endif
|
|
if ((*DI)->isInvalidated())
|
|
continue;
|
|
MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
|
|
if (DbgMI) {
|
|
if (!LastOrder)
|
|
// Insert to start of the BB (after PHIs).
|
|
BB->insert(BBBegin, DbgMI);
|
|
else {
|
|
// Insert at the instruction, which may be in a different
|
|
// block, if the block was split by a custom inserter.
|
|
MachineBasicBlock::iterator Pos = MI;
|
|
MI->getParent()->insert(llvm::next(Pos), DbgMI);
|
|
}
|
|
}
|
|
}
|
|
LastOrder = Order;
|
|
}
|
|
// Add trailing DbgValue's before the terminator. FIXME: May want to add
|
|
// some of them before one or more conditional branches?
|
|
while (DI != DE) {
|
|
MachineBasicBlock *InsertBB = Emitter.getBlock();
|
|
MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
|
|
if (!(*DI)->isInvalidated()) {
|
|
MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
|
|
if (DbgMI)
|
|
InsertBB->insert(Pos, DbgMI);
|
|
}
|
|
++DI;
|
|
}
|
|
}
|
|
|
|
BB = Emitter.getBlock();
|
|
InsertPos = Emitter.getInsertPos();
|
|
return BB;
|
|
}
|