mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-13 06:06:27 +00:00
a7b0cb7594
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144648 91177308-0d34-0410-b5e6-96231b3b80d8
226 lines
9.0 KiB
C++
226 lines
9.0 KiB
C++
//===- OptimalEdgeProfiling.cpp - Insert counters for opt. edge profiling -===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass instruments the specified program with counters for edge profiling.
|
|
// Edge profiling can give a reasonable approximation of the hot paths through a
|
|
// program, and is used for a wide variety of program transformations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#define DEBUG_TYPE "insert-optimal-edge-profiling"
|
|
#include "ProfilingUtils.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/Analysis/ProfileInfo.h"
|
|
#include "llvm/Analysis/ProfileInfoLoader.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "MaximumSpanningTree.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumEdgesInserted, "The # of edges inserted.");
|
|
|
|
namespace {
|
|
class OptimalEdgeProfiler : public ModulePass {
|
|
bool runOnModule(Module &M);
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
OptimalEdgeProfiler() : ModulePass(ID) {
|
|
initializeOptimalEdgeProfilerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequiredID(ProfileEstimatorPassID);
|
|
AU.addRequired<ProfileInfo>();
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "Optimal Edge Profiler";
|
|
}
|
|
};
|
|
}
|
|
|
|
char OptimalEdgeProfiler::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(OptimalEdgeProfiler, "insert-optimal-edge-profiling",
|
|
"Insert optimal instrumentation for edge profiling",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(ProfileEstimatorPass)
|
|
INITIALIZE_AG_DEPENDENCY(ProfileInfo)
|
|
INITIALIZE_PASS_END(OptimalEdgeProfiler, "insert-optimal-edge-profiling",
|
|
"Insert optimal instrumentation for edge profiling",
|
|
false, false)
|
|
|
|
ModulePass *llvm::createOptimalEdgeProfilerPass() {
|
|
return new OptimalEdgeProfiler();
|
|
}
|
|
|
|
inline static void printEdgeCounter(ProfileInfo::Edge e,
|
|
BasicBlock* b,
|
|
unsigned i) {
|
|
DEBUG(dbgs() << "--Edge Counter for " << (e) << " in " \
|
|
<< ((b)?(b)->getName():"0") << " (# " << (i) << ")\n");
|
|
}
|
|
|
|
bool OptimalEdgeProfiler::runOnModule(Module &M) {
|
|
Function *Main = M.getFunction("main");
|
|
if (Main == 0) {
|
|
errs() << "WARNING: cannot insert edge profiling into a module"
|
|
<< " with no main function!\n";
|
|
return false; // No main, no instrumentation!
|
|
}
|
|
|
|
// NumEdges counts all the edges that may be instrumented. Later on its
|
|
// decided which edges to actually instrument, to achieve optimal profiling.
|
|
// For the entry block a virtual edge (0,entry) is reserved, for each block
|
|
// with no successors an edge (BB,0) is reserved. These edges are necessary
|
|
// to calculate a truly optimal maximum spanning tree and thus an optimal
|
|
// instrumentation.
|
|
unsigned NumEdges = 0;
|
|
|
|
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
|
|
if (F->isDeclaration()) continue;
|
|
// Reserve space for (0,entry) edge.
|
|
++NumEdges;
|
|
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
|
|
// Keep track of which blocks need to be instrumented. We don't want to
|
|
// instrument blocks that are added as the result of breaking critical
|
|
// edges!
|
|
if (BB->getTerminator()->getNumSuccessors() == 0) {
|
|
// Reserve space for (BB,0) edge.
|
|
++NumEdges;
|
|
} else {
|
|
NumEdges += BB->getTerminator()->getNumSuccessors();
|
|
}
|
|
}
|
|
}
|
|
|
|
// In the profiling output a counter for each edge is reserved, but only few
|
|
// are used. This is done to be able to read back in the profile without
|
|
// calulating the maximum spanning tree again, instead each edge counter that
|
|
// is not used is initialised with -1 to signal that this edge counter has to
|
|
// be calculated from other edge counters on reading the profile info back
|
|
// in.
|
|
|
|
Type *Int32 = Type::getInt32Ty(M.getContext());
|
|
ArrayType *ATy = ArrayType::get(Int32, NumEdges);
|
|
GlobalVariable *Counters =
|
|
new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
|
|
Constant::getNullValue(ATy), "OptEdgeProfCounters");
|
|
NumEdgesInserted = 0;
|
|
|
|
std::vector<Constant*> Initializer(NumEdges);
|
|
Constant *Zero = ConstantInt::get(Int32, 0);
|
|
Constant *Uncounted = ConstantInt::get(Int32, ProfileInfoLoader::Uncounted);
|
|
|
|
// Instrument all of the edges not in MST...
|
|
unsigned i = 0;
|
|
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
|
|
if (F->isDeclaration()) continue;
|
|
DEBUG(dbgs() << "Working on " << F->getName() << "\n");
|
|
|
|
// Calculate a Maximum Spanning Tree with the edge weights determined by
|
|
// ProfileEstimator. ProfileEstimator also assign weights to the virtual
|
|
// edges (0,entry) and (BB,0) (for blocks with no successors) and this
|
|
// edges also participate in the maximum spanning tree calculation.
|
|
// The third parameter of MaximumSpanningTree() has the effect that not the
|
|
// actual MST is returned but the edges _not_ in the MST.
|
|
|
|
ProfileInfo::EdgeWeights ECs =
|
|
getAnalysis<ProfileInfo>(*F).getEdgeWeights(F);
|
|
std::vector<ProfileInfo::EdgeWeight> EdgeVector(ECs.begin(), ECs.end());
|
|
MaximumSpanningTree<BasicBlock> MST(EdgeVector);
|
|
std::stable_sort(MST.begin(), MST.end());
|
|
|
|
// Check if (0,entry) not in the MST. If not, instrument edge
|
|
// (IncrementCounterInBlock()) and set the counter initially to zero, if
|
|
// the edge is in the MST the counter is initialised to -1.
|
|
|
|
BasicBlock *entry = &(F->getEntryBlock());
|
|
ProfileInfo::Edge edge = ProfileInfo::getEdge(0, entry);
|
|
if (!std::binary_search(MST.begin(), MST.end(), edge)) {
|
|
printEdgeCounter(edge, entry, i);
|
|
IncrementCounterInBlock(entry, i, Counters); ++NumEdgesInserted;
|
|
Initializer[i++] = (Zero);
|
|
} else{
|
|
Initializer[i++] = (Uncounted);
|
|
}
|
|
|
|
// InsertedBlocks contains all blocks that were inserted for splitting an
|
|
// edge, this blocks do not have to be instrumented.
|
|
DenseSet<BasicBlock*> InsertedBlocks;
|
|
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
|
|
// Check if block was not inserted and thus does not have to be
|
|
// instrumented.
|
|
if (InsertedBlocks.count(BB)) continue;
|
|
|
|
// Okay, we have to add a counter of each outgoing edge not in MST. If
|
|
// the outgoing edge is not critical don't split it, just insert the
|
|
// counter in the source or destination of the edge. Also, if the block
|
|
// has no successors, the virtual edge (BB,0) is processed.
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
if (TI->getNumSuccessors() == 0) {
|
|
ProfileInfo::Edge edge = ProfileInfo::getEdge(BB, 0);
|
|
if (!std::binary_search(MST.begin(), MST.end(), edge)) {
|
|
printEdgeCounter(edge, BB, i);
|
|
IncrementCounterInBlock(BB, i, Counters); ++NumEdgesInserted;
|
|
Initializer[i++] = (Zero);
|
|
} else{
|
|
Initializer[i++] = (Uncounted);
|
|
}
|
|
}
|
|
for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) {
|
|
BasicBlock *Succ = TI->getSuccessor(s);
|
|
ProfileInfo::Edge edge = ProfileInfo::getEdge(BB,Succ);
|
|
if (!std::binary_search(MST.begin(), MST.end(), edge)) {
|
|
|
|
// If the edge is critical, split it.
|
|
bool wasInserted = SplitCriticalEdge(TI, s, this);
|
|
Succ = TI->getSuccessor(s);
|
|
if (wasInserted)
|
|
InsertedBlocks.insert(Succ);
|
|
|
|
// Okay, we are guaranteed that the edge is no longer critical. If
|
|
// we only have a single successor, insert the counter in this block,
|
|
// otherwise insert it in the successor block.
|
|
if (TI->getNumSuccessors() == 1) {
|
|
// Insert counter at the start of the block
|
|
printEdgeCounter(edge, BB, i);
|
|
IncrementCounterInBlock(BB, i, Counters); ++NumEdgesInserted;
|
|
} else {
|
|
// Insert counter at the start of the block
|
|
printEdgeCounter(edge, Succ, i);
|
|
IncrementCounterInBlock(Succ, i, Counters); ++NumEdgesInserted;
|
|
}
|
|
Initializer[i++] = (Zero);
|
|
} else {
|
|
Initializer[i++] = (Uncounted);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if the number of edges counted at first was the number of edges we
|
|
// considered for instrumentation.
|
|
assert(i == NumEdges && "the number of edges in counting array is wrong");
|
|
|
|
// Assign the now completely defined initialiser to the array.
|
|
Constant *init = ConstantArray::get(ATy, Initializer);
|
|
Counters->setInitializer(init);
|
|
|
|
// Add the initialization call to main.
|
|
InsertProfilingInitCall(Main, "llvm_start_opt_edge_profiling", Counters);
|
|
return true;
|
|
}
|
|
|