mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
151f8cef74
It's not clear what the semantics of a self-move should be. The consensus appears to be that a self-move should leave the object in a moved-from state, which is what our existing move assignment operator does. However, the MSVC 2013 STL will perform self-moves in some cases. In particular, when doing a std::stable_sort of an already sorted APSInt vector of an appropriate size, one of the merge steps will self-move half of the elements. We don't notice this when building with MSVC, because MSVC will not synthesize the move assignment operator for APSInt. Presumably MSVC does this because APInt, the base class, has user-declared special members that implicitly delete move special members. Instead, MSVC selects the copy-assign operator, which defends against self-assignment. Clang, on the other hand, selects the move-assign operator, and we get garbage APInts. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215478 91177308-0d34-0410-b5e6-96231b3b80d8
1899 lines
66 KiB
C++
1899 lines
66 KiB
C++
//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// \brief This file implements a class to represent arbitrary precision
|
|
/// integral constant values and operations on them.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_APINT_H
|
|
#define LLVM_ADT_APINT_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstring>
|
|
#include <string>
|
|
|
|
namespace llvm {
|
|
class Deserializer;
|
|
class FoldingSetNodeID;
|
|
class Serializer;
|
|
class StringRef;
|
|
class hash_code;
|
|
class raw_ostream;
|
|
|
|
template <typename T> class SmallVectorImpl;
|
|
|
|
// An unsigned host type used as a single part of a multi-part
|
|
// bignum.
|
|
typedef uint64_t integerPart;
|
|
|
|
const unsigned int host_char_bit = 8;
|
|
const unsigned int integerPartWidth =
|
|
host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// APInt Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief Class for arbitrary precision integers.
|
|
///
|
|
/// APInt is a functional replacement for common case unsigned integer type like
|
|
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
|
|
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
|
|
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
|
|
/// and methods to manipulate integer values of any bit-width. It supports both
|
|
/// the typical integer arithmetic and comparison operations as well as bitwise
|
|
/// manipulation.
|
|
///
|
|
/// The class has several invariants worth noting:
|
|
/// * All bit, byte, and word positions are zero-based.
|
|
/// * Once the bit width is set, it doesn't change except by the Truncate,
|
|
/// SignExtend, or ZeroExtend operations.
|
|
/// * All binary operators must be on APInt instances of the same bit width.
|
|
/// Attempting to use these operators on instances with different bit
|
|
/// widths will yield an assertion.
|
|
/// * The value is stored canonically as an unsigned value. For operations
|
|
/// where it makes a difference, there are both signed and unsigned variants
|
|
/// of the operation. For example, sdiv and udiv. However, because the bit
|
|
/// widths must be the same, operations such as Mul and Add produce the same
|
|
/// results regardless of whether the values are interpreted as signed or
|
|
/// not.
|
|
/// * In general, the class tries to follow the style of computation that LLVM
|
|
/// uses in its IR. This simplifies its use for LLVM.
|
|
///
|
|
class APInt {
|
|
unsigned BitWidth; ///< The number of bits in this APInt.
|
|
|
|
/// This union is used to store the integer value. When the
|
|
/// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
|
|
union {
|
|
uint64_t VAL; ///< Used to store the <= 64 bits integer value.
|
|
uint64_t *pVal; ///< Used to store the >64 bits integer value.
|
|
};
|
|
|
|
/// This enum is used to hold the constants we needed for APInt.
|
|
enum {
|
|
/// Bits in a word
|
|
APINT_BITS_PER_WORD =
|
|
static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
|
|
/// Byte size of a word
|
|
APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
|
|
};
|
|
|
|
/// \brief Fast internal constructor
|
|
///
|
|
/// This constructor is used only internally for speed of construction of
|
|
/// temporaries. It is unsafe for general use so it is not public.
|
|
APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
|
|
|
|
/// \brief Determine if this APInt just has one word to store value.
|
|
///
|
|
/// \returns true if the number of bits <= 64, false otherwise.
|
|
bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
|
|
|
|
/// \brief Determine which word a bit is in.
|
|
///
|
|
/// \returns the word position for the specified bit position.
|
|
static unsigned whichWord(unsigned bitPosition) {
|
|
return bitPosition / APINT_BITS_PER_WORD;
|
|
}
|
|
|
|
/// \brief Determine which bit in a word a bit is in.
|
|
///
|
|
/// \returns the bit position in a word for the specified bit position
|
|
/// in the APInt.
|
|
static unsigned whichBit(unsigned bitPosition) {
|
|
return bitPosition % APINT_BITS_PER_WORD;
|
|
}
|
|
|
|
/// \brief Get a single bit mask.
|
|
///
|
|
/// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
|
|
/// This method generates and returns a uint64_t (word) mask for a single
|
|
/// bit at a specific bit position. This is used to mask the bit in the
|
|
/// corresponding word.
|
|
static uint64_t maskBit(unsigned bitPosition) {
|
|
return 1ULL << whichBit(bitPosition);
|
|
}
|
|
|
|
/// \brief Clear unused high order bits
|
|
///
|
|
/// This method is used internally to clear the to "N" bits in the high order
|
|
/// word that are not used by the APInt. This is needed after the most
|
|
/// significant word is assigned a value to ensure that those bits are
|
|
/// zero'd out.
|
|
APInt &clearUnusedBits() {
|
|
// Compute how many bits are used in the final word
|
|
unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
|
|
if (wordBits == 0)
|
|
// If all bits are used, we want to leave the value alone. This also
|
|
// avoids the undefined behavior of >> when the shift is the same size as
|
|
// the word size (64).
|
|
return *this;
|
|
|
|
// Mask out the high bits.
|
|
uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
|
|
if (isSingleWord())
|
|
VAL &= mask;
|
|
else
|
|
pVal[getNumWords() - 1] &= mask;
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Get the word corresponding to a bit position
|
|
/// \returns the corresponding word for the specified bit position.
|
|
uint64_t getWord(unsigned bitPosition) const {
|
|
return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
|
|
}
|
|
|
|
/// \brief Convert a char array into an APInt
|
|
///
|
|
/// \param radix 2, 8, 10, 16, or 36
|
|
/// Converts a string into a number. The string must be non-empty
|
|
/// and well-formed as a number of the given base. The bit-width
|
|
/// must be sufficient to hold the result.
|
|
///
|
|
/// This is used by the constructors that take string arguments.
|
|
///
|
|
/// StringRef::getAsInteger is superficially similar but (1) does
|
|
/// not assume that the string is well-formed and (2) grows the
|
|
/// result to hold the input.
|
|
void fromString(unsigned numBits, StringRef str, uint8_t radix);
|
|
|
|
/// \brief An internal division function for dividing APInts.
|
|
///
|
|
/// This is used by the toString method to divide by the radix. It simply
|
|
/// provides a more convenient form of divide for internal use since KnuthDiv
|
|
/// has specific constraints on its inputs. If those constraints are not met
|
|
/// then it provides a simpler form of divide.
|
|
static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
|
|
unsigned rhsWords, APInt *Quotient, APInt *Remainder);
|
|
|
|
/// out-of-line slow case for inline constructor
|
|
void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
|
|
|
|
/// shared code between two array constructors
|
|
void initFromArray(ArrayRef<uint64_t> array);
|
|
|
|
/// out-of-line slow case for inline copy constructor
|
|
void initSlowCase(const APInt &that);
|
|
|
|
/// out-of-line slow case for shl
|
|
APInt shlSlowCase(unsigned shiftAmt) const;
|
|
|
|
/// out-of-line slow case for operator&
|
|
APInt AndSlowCase(const APInt &RHS) const;
|
|
|
|
/// out-of-line slow case for operator|
|
|
APInt OrSlowCase(const APInt &RHS) const;
|
|
|
|
/// out-of-line slow case for operator^
|
|
APInt XorSlowCase(const APInt &RHS) const;
|
|
|
|
/// out-of-line slow case for operator=
|
|
APInt &AssignSlowCase(const APInt &RHS);
|
|
|
|
/// out-of-line slow case for operator==
|
|
bool EqualSlowCase(const APInt &RHS) const;
|
|
|
|
/// out-of-line slow case for operator==
|
|
bool EqualSlowCase(uint64_t Val) const;
|
|
|
|
/// out-of-line slow case for countLeadingZeros
|
|
unsigned countLeadingZerosSlowCase() const;
|
|
|
|
/// out-of-line slow case for countTrailingOnes
|
|
unsigned countTrailingOnesSlowCase() const;
|
|
|
|
/// out-of-line slow case for countPopulation
|
|
unsigned countPopulationSlowCase() const;
|
|
|
|
public:
|
|
/// \name Constructors
|
|
/// @{
|
|
|
|
/// \brief Create a new APInt of numBits width, initialized as val.
|
|
///
|
|
/// If isSigned is true then val is treated as if it were a signed value
|
|
/// (i.e. as an int64_t) and the appropriate sign extension to the bit width
|
|
/// will be done. Otherwise, no sign extension occurs (high order bits beyond
|
|
/// the range of val are zero filled).
|
|
///
|
|
/// \param numBits the bit width of the constructed APInt
|
|
/// \param val the initial value of the APInt
|
|
/// \param isSigned how to treat signedness of val
|
|
APInt(unsigned numBits, uint64_t val, bool isSigned = false)
|
|
: BitWidth(numBits), VAL(0) {
|
|
assert(BitWidth && "bitwidth too small");
|
|
if (isSingleWord())
|
|
VAL = val;
|
|
else
|
|
initSlowCase(numBits, val, isSigned);
|
|
clearUnusedBits();
|
|
}
|
|
|
|
/// \brief Construct an APInt of numBits width, initialized as bigVal[].
|
|
///
|
|
/// Note that bigVal.size() can be smaller or larger than the corresponding
|
|
/// bit width but any extraneous bits will be dropped.
|
|
///
|
|
/// \param numBits the bit width of the constructed APInt
|
|
/// \param bigVal a sequence of words to form the initial value of the APInt
|
|
APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
|
|
|
|
/// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
|
|
/// deprecated because this constructor is prone to ambiguity with the
|
|
/// APInt(unsigned, uint64_t, bool) constructor.
|
|
///
|
|
/// If this overload is ever deleted, care should be taken to prevent calls
|
|
/// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
|
|
/// constructor.
|
|
APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
|
|
|
|
/// \brief Construct an APInt from a string representation.
|
|
///
|
|
/// This constructor interprets the string \p str in the given radix. The
|
|
/// interpretation stops when the first character that is not suitable for the
|
|
/// radix is encountered, or the end of the string. Acceptable radix values
|
|
/// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
|
|
/// string to require more bits than numBits.
|
|
///
|
|
/// \param numBits the bit width of the constructed APInt
|
|
/// \param str the string to be interpreted
|
|
/// \param radix the radix to use for the conversion
|
|
APInt(unsigned numBits, StringRef str, uint8_t radix);
|
|
|
|
/// Simply makes *this a copy of that.
|
|
/// @brief Copy Constructor.
|
|
APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
|
|
assert(BitWidth && "bitwidth too small");
|
|
if (isSingleWord())
|
|
VAL = that.VAL;
|
|
else
|
|
initSlowCase(that);
|
|
}
|
|
|
|
/// \brief Move Constructor.
|
|
APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
|
|
that.BitWidth = 0;
|
|
}
|
|
|
|
/// \brief Destructor.
|
|
~APInt() {
|
|
if (needsCleanup())
|
|
delete[] pVal;
|
|
}
|
|
|
|
/// \brief Default constructor that creates an uninitialized APInt.
|
|
///
|
|
/// This is useful for object deserialization (pair this with the static
|
|
/// method Read).
|
|
explicit APInt() : BitWidth(1) {}
|
|
|
|
/// \brief Returns whether this instance allocated memory.
|
|
bool needsCleanup() const { return !isSingleWord(); }
|
|
|
|
/// Used to insert APInt objects, or objects that contain APInt objects, into
|
|
/// FoldingSets.
|
|
void Profile(FoldingSetNodeID &id) const;
|
|
|
|
/// @}
|
|
/// \name Value Tests
|
|
/// @{
|
|
|
|
/// \brief Determine sign of this APInt.
|
|
///
|
|
/// This tests the high bit of this APInt to determine if it is set.
|
|
///
|
|
/// \returns true if this APInt is negative, false otherwise
|
|
bool isNegative() const { return (*this)[BitWidth - 1]; }
|
|
|
|
/// \brief Determine if this APInt Value is non-negative (>= 0)
|
|
///
|
|
/// This tests the high bit of the APInt to determine if it is unset.
|
|
bool isNonNegative() const { return !isNegative(); }
|
|
|
|
/// \brief Determine if this APInt Value is positive.
|
|
///
|
|
/// This tests if the value of this APInt is positive (> 0). Note
|
|
/// that 0 is not a positive value.
|
|
///
|
|
/// \returns true if this APInt is positive.
|
|
bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
|
|
|
|
/// \brief Determine if all bits are set
|
|
///
|
|
/// This checks to see if the value has all bits of the APInt are set or not.
|
|
bool isAllOnesValue() const {
|
|
if (isSingleWord())
|
|
return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
|
|
return countPopulationSlowCase() == BitWidth;
|
|
}
|
|
|
|
/// \brief Determine if this is the largest unsigned value.
|
|
///
|
|
/// This checks to see if the value of this APInt is the maximum unsigned
|
|
/// value for the APInt's bit width.
|
|
bool isMaxValue() const { return isAllOnesValue(); }
|
|
|
|
/// \brief Determine if this is the largest signed value.
|
|
///
|
|
/// This checks to see if the value of this APInt is the maximum signed
|
|
/// value for the APInt's bit width.
|
|
bool isMaxSignedValue() const {
|
|
return BitWidth == 1 ? VAL == 0
|
|
: !isNegative() && countPopulation() == BitWidth - 1;
|
|
}
|
|
|
|
/// \brief Determine if this is the smallest unsigned value.
|
|
///
|
|
/// This checks to see if the value of this APInt is the minimum unsigned
|
|
/// value for the APInt's bit width.
|
|
bool isMinValue() const { return !*this; }
|
|
|
|
/// \brief Determine if this is the smallest signed value.
|
|
///
|
|
/// This checks to see if the value of this APInt is the minimum signed
|
|
/// value for the APInt's bit width.
|
|
bool isMinSignedValue() const {
|
|
return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
|
|
}
|
|
|
|
/// \brief Check if this APInt has an N-bits unsigned integer value.
|
|
bool isIntN(unsigned N) const {
|
|
assert(N && "N == 0 ???");
|
|
return getActiveBits() <= N;
|
|
}
|
|
|
|
/// \brief Check if this APInt has an N-bits signed integer value.
|
|
bool isSignedIntN(unsigned N) const {
|
|
assert(N && "N == 0 ???");
|
|
return getMinSignedBits() <= N;
|
|
}
|
|
|
|
/// \brief Check if this APInt's value is a power of two greater than zero.
|
|
///
|
|
/// \returns true if the argument APInt value is a power of two > 0.
|
|
bool isPowerOf2() const {
|
|
if (isSingleWord())
|
|
return isPowerOf2_64(VAL);
|
|
return countPopulationSlowCase() == 1;
|
|
}
|
|
|
|
/// \brief Check if the APInt's value is returned by getSignBit.
|
|
///
|
|
/// \returns true if this is the value returned by getSignBit.
|
|
bool isSignBit() const { return isMinSignedValue(); }
|
|
|
|
/// \brief Convert APInt to a boolean value.
|
|
///
|
|
/// This converts the APInt to a boolean value as a test against zero.
|
|
bool getBoolValue() const { return !!*this; }
|
|
|
|
/// If this value is smaller than the specified limit, return it, otherwise
|
|
/// return the limit value. This causes the value to saturate to the limit.
|
|
uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
|
|
return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
|
|
: getZExtValue();
|
|
}
|
|
|
|
/// @}
|
|
/// \name Value Generators
|
|
/// @{
|
|
|
|
/// \brief Gets maximum unsigned value of APInt for specific bit width.
|
|
static APInt getMaxValue(unsigned numBits) {
|
|
return getAllOnesValue(numBits);
|
|
}
|
|
|
|
/// \brief Gets maximum signed value of APInt for a specific bit width.
|
|
static APInt getSignedMaxValue(unsigned numBits) {
|
|
APInt API = getAllOnesValue(numBits);
|
|
API.clearBit(numBits - 1);
|
|
return API;
|
|
}
|
|
|
|
/// \brief Gets minimum unsigned value of APInt for a specific bit width.
|
|
static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
|
|
|
|
/// \brief Gets minimum signed value of APInt for a specific bit width.
|
|
static APInt getSignedMinValue(unsigned numBits) {
|
|
APInt API(numBits, 0);
|
|
API.setBit(numBits - 1);
|
|
return API;
|
|
}
|
|
|
|
/// \brief Get the SignBit for a specific bit width.
|
|
///
|
|
/// This is just a wrapper function of getSignedMinValue(), and it helps code
|
|
/// readability when we want to get a SignBit.
|
|
static APInt getSignBit(unsigned BitWidth) {
|
|
return getSignedMinValue(BitWidth);
|
|
}
|
|
|
|
/// \brief Get the all-ones value.
|
|
///
|
|
/// \returns the all-ones value for an APInt of the specified bit-width.
|
|
static APInt getAllOnesValue(unsigned numBits) {
|
|
return APInt(numBits, UINT64_MAX, true);
|
|
}
|
|
|
|
/// \brief Get the '0' value.
|
|
///
|
|
/// \returns the '0' value for an APInt of the specified bit-width.
|
|
static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
|
|
|
|
/// \brief Compute an APInt containing numBits highbits from this APInt.
|
|
///
|
|
/// Get an APInt with the same BitWidth as this APInt, just zero mask
|
|
/// the low bits and right shift to the least significant bit.
|
|
///
|
|
/// \returns the high "numBits" bits of this APInt.
|
|
APInt getHiBits(unsigned numBits) const;
|
|
|
|
/// \brief Compute an APInt containing numBits lowbits from this APInt.
|
|
///
|
|
/// Get an APInt with the same BitWidth as this APInt, just zero mask
|
|
/// the high bits.
|
|
///
|
|
/// \returns the low "numBits" bits of this APInt.
|
|
APInt getLoBits(unsigned numBits) const;
|
|
|
|
/// \brief Return an APInt with exactly one bit set in the result.
|
|
static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
|
|
APInt Res(numBits, 0);
|
|
Res.setBit(BitNo);
|
|
return Res;
|
|
}
|
|
|
|
/// \brief Get a value with a block of bits set.
|
|
///
|
|
/// Constructs an APInt value that has a contiguous range of bits set. The
|
|
/// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
|
|
/// bits will be zero. For example, with parameters(32, 0, 16) you would get
|
|
/// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
|
|
/// example, with parameters (32, 28, 4), you would get 0xF000000F.
|
|
///
|
|
/// \param numBits the intended bit width of the result
|
|
/// \param loBit the index of the lowest bit set.
|
|
/// \param hiBit the index of the highest bit set.
|
|
///
|
|
/// \returns An APInt value with the requested bits set.
|
|
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
|
|
assert(hiBit <= numBits && "hiBit out of range");
|
|
assert(loBit < numBits && "loBit out of range");
|
|
if (hiBit < loBit)
|
|
return getLowBitsSet(numBits, hiBit) |
|
|
getHighBitsSet(numBits, numBits - loBit);
|
|
return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
|
|
}
|
|
|
|
/// \brief Get a value with high bits set
|
|
///
|
|
/// Constructs an APInt value that has the top hiBitsSet bits set.
|
|
///
|
|
/// \param numBits the bitwidth of the result
|
|
/// \param hiBitsSet the number of high-order bits set in the result.
|
|
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
|
|
assert(hiBitsSet <= numBits && "Too many bits to set!");
|
|
// Handle a degenerate case, to avoid shifting by word size
|
|
if (hiBitsSet == 0)
|
|
return APInt(numBits, 0);
|
|
unsigned shiftAmt = numBits - hiBitsSet;
|
|
// For small values, return quickly
|
|
if (numBits <= APINT_BITS_PER_WORD)
|
|
return APInt(numBits, ~0ULL << shiftAmt);
|
|
return getAllOnesValue(numBits).shl(shiftAmt);
|
|
}
|
|
|
|
/// \brief Get a value with low bits set
|
|
///
|
|
/// Constructs an APInt value that has the bottom loBitsSet bits set.
|
|
///
|
|
/// \param numBits the bitwidth of the result
|
|
/// \param loBitsSet the number of low-order bits set in the result.
|
|
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
|
|
assert(loBitsSet <= numBits && "Too many bits to set!");
|
|
// Handle a degenerate case, to avoid shifting by word size
|
|
if (loBitsSet == 0)
|
|
return APInt(numBits, 0);
|
|
if (loBitsSet == APINT_BITS_PER_WORD)
|
|
return APInt(numBits, UINT64_MAX);
|
|
// For small values, return quickly.
|
|
if (loBitsSet <= APINT_BITS_PER_WORD)
|
|
return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
|
|
return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
|
|
}
|
|
|
|
/// \brief Return a value containing V broadcasted over NewLen bits.
|
|
static APInt getSplat(unsigned NewLen, const APInt &V) {
|
|
assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
|
|
|
|
APInt Val = V.zextOrSelf(NewLen);
|
|
for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
|
|
Val |= Val << I;
|
|
|
|
return Val;
|
|
}
|
|
|
|
/// \brief Determine if two APInts have the same value, after zero-extending
|
|
/// one of them (if needed!) to ensure that the bit-widths match.
|
|
static bool isSameValue(const APInt &I1, const APInt &I2) {
|
|
if (I1.getBitWidth() == I2.getBitWidth())
|
|
return I1 == I2;
|
|
|
|
if (I1.getBitWidth() > I2.getBitWidth())
|
|
return I1 == I2.zext(I1.getBitWidth());
|
|
|
|
return I1.zext(I2.getBitWidth()) == I2;
|
|
}
|
|
|
|
/// \brief Overload to compute a hash_code for an APInt value.
|
|
friend hash_code hash_value(const APInt &Arg);
|
|
|
|
/// This function returns a pointer to the internal storage of the APInt.
|
|
/// This is useful for writing out the APInt in binary form without any
|
|
/// conversions.
|
|
const uint64_t *getRawData() const {
|
|
if (isSingleWord())
|
|
return &VAL;
|
|
return &pVal[0];
|
|
}
|
|
|
|
/// @}
|
|
/// \name Unary Operators
|
|
/// @{
|
|
|
|
/// \brief Postfix increment operator.
|
|
///
|
|
/// \returns a new APInt value representing *this incremented by one
|
|
const APInt operator++(int) {
|
|
APInt API(*this);
|
|
++(*this);
|
|
return API;
|
|
}
|
|
|
|
/// \brief Prefix increment operator.
|
|
///
|
|
/// \returns *this incremented by one
|
|
APInt &operator++();
|
|
|
|
/// \brief Postfix decrement operator.
|
|
///
|
|
/// \returns a new APInt representing *this decremented by one.
|
|
const APInt operator--(int) {
|
|
APInt API(*this);
|
|
--(*this);
|
|
return API;
|
|
}
|
|
|
|
/// \brief Prefix decrement operator.
|
|
///
|
|
/// \returns *this decremented by one.
|
|
APInt &operator--();
|
|
|
|
/// \brief Unary bitwise complement operator.
|
|
///
|
|
/// Performs a bitwise complement operation on this APInt.
|
|
///
|
|
/// \returns an APInt that is the bitwise complement of *this
|
|
APInt operator~() const {
|
|
APInt Result(*this);
|
|
Result.flipAllBits();
|
|
return Result;
|
|
}
|
|
|
|
/// \brief Unary negation operator
|
|
///
|
|
/// Negates *this using two's complement logic.
|
|
///
|
|
/// \returns An APInt value representing the negation of *this.
|
|
APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
|
|
|
|
/// \brief Logical negation operator.
|
|
///
|
|
/// Performs logical negation operation on this APInt.
|
|
///
|
|
/// \returns true if *this is zero, false otherwise.
|
|
bool operator!() const {
|
|
if (isSingleWord())
|
|
return !VAL;
|
|
|
|
for (unsigned i = 0; i != getNumWords(); ++i)
|
|
if (pVal[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// @}
|
|
/// \name Assignment Operators
|
|
/// @{
|
|
|
|
/// \brief Copy assignment operator.
|
|
///
|
|
/// \returns *this after assignment of RHS.
|
|
APInt &operator=(const APInt &RHS) {
|
|
// If the bitwidths are the same, we can avoid mucking with memory
|
|
if (isSingleWord() && RHS.isSingleWord()) {
|
|
VAL = RHS.VAL;
|
|
BitWidth = RHS.BitWidth;
|
|
return clearUnusedBits();
|
|
}
|
|
|
|
return AssignSlowCase(RHS);
|
|
}
|
|
|
|
/// @brief Move assignment operator.
|
|
APInt &operator=(APInt &&that) {
|
|
if (!isSingleWord()) {
|
|
// The MSVC STL shipped in 2013 requires that self move assignment be a
|
|
// no-op. Otherwise algorithms like stable_sort will produce answers
|
|
// where half of the output is left in a moved-from state.
|
|
if (this == &that)
|
|
return *this;
|
|
delete[] pVal;
|
|
}
|
|
|
|
VAL = that.VAL;
|
|
|
|
// If 'this == &that', avoid zeroing our own bitwidth by storing to 'that'
|
|
// first.
|
|
unsigned ThatBitWidth = that.BitWidth;
|
|
that.BitWidth = 0;
|
|
BitWidth = ThatBitWidth;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Assignment operator.
|
|
///
|
|
/// The RHS value is assigned to *this. If the significant bits in RHS exceed
|
|
/// the bit width, the excess bits are truncated. If the bit width is larger
|
|
/// than 64, the value is zero filled in the unspecified high order bits.
|
|
///
|
|
/// \returns *this after assignment of RHS value.
|
|
APInt &operator=(uint64_t RHS);
|
|
|
|
/// \brief Bitwise AND assignment operator.
|
|
///
|
|
/// Performs a bitwise AND operation on this APInt and RHS. The result is
|
|
/// assigned to *this.
|
|
///
|
|
/// \returns *this after ANDing with RHS.
|
|
APInt &operator&=(const APInt &RHS);
|
|
|
|
/// \brief Bitwise OR assignment operator.
|
|
///
|
|
/// Performs a bitwise OR operation on this APInt and RHS. The result is
|
|
/// assigned *this;
|
|
///
|
|
/// \returns *this after ORing with RHS.
|
|
APInt &operator|=(const APInt &RHS);
|
|
|
|
/// \brief Bitwise OR assignment operator.
|
|
///
|
|
/// Performs a bitwise OR operation on this APInt and RHS. RHS is
|
|
/// logically zero-extended or truncated to match the bit-width of
|
|
/// the LHS.
|
|
APInt &operator|=(uint64_t RHS) {
|
|
if (isSingleWord()) {
|
|
VAL |= RHS;
|
|
clearUnusedBits();
|
|
} else {
|
|
pVal[0] |= RHS;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Bitwise XOR assignment operator.
|
|
///
|
|
/// Performs a bitwise XOR operation on this APInt and RHS. The result is
|
|
/// assigned to *this.
|
|
///
|
|
/// \returns *this after XORing with RHS.
|
|
APInt &operator^=(const APInt &RHS);
|
|
|
|
/// \brief Multiplication assignment operator.
|
|
///
|
|
/// Multiplies this APInt by RHS and assigns the result to *this.
|
|
///
|
|
/// \returns *this
|
|
APInt &operator*=(const APInt &RHS);
|
|
|
|
/// \brief Addition assignment operator.
|
|
///
|
|
/// Adds RHS to *this and assigns the result to *this.
|
|
///
|
|
/// \returns *this
|
|
APInt &operator+=(const APInt &RHS);
|
|
|
|
/// \brief Subtraction assignment operator.
|
|
///
|
|
/// Subtracts RHS from *this and assigns the result to *this.
|
|
///
|
|
/// \returns *this
|
|
APInt &operator-=(const APInt &RHS);
|
|
|
|
/// \brief Left-shift assignment function.
|
|
///
|
|
/// Shifts *this left by shiftAmt and assigns the result to *this.
|
|
///
|
|
/// \returns *this after shifting left by shiftAmt
|
|
APInt &operator<<=(unsigned shiftAmt) {
|
|
*this = shl(shiftAmt);
|
|
return *this;
|
|
}
|
|
|
|
/// @}
|
|
/// \name Binary Operators
|
|
/// @{
|
|
|
|
/// \brief Bitwise AND operator.
|
|
///
|
|
/// Performs a bitwise AND operation on *this and RHS.
|
|
///
|
|
/// \returns An APInt value representing the bitwise AND of *this and RHS.
|
|
APInt operator&(const APInt &RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
return APInt(getBitWidth(), VAL & RHS.VAL);
|
|
return AndSlowCase(RHS);
|
|
}
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const {
|
|
return this->operator&(RHS);
|
|
}
|
|
|
|
/// \brief Bitwise OR operator.
|
|
///
|
|
/// Performs a bitwise OR operation on *this and RHS.
|
|
///
|
|
/// \returns An APInt value representing the bitwise OR of *this and RHS.
|
|
APInt operator|(const APInt &RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
return APInt(getBitWidth(), VAL | RHS.VAL);
|
|
return OrSlowCase(RHS);
|
|
}
|
|
|
|
/// \brief Bitwise OR function.
|
|
///
|
|
/// Performs a bitwise or on *this and RHS. This is implemented bny simply
|
|
/// calling operator|.
|
|
///
|
|
/// \returns An APInt value representing the bitwise OR of *this and RHS.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const {
|
|
return this->operator|(RHS);
|
|
}
|
|
|
|
/// \brief Bitwise XOR operator.
|
|
///
|
|
/// Performs a bitwise XOR operation on *this and RHS.
|
|
///
|
|
/// \returns An APInt value representing the bitwise XOR of *this and RHS.
|
|
APInt operator^(const APInt &RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
return APInt(BitWidth, VAL ^ RHS.VAL);
|
|
return XorSlowCase(RHS);
|
|
}
|
|
|
|
/// \brief Bitwise XOR function.
|
|
///
|
|
/// Performs a bitwise XOR operation on *this and RHS. This is implemented
|
|
/// through the usage of operator^.
|
|
///
|
|
/// \returns An APInt value representing the bitwise XOR of *this and RHS.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const {
|
|
return this->operator^(RHS);
|
|
}
|
|
|
|
/// \brief Multiplication operator.
|
|
///
|
|
/// Multiplies this APInt by RHS and returns the result.
|
|
APInt operator*(const APInt &RHS) const;
|
|
|
|
/// \brief Addition operator.
|
|
///
|
|
/// Adds RHS to this APInt and returns the result.
|
|
APInt operator+(const APInt &RHS) const;
|
|
APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
|
|
|
|
/// \brief Subtraction operator.
|
|
///
|
|
/// Subtracts RHS from this APInt and returns the result.
|
|
APInt operator-(const APInt &RHS) const;
|
|
APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
|
|
|
|
/// \brief Left logical shift operator.
|
|
///
|
|
/// Shifts this APInt left by \p Bits and returns the result.
|
|
APInt operator<<(unsigned Bits) const { return shl(Bits); }
|
|
|
|
/// \brief Left logical shift operator.
|
|
///
|
|
/// Shifts this APInt left by \p Bits and returns the result.
|
|
APInt operator<<(const APInt &Bits) const { return shl(Bits); }
|
|
|
|
/// \brief Arithmetic right-shift function.
|
|
///
|
|
/// Arithmetic right-shift this APInt by shiftAmt.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const;
|
|
|
|
/// \brief Logical right-shift function.
|
|
///
|
|
/// Logical right-shift this APInt by shiftAmt.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const;
|
|
|
|
/// \brief Left-shift function.
|
|
///
|
|
/// Left-shift this APInt by shiftAmt.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const {
|
|
assert(shiftAmt <= BitWidth && "Invalid shift amount");
|
|
if (isSingleWord()) {
|
|
if (shiftAmt >= BitWidth)
|
|
return APInt(BitWidth, 0); // avoid undefined shift results
|
|
return APInt(BitWidth, VAL << shiftAmt);
|
|
}
|
|
return shlSlowCase(shiftAmt);
|
|
}
|
|
|
|
/// \brief Rotate left by rotateAmt.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const;
|
|
|
|
/// \brief Rotate right by rotateAmt.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const;
|
|
|
|
/// \brief Arithmetic right-shift function.
|
|
///
|
|
/// Arithmetic right-shift this APInt by shiftAmt.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const;
|
|
|
|
/// \brief Logical right-shift function.
|
|
///
|
|
/// Logical right-shift this APInt by shiftAmt.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const;
|
|
|
|
/// \brief Left-shift function.
|
|
///
|
|
/// Left-shift this APInt by shiftAmt.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const;
|
|
|
|
/// \brief Rotate left by rotateAmt.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const;
|
|
|
|
/// \brief Rotate right by rotateAmt.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const;
|
|
|
|
/// \brief Unsigned division operation.
|
|
///
|
|
/// Perform an unsigned divide operation on this APInt by RHS. Both this and
|
|
/// RHS are treated as unsigned quantities for purposes of this division.
|
|
///
|
|
/// \returns a new APInt value containing the division result
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const;
|
|
|
|
/// \brief Signed division function for APInt.
|
|
///
|
|
/// Signed divide this APInt by APInt RHS.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const;
|
|
|
|
/// \brief Unsigned remainder operation.
|
|
///
|
|
/// Perform an unsigned remainder operation on this APInt with RHS being the
|
|
/// divisor. Both this and RHS are treated as unsigned quantities for purposes
|
|
/// of this operation. Note that this is a true remainder operation and not a
|
|
/// modulo operation because the sign follows the sign of the dividend which
|
|
/// is *this.
|
|
///
|
|
/// \returns a new APInt value containing the remainder result
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const;
|
|
|
|
/// \brief Function for signed remainder operation.
|
|
///
|
|
/// Signed remainder operation on APInt.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const;
|
|
|
|
/// \brief Dual division/remainder interface.
|
|
///
|
|
/// Sometimes it is convenient to divide two APInt values and obtain both the
|
|
/// quotient and remainder. This function does both operations in the same
|
|
/// computation making it a little more efficient. The pair of input arguments
|
|
/// may overlap with the pair of output arguments. It is safe to call
|
|
/// udivrem(X, Y, X, Y), for example.
|
|
static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
|
|
APInt &Remainder);
|
|
|
|
static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
|
|
APInt &Remainder);
|
|
|
|
// Operations that return overflow indicators.
|
|
APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt usub_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt smul_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt umul_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt sshl_ov(unsigned Amt, bool &Overflow) const;
|
|
|
|
/// \brief Array-indexing support.
|
|
///
|
|
/// \returns the bit value at bitPosition
|
|
bool operator[](unsigned bitPosition) const {
|
|
assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
|
|
return (maskBit(bitPosition) &
|
|
(isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
|
|
0;
|
|
}
|
|
|
|
/// @}
|
|
/// \name Comparison Operators
|
|
/// @{
|
|
|
|
/// \brief Equality operator.
|
|
///
|
|
/// Compares this APInt with RHS for the validity of the equality
|
|
/// relationship.
|
|
bool operator==(const APInt &RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
|
|
if (isSingleWord())
|
|
return VAL == RHS.VAL;
|
|
return EqualSlowCase(RHS);
|
|
}
|
|
|
|
/// \brief Equality operator.
|
|
///
|
|
/// Compares this APInt with a uint64_t for the validity of the equality
|
|
/// relationship.
|
|
///
|
|
/// \returns true if *this == Val
|
|
bool operator==(uint64_t Val) const {
|
|
if (isSingleWord())
|
|
return VAL == Val;
|
|
return EqualSlowCase(Val);
|
|
}
|
|
|
|
/// \brief Equality comparison.
|
|
///
|
|
/// Compares this APInt with RHS for the validity of the equality
|
|
/// relationship.
|
|
///
|
|
/// \returns true if *this == Val
|
|
bool eq(const APInt &RHS) const { return (*this) == RHS; }
|
|
|
|
/// \brief Inequality operator.
|
|
///
|
|
/// Compares this APInt with RHS for the validity of the inequality
|
|
/// relationship.
|
|
///
|
|
/// \returns true if *this != Val
|
|
bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
|
|
|
|
/// \brief Inequality operator.
|
|
///
|
|
/// Compares this APInt with a uint64_t for the validity of the inequality
|
|
/// relationship.
|
|
///
|
|
/// \returns true if *this != Val
|
|
bool operator!=(uint64_t Val) const { return !((*this) == Val); }
|
|
|
|
/// \brief Inequality comparison
|
|
///
|
|
/// Compares this APInt with RHS for the validity of the inequality
|
|
/// relationship.
|
|
///
|
|
/// \returns true if *this != Val
|
|
bool ne(const APInt &RHS) const { return !((*this) == RHS); }
|
|
|
|
/// \brief Unsigned less than comparison
|
|
///
|
|
/// Regards both *this and RHS as unsigned quantities and compares them for
|
|
/// the validity of the less-than relationship.
|
|
///
|
|
/// \returns true if *this < RHS when both are considered unsigned.
|
|
bool ult(const APInt &RHS) const;
|
|
|
|
/// \brief Unsigned less than comparison
|
|
///
|
|
/// Regards both *this as an unsigned quantity and compares it with RHS for
|
|
/// the validity of the less-than relationship.
|
|
///
|
|
/// \returns true if *this < RHS when considered unsigned.
|
|
bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); }
|
|
|
|
/// \brief Signed less than comparison
|
|
///
|
|
/// Regards both *this and RHS as signed quantities and compares them for
|
|
/// validity of the less-than relationship.
|
|
///
|
|
/// \returns true if *this < RHS when both are considered signed.
|
|
bool slt(const APInt &RHS) const;
|
|
|
|
/// \brief Signed less than comparison
|
|
///
|
|
/// Regards both *this as a signed quantity and compares it with RHS for
|
|
/// the validity of the less-than relationship.
|
|
///
|
|
/// \returns true if *this < RHS when considered signed.
|
|
bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); }
|
|
|
|
/// \brief Unsigned less or equal comparison
|
|
///
|
|
/// Regards both *this and RHS as unsigned quantities and compares them for
|
|
/// validity of the less-or-equal relationship.
|
|
///
|
|
/// \returns true if *this <= RHS when both are considered unsigned.
|
|
bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
|
|
|
|
/// \brief Unsigned less or equal comparison
|
|
///
|
|
/// Regards both *this as an unsigned quantity and compares it with RHS for
|
|
/// the validity of the less-or-equal relationship.
|
|
///
|
|
/// \returns true if *this <= RHS when considered unsigned.
|
|
bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); }
|
|
|
|
/// \brief Signed less or equal comparison
|
|
///
|
|
/// Regards both *this and RHS as signed quantities and compares them for
|
|
/// validity of the less-or-equal relationship.
|
|
///
|
|
/// \returns true if *this <= RHS when both are considered signed.
|
|
bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
|
|
|
|
/// \brief Signed less or equal comparison
|
|
///
|
|
/// Regards both *this as a signed quantity and compares it with RHS for the
|
|
/// validity of the less-or-equal relationship.
|
|
///
|
|
/// \returns true if *this <= RHS when considered signed.
|
|
bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); }
|
|
|
|
/// \brief Unsigned greather than comparison
|
|
///
|
|
/// Regards both *this and RHS as unsigned quantities and compares them for
|
|
/// the validity of the greater-than relationship.
|
|
///
|
|
/// \returns true if *this > RHS when both are considered unsigned.
|
|
bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
|
|
|
|
/// \brief Unsigned greater than comparison
|
|
///
|
|
/// Regards both *this as an unsigned quantity and compares it with RHS for
|
|
/// the validity of the greater-than relationship.
|
|
///
|
|
/// \returns true if *this > RHS when considered unsigned.
|
|
bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); }
|
|
|
|
/// \brief Signed greather than comparison
|
|
///
|
|
/// Regards both *this and RHS as signed quantities and compares them for the
|
|
/// validity of the greater-than relationship.
|
|
///
|
|
/// \returns true if *this > RHS when both are considered signed.
|
|
bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
|
|
|
|
/// \brief Signed greater than comparison
|
|
///
|
|
/// Regards both *this as a signed quantity and compares it with RHS for
|
|
/// the validity of the greater-than relationship.
|
|
///
|
|
/// \returns true if *this > RHS when considered signed.
|
|
bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); }
|
|
|
|
/// \brief Unsigned greater or equal comparison
|
|
///
|
|
/// Regards both *this and RHS as unsigned quantities and compares them for
|
|
/// validity of the greater-or-equal relationship.
|
|
///
|
|
/// \returns true if *this >= RHS when both are considered unsigned.
|
|
bool uge(const APInt &RHS) const { return !ult(RHS); }
|
|
|
|
/// \brief Unsigned greater or equal comparison
|
|
///
|
|
/// Regards both *this as an unsigned quantity and compares it with RHS for
|
|
/// the validity of the greater-or-equal relationship.
|
|
///
|
|
/// \returns true if *this >= RHS when considered unsigned.
|
|
bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); }
|
|
|
|
/// \brief Signed greather or equal comparison
|
|
///
|
|
/// Regards both *this and RHS as signed quantities and compares them for
|
|
/// validity of the greater-or-equal relationship.
|
|
///
|
|
/// \returns true if *this >= RHS when both are considered signed.
|
|
bool sge(const APInt &RHS) const { return !slt(RHS); }
|
|
|
|
/// \brief Signed greater or equal comparison
|
|
///
|
|
/// Regards both *this as a signed quantity and compares it with RHS for
|
|
/// the validity of the greater-or-equal relationship.
|
|
///
|
|
/// \returns true if *this >= RHS when considered signed.
|
|
bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); }
|
|
|
|
/// This operation tests if there are any pairs of corresponding bits
|
|
/// between this APInt and RHS that are both set.
|
|
bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
|
|
|
|
/// @}
|
|
/// \name Resizing Operators
|
|
/// @{
|
|
|
|
/// \brief Truncate to new width.
|
|
///
|
|
/// Truncate the APInt to a specified width. It is an error to specify a width
|
|
/// that is greater than or equal to the current width.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const;
|
|
|
|
/// \brief Sign extend to a new width.
|
|
///
|
|
/// This operation sign extends the APInt to a new width. If the high order
|
|
/// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
|
|
/// It is an error to specify a width that is less than or equal to the
|
|
/// current width.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const;
|
|
|
|
/// \brief Zero extend to a new width.
|
|
///
|
|
/// This operation zero extends the APInt to a new width. The high order bits
|
|
/// are filled with 0 bits. It is an error to specify a width that is less
|
|
/// than or equal to the current width.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const;
|
|
|
|
/// \brief Sign extend or truncate to width
|
|
///
|
|
/// Make this APInt have the bit width given by \p width. The value is sign
|
|
/// extended, truncated, or left alone to make it that width.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const;
|
|
|
|
/// \brief Zero extend or truncate to width
|
|
///
|
|
/// Make this APInt have the bit width given by \p width. The value is zero
|
|
/// extended, truncated, or left alone to make it that width.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const;
|
|
|
|
/// \brief Sign extend or truncate to width
|
|
///
|
|
/// Make this APInt have the bit width given by \p width. The value is sign
|
|
/// extended, or left alone to make it that width.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const;
|
|
|
|
/// \brief Zero extend or truncate to width
|
|
///
|
|
/// Make this APInt have the bit width given by \p width. The value is zero
|
|
/// extended, or left alone to make it that width.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const;
|
|
|
|
/// @}
|
|
/// \name Bit Manipulation Operators
|
|
/// @{
|
|
|
|
/// \brief Set every bit to 1.
|
|
void setAllBits() {
|
|
if (isSingleWord())
|
|
VAL = UINT64_MAX;
|
|
else {
|
|
// Set all the bits in all the words.
|
|
for (unsigned i = 0; i < getNumWords(); ++i)
|
|
pVal[i] = UINT64_MAX;
|
|
}
|
|
// Clear the unused ones
|
|
clearUnusedBits();
|
|
}
|
|
|
|
/// \brief Set a given bit to 1.
|
|
///
|
|
/// Set the given bit to 1 whose position is given as "bitPosition".
|
|
void setBit(unsigned bitPosition);
|
|
|
|
/// \brief Set every bit to 0.
|
|
void clearAllBits() {
|
|
if (isSingleWord())
|
|
VAL = 0;
|
|
else
|
|
memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
|
|
}
|
|
|
|
/// \brief Set a given bit to 0.
|
|
///
|
|
/// Set the given bit to 0 whose position is given as "bitPosition".
|
|
void clearBit(unsigned bitPosition);
|
|
|
|
/// \brief Toggle every bit to its opposite value.
|
|
void flipAllBits() {
|
|
if (isSingleWord())
|
|
VAL ^= UINT64_MAX;
|
|
else {
|
|
for (unsigned i = 0; i < getNumWords(); ++i)
|
|
pVal[i] ^= UINT64_MAX;
|
|
}
|
|
clearUnusedBits();
|
|
}
|
|
|
|
/// \brief Toggles a given bit to its opposite value.
|
|
///
|
|
/// Toggle a given bit to its opposite value whose position is given
|
|
/// as "bitPosition".
|
|
void flipBit(unsigned bitPosition);
|
|
|
|
/// @}
|
|
/// \name Value Characterization Functions
|
|
/// @{
|
|
|
|
/// \brief Return the number of bits in the APInt.
|
|
unsigned getBitWidth() const { return BitWidth; }
|
|
|
|
/// \brief Get the number of words.
|
|
///
|
|
/// Here one word's bitwidth equals to that of uint64_t.
|
|
///
|
|
/// \returns the number of words to hold the integer value of this APInt.
|
|
unsigned getNumWords() const { return getNumWords(BitWidth); }
|
|
|
|
/// \brief Get the number of words.
|
|
///
|
|
/// *NOTE* Here one word's bitwidth equals to that of uint64_t.
|
|
///
|
|
/// \returns the number of words to hold the integer value with a given bit
|
|
/// width.
|
|
static unsigned getNumWords(unsigned BitWidth) {
|
|
return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
|
|
}
|
|
|
|
/// \brief Compute the number of active bits in the value
|
|
///
|
|
/// This function returns the number of active bits which is defined as the
|
|
/// bit width minus the number of leading zeros. This is used in several
|
|
/// computations to see how "wide" the value is.
|
|
unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
|
|
|
|
/// \brief Compute the number of active words in the value of this APInt.
|
|
///
|
|
/// This is used in conjunction with getActiveData to extract the raw value of
|
|
/// the APInt.
|
|
unsigned getActiveWords() const {
|
|
unsigned numActiveBits = getActiveBits();
|
|
return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
|
|
}
|
|
|
|
/// \brief Get the minimum bit size for this signed APInt
|
|
///
|
|
/// Computes the minimum bit width for this APInt while considering it to be a
|
|
/// signed (and probably negative) value. If the value is not negative, this
|
|
/// function returns the same value as getActiveBits()+1. Otherwise, it
|
|
/// returns the smallest bit width that will retain the negative value. For
|
|
/// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
|
|
/// for -1, this function will always return 1.
|
|
unsigned getMinSignedBits() const {
|
|
if (isNegative())
|
|
return BitWidth - countLeadingOnes() + 1;
|
|
return getActiveBits() + 1;
|
|
}
|
|
|
|
/// \brief Get zero extended value
|
|
///
|
|
/// This method attempts to return the value of this APInt as a zero extended
|
|
/// uint64_t. The bitwidth must be <= 64 or the value must fit within a
|
|
/// uint64_t. Otherwise an assertion will result.
|
|
uint64_t getZExtValue() const {
|
|
if (isSingleWord())
|
|
return VAL;
|
|
assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
|
|
return pVal[0];
|
|
}
|
|
|
|
/// \brief Get sign extended value
|
|
///
|
|
/// This method attempts to return the value of this APInt as a sign extended
|
|
/// int64_t. The bit width must be <= 64 or the value must fit within an
|
|
/// int64_t. Otherwise an assertion will result.
|
|
int64_t getSExtValue() const {
|
|
if (isSingleWord())
|
|
return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
|
|
(APINT_BITS_PER_WORD - BitWidth);
|
|
assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
|
|
return int64_t(pVal[0]);
|
|
}
|
|
|
|
/// \brief Get bits required for string value.
|
|
///
|
|
/// This method determines how many bits are required to hold the APInt
|
|
/// equivalent of the string given by \p str.
|
|
static unsigned getBitsNeeded(StringRef str, uint8_t radix);
|
|
|
|
/// \brief The APInt version of the countLeadingZeros functions in
|
|
/// MathExtras.h.
|
|
///
|
|
/// It counts the number of zeros from the most significant bit to the first
|
|
/// one bit.
|
|
///
|
|
/// \returns BitWidth if the value is zero, otherwise returns the number of
|
|
/// zeros from the most significant bit to the first one bits.
|
|
unsigned countLeadingZeros() const {
|
|
if (isSingleWord()) {
|
|
unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
|
|
return llvm::countLeadingZeros(VAL) - unusedBits;
|
|
}
|
|
return countLeadingZerosSlowCase();
|
|
}
|
|
|
|
/// \brief Count the number of leading one bits.
|
|
///
|
|
/// This function is an APInt version of the countLeadingOnes_{32,64}
|
|
/// functions in MathExtras.h. It counts the number of ones from the most
|
|
/// significant bit to the first zero bit.
|
|
///
|
|
/// \returns 0 if the high order bit is not set, otherwise returns the number
|
|
/// of 1 bits from the most significant to the least
|
|
unsigned countLeadingOnes() const;
|
|
|
|
/// Computes the number of leading bits of this APInt that are equal to its
|
|
/// sign bit.
|
|
unsigned getNumSignBits() const {
|
|
return isNegative() ? countLeadingOnes() : countLeadingZeros();
|
|
}
|
|
|
|
/// \brief Count the number of trailing zero bits.
|
|
///
|
|
/// This function is an APInt version of the countTrailingZeros_{32,64}
|
|
/// functions in MathExtras.h. It counts the number of zeros from the least
|
|
/// significant bit to the first set bit.
|
|
///
|
|
/// \returns BitWidth if the value is zero, otherwise returns the number of
|
|
/// zeros from the least significant bit to the first one bit.
|
|
unsigned countTrailingZeros() const;
|
|
|
|
/// \brief Count the number of trailing one bits.
|
|
///
|
|
/// This function is an APInt version of the countTrailingOnes_{32,64}
|
|
/// functions in MathExtras.h. It counts the number of ones from the least
|
|
/// significant bit to the first zero bit.
|
|
///
|
|
/// \returns BitWidth if the value is all ones, otherwise returns the number
|
|
/// of ones from the least significant bit to the first zero bit.
|
|
unsigned countTrailingOnes() const {
|
|
if (isSingleWord())
|
|
return CountTrailingOnes_64(VAL);
|
|
return countTrailingOnesSlowCase();
|
|
}
|
|
|
|
/// \brief Count the number of bits set.
|
|
///
|
|
/// This function is an APInt version of the countPopulation_{32,64} functions
|
|
/// in MathExtras.h. It counts the number of 1 bits in the APInt value.
|
|
///
|
|
/// \returns 0 if the value is zero, otherwise returns the number of set bits.
|
|
unsigned countPopulation() const {
|
|
if (isSingleWord())
|
|
return CountPopulation_64(VAL);
|
|
return countPopulationSlowCase();
|
|
}
|
|
|
|
/// @}
|
|
/// \name Conversion Functions
|
|
/// @{
|
|
void print(raw_ostream &OS, bool isSigned) const;
|
|
|
|
/// Converts an APInt to a string and append it to Str. Str is commonly a
|
|
/// SmallString.
|
|
void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
|
|
bool formatAsCLiteral = false) const;
|
|
|
|
/// Considers the APInt to be unsigned and converts it into a string in the
|
|
/// radix given. The radix can be 2, 8, 10 16, or 36.
|
|
void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
|
|
toString(Str, Radix, false, false);
|
|
}
|
|
|
|
/// Considers the APInt to be signed and converts it into a string in the
|
|
/// radix given. The radix can be 2, 8, 10, 16, or 36.
|
|
void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
|
|
toString(Str, Radix, true, false);
|
|
}
|
|
|
|
/// \brief Return the APInt as a std::string.
|
|
///
|
|
/// Note that this is an inefficient method. It is better to pass in a
|
|
/// SmallVector/SmallString to the methods above to avoid thrashing the heap
|
|
/// for the string.
|
|
std::string toString(unsigned Radix, bool Signed) const;
|
|
|
|
/// \returns a byte-swapped representation of this APInt Value.
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const;
|
|
|
|
/// \brief Converts this APInt to a double value.
|
|
double roundToDouble(bool isSigned) const;
|
|
|
|
/// \brief Converts this unsigned APInt to a double value.
|
|
double roundToDouble() const { return roundToDouble(false); }
|
|
|
|
/// \brief Converts this signed APInt to a double value.
|
|
double signedRoundToDouble() const { return roundToDouble(true); }
|
|
|
|
/// \brief Converts APInt bits to a double
|
|
///
|
|
/// The conversion does not do a translation from integer to double, it just
|
|
/// re-interprets the bits as a double. Note that it is valid to do this on
|
|
/// any bit width. Exactly 64 bits will be translated.
|
|
double bitsToDouble() const {
|
|
union {
|
|
uint64_t I;
|
|
double D;
|
|
} T;
|
|
T.I = (isSingleWord() ? VAL : pVal[0]);
|
|
return T.D;
|
|
}
|
|
|
|
/// \brief Converts APInt bits to a double
|
|
///
|
|
/// The conversion does not do a translation from integer to float, it just
|
|
/// re-interprets the bits as a float. Note that it is valid to do this on
|
|
/// any bit width. Exactly 32 bits will be translated.
|
|
float bitsToFloat() const {
|
|
union {
|
|
unsigned I;
|
|
float F;
|
|
} T;
|
|
T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
|
|
return T.F;
|
|
}
|
|
|
|
/// \brief Converts a double to APInt bits.
|
|
///
|
|
/// The conversion does not do a translation from double to integer, it just
|
|
/// re-interprets the bits of the double.
|
|
static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) {
|
|
union {
|
|
uint64_t I;
|
|
double D;
|
|
} T;
|
|
T.D = V;
|
|
return APInt(sizeof T * CHAR_BIT, T.I);
|
|
}
|
|
|
|
/// \brief Converts a float to APInt bits.
|
|
///
|
|
/// The conversion does not do a translation from float to integer, it just
|
|
/// re-interprets the bits of the float.
|
|
static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) {
|
|
union {
|
|
unsigned I;
|
|
float F;
|
|
} T;
|
|
T.F = V;
|
|
return APInt(sizeof T * CHAR_BIT, T.I);
|
|
}
|
|
|
|
/// @}
|
|
/// \name Mathematics Operations
|
|
/// @{
|
|
|
|
/// \returns the floor log base 2 of this APInt.
|
|
unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
|
|
|
|
/// \returns the ceil log base 2 of this APInt.
|
|
unsigned ceilLogBase2() const {
|
|
return BitWidth - (*this - 1).countLeadingZeros();
|
|
}
|
|
|
|
/// \returns the nearest log base 2 of this APInt. Ties round up.
|
|
///
|
|
/// NOTE: When we have a BitWidth of 1, we define:
|
|
///
|
|
/// log2(0) = UINT32_MAX
|
|
/// log2(1) = 0
|
|
///
|
|
/// to get around any mathematical concerns resulting from
|
|
/// referencing 2 in a space where 2 does no exist.
|
|
unsigned nearestLogBase2() const {
|
|
// Special case when we have a bitwidth of 1. If VAL is 1, then we
|
|
// get 0. If VAL is 0, we get UINT64_MAX which gets truncated to
|
|
// UINT32_MAX.
|
|
if (BitWidth == 1)
|
|
return VAL - 1;
|
|
|
|
// Handle the zero case.
|
|
if (!getBoolValue())
|
|
return UINT32_MAX;
|
|
|
|
// The non-zero case is handled by computing:
|
|
//
|
|
// nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
|
|
//
|
|
// where x[i] is referring to the value of the ith bit of x.
|
|
unsigned lg = logBase2();
|
|
return lg + unsigned((*this)[lg - 1]);
|
|
}
|
|
|
|
/// \returns the log base 2 of this APInt if its an exact power of two, -1
|
|
/// otherwise
|
|
int32_t exactLogBase2() const {
|
|
if (!isPowerOf2())
|
|
return -1;
|
|
return logBase2();
|
|
}
|
|
|
|
/// \brief Compute the square root
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const;
|
|
|
|
/// \brief Get the absolute value;
|
|
///
|
|
/// If *this is < 0 then return -(*this), otherwise *this;
|
|
APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const {
|
|
if (isNegative())
|
|
return -(*this);
|
|
return *this;
|
|
}
|
|
|
|
/// \returns the multiplicative inverse for a given modulo.
|
|
APInt multiplicativeInverse(const APInt &modulo) const;
|
|
|
|
/// @}
|
|
/// \name Support for division by constant
|
|
/// @{
|
|
|
|
/// Calculate the magic number for signed division by a constant.
|
|
struct ms;
|
|
ms magic() const;
|
|
|
|
/// Calculate the magic number for unsigned division by a constant.
|
|
struct mu;
|
|
mu magicu(unsigned LeadingZeros = 0) const;
|
|
|
|
/// @}
|
|
/// \name Building-block Operations for APInt and APFloat
|
|
/// @{
|
|
|
|
// These building block operations operate on a representation of arbitrary
|
|
// precision, two's-complement, bignum integer values. They should be
|
|
// sufficient to implement APInt and APFloat bignum requirements. Inputs are
|
|
// generally a pointer to the base of an array of integer parts, representing
|
|
// an unsigned bignum, and a count of how many parts there are.
|
|
|
|
/// Sets the least significant part of a bignum to the input value, and zeroes
|
|
/// out higher parts.
|
|
static void tcSet(integerPart *, integerPart, unsigned int);
|
|
|
|
/// Assign one bignum to another.
|
|
static void tcAssign(integerPart *, const integerPart *, unsigned int);
|
|
|
|
/// Returns true if a bignum is zero, false otherwise.
|
|
static bool tcIsZero(const integerPart *, unsigned int);
|
|
|
|
/// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
|
|
static int tcExtractBit(const integerPart *, unsigned int bit);
|
|
|
|
/// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
|
|
/// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
|
|
/// significant bit of DST. All high bits above srcBITS in DST are
|
|
/// zero-filled.
|
|
static void tcExtract(integerPart *, unsigned int dstCount,
|
|
const integerPart *, unsigned int srcBits,
|
|
unsigned int srcLSB);
|
|
|
|
/// Set the given bit of a bignum. Zero-based.
|
|
static void tcSetBit(integerPart *, unsigned int bit);
|
|
|
|
/// Clear the given bit of a bignum. Zero-based.
|
|
static void tcClearBit(integerPart *, unsigned int bit);
|
|
|
|
/// Returns the bit number of the least or most significant set bit of a
|
|
/// number. If the input number has no bits set -1U is returned.
|
|
static unsigned int tcLSB(const integerPart *, unsigned int);
|
|
static unsigned int tcMSB(const integerPart *parts, unsigned int n);
|
|
|
|
/// Negate a bignum in-place.
|
|
static void tcNegate(integerPart *, unsigned int);
|
|
|
|
/// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
|
|
static integerPart tcAdd(integerPart *, const integerPart *,
|
|
integerPart carry, unsigned);
|
|
|
|
/// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
|
|
static integerPart tcSubtract(integerPart *, const integerPart *,
|
|
integerPart carry, unsigned);
|
|
|
|
/// DST += SRC * MULTIPLIER + PART if add is true
|
|
/// DST = SRC * MULTIPLIER + PART if add is false
|
|
///
|
|
/// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
|
|
/// start at the same point, i.e. DST == SRC.
|
|
///
|
|
/// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
|
|
/// Otherwise DST is filled with the least significant DSTPARTS parts of the
|
|
/// result, and if all of the omitted higher parts were zero return zero,
|
|
/// otherwise overflow occurred and return one.
|
|
static int tcMultiplyPart(integerPart *dst, const integerPart *src,
|
|
integerPart multiplier, integerPart carry,
|
|
unsigned int srcParts, unsigned int dstParts,
|
|
bool add);
|
|
|
|
/// DST = LHS * RHS, where DST has the same width as the operands and is
|
|
/// filled with the least significant parts of the result. Returns one if
|
|
/// overflow occurred, otherwise zero. DST must be disjoint from both
|
|
/// operands.
|
|
static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
|
|
unsigned);
|
|
|
|
/// DST = LHS * RHS, where DST has width the sum of the widths of the
|
|
/// operands. No overflow occurs. DST must be disjoint from both
|
|
/// operands. Returns the number of parts required to hold the result.
|
|
static unsigned int tcFullMultiply(integerPart *, const integerPart *,
|
|
const integerPart *, unsigned, unsigned);
|
|
|
|
/// If RHS is zero LHS and REMAINDER are left unchanged, return one.
|
|
/// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
|
|
/// REMAINDER to the remainder, return zero. i.e.
|
|
///
|
|
/// OLD_LHS = RHS * LHS + REMAINDER
|
|
///
|
|
/// SCRATCH is a bignum of the same size as the operands and result for use by
|
|
/// the routine; its contents need not be initialized and are destroyed. LHS,
|
|
/// REMAINDER and SCRATCH must be distinct.
|
|
static int tcDivide(integerPart *lhs, const integerPart *rhs,
|
|
integerPart *remainder, integerPart *scratch,
|
|
unsigned int parts);
|
|
|
|
/// Shift a bignum left COUNT bits. Shifted in bits are zero. There are no
|
|
/// restrictions on COUNT.
|
|
static void tcShiftLeft(integerPart *, unsigned int parts,
|
|
unsigned int count);
|
|
|
|
/// Shift a bignum right COUNT bits. Shifted in bits are zero. There are no
|
|
/// restrictions on COUNT.
|
|
static void tcShiftRight(integerPart *, unsigned int parts,
|
|
unsigned int count);
|
|
|
|
/// The obvious AND, OR and XOR and complement operations.
|
|
static void tcAnd(integerPart *, const integerPart *, unsigned int);
|
|
static void tcOr(integerPart *, const integerPart *, unsigned int);
|
|
static void tcXor(integerPart *, const integerPart *, unsigned int);
|
|
static void tcComplement(integerPart *, unsigned int);
|
|
|
|
/// Comparison (unsigned) of two bignums.
|
|
static int tcCompare(const integerPart *, const integerPart *, unsigned int);
|
|
|
|
/// Increment a bignum in-place. Return the carry flag.
|
|
static integerPart tcIncrement(integerPart *, unsigned int);
|
|
|
|
/// Decrement a bignum in-place. Return the borrow flag.
|
|
static integerPart tcDecrement(integerPart *, unsigned int);
|
|
|
|
/// Set the least significant BITS and clear the rest.
|
|
static void tcSetLeastSignificantBits(integerPart *, unsigned int,
|
|
unsigned int bits);
|
|
|
|
/// \brief debug method
|
|
void dump() const;
|
|
|
|
/// @}
|
|
};
|
|
|
|
/// Magic data for optimising signed division by a constant.
|
|
struct APInt::ms {
|
|
APInt m; ///< magic number
|
|
unsigned s; ///< shift amount
|
|
};
|
|
|
|
/// Magic data for optimising unsigned division by a constant.
|
|
struct APInt::mu {
|
|
APInt m; ///< magic number
|
|
bool a; ///< add indicator
|
|
unsigned s; ///< shift amount
|
|
};
|
|
|
|
inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
|
|
|
|
inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
|
|
I.print(OS, true);
|
|
return OS;
|
|
}
|
|
|
|
namespace APIntOps {
|
|
|
|
/// \brief Determine the smaller of two APInts considered to be signed.
|
|
inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
|
|
|
|
/// \brief Determine the larger of two APInts considered to be signed.
|
|
inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
|
|
|
|
/// \brief Determine the smaller of two APInts considered to be signed.
|
|
inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
|
|
|
|
/// \brief Determine the larger of two APInts considered to be unsigned.
|
|
inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
|
|
|
|
/// \brief Check if the specified APInt has a N-bits unsigned integer value.
|
|
inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
|
|
|
|
/// \brief Check if the specified APInt has a N-bits signed integer value.
|
|
inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
|
|
return APIVal.isSignedIntN(N);
|
|
}
|
|
|
|
/// \returns true if the argument APInt value is a sequence of ones starting at
|
|
/// the least significant bit with the remainder zero.
|
|
inline bool isMask(unsigned numBits, const APInt &APIVal) {
|
|
return numBits <= APIVal.getBitWidth() &&
|
|
APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
|
|
}
|
|
|
|
/// \brief Return true if the argument APInt value contains a sequence of ones
|
|
/// with the remainder zero.
|
|
inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
|
|
return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
|
|
}
|
|
|
|
/// \brief Returns a byte-swapped representation of the specified APInt Value.
|
|
inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
|
|
|
|
/// \brief Returns the floor log base 2 of the specified APInt value.
|
|
inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
|
|
|
|
/// \brief Compute GCD of two APInt values.
|
|
///
|
|
/// This function returns the greatest common divisor of the two APInt values
|
|
/// using Euclid's algorithm.
|
|
///
|
|
/// \returns the greatest common divisor of Val1 and Val2
|
|
APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
|
|
|
|
/// \brief Converts the given APInt to a double value.
|
|
///
|
|
/// Treats the APInt as an unsigned value for conversion purposes.
|
|
inline double RoundAPIntToDouble(const APInt &APIVal) {
|
|
return APIVal.roundToDouble();
|
|
}
|
|
|
|
/// \brief Converts the given APInt to a double value.
|
|
///
|
|
/// Treats the APInt as a signed value for conversion purposes.
|
|
inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
|
|
return APIVal.signedRoundToDouble();
|
|
}
|
|
|
|
/// \brief Converts the given APInt to a float vlalue.
|
|
inline float RoundAPIntToFloat(const APInt &APIVal) {
|
|
return float(RoundAPIntToDouble(APIVal));
|
|
}
|
|
|
|
/// \brief Converts the given APInt to a float value.
|
|
///
|
|
/// Treast the APInt as a signed value for conversion purposes.
|
|
inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
|
|
return float(APIVal.signedRoundToDouble());
|
|
}
|
|
|
|
/// \brief Converts the given double value into a APInt.
|
|
///
|
|
/// This function convert a double value to an APInt value.
|
|
APInt RoundDoubleToAPInt(double Double, unsigned width);
|
|
|
|
/// \brief Converts a float value into a APInt.
|
|
///
|
|
/// Converts a float value into an APInt value.
|
|
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
|
|
return RoundDoubleToAPInt(double(Float), width);
|
|
}
|
|
|
|
/// \brief Arithmetic right-shift function.
|
|
///
|
|
/// Arithmetic right-shift the APInt by shiftAmt.
|
|
inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
|
|
return LHS.ashr(shiftAmt);
|
|
}
|
|
|
|
/// \brief Logical right-shift function.
|
|
///
|
|
/// Logical right-shift the APInt by shiftAmt.
|
|
inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
|
|
return LHS.lshr(shiftAmt);
|
|
}
|
|
|
|
/// \brief Left-shift function.
|
|
///
|
|
/// Left-shift the APInt by shiftAmt.
|
|
inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
|
|
return LHS.shl(shiftAmt);
|
|
}
|
|
|
|
/// \brief Signed division function for APInt.
|
|
///
|
|
/// Signed divide APInt LHS by APInt RHS.
|
|
inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
|
|
|
|
/// \brief Unsigned division function for APInt.
|
|
///
|
|
/// Unsigned divide APInt LHS by APInt RHS.
|
|
inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
|
|
|
|
/// \brief Function for signed remainder operation.
|
|
///
|
|
/// Signed remainder operation on APInt.
|
|
inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
|
|
|
|
/// \brief Function for unsigned remainder operation.
|
|
///
|
|
/// Unsigned remainder operation on APInt.
|
|
inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
|
|
|
|
/// \brief Function for multiplication operation.
|
|
///
|
|
/// Performs multiplication on APInt values.
|
|
inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
|
|
|
|
/// \brief Function for addition operation.
|
|
///
|
|
/// Performs addition on APInt values.
|
|
inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
|
|
|
|
/// \brief Function for subtraction operation.
|
|
///
|
|
/// Performs subtraction on APInt values.
|
|
inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
|
|
|
|
/// \brief Bitwise AND function for APInt.
|
|
///
|
|
/// Performs bitwise AND operation on APInt LHS and
|
|
/// APInt RHS.
|
|
inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
|
|
|
|
/// \brief Bitwise OR function for APInt.
|
|
///
|
|
/// Performs bitwise OR operation on APInt LHS and APInt RHS.
|
|
inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
|
|
|
|
/// \brief Bitwise XOR function for APInt.
|
|
///
|
|
/// Performs bitwise XOR operation on APInt.
|
|
inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
|
|
|
|
/// \brief Bitwise complement function.
|
|
///
|
|
/// Performs a bitwise complement operation on APInt.
|
|
inline APInt Not(const APInt &APIVal) { return ~APIVal; }
|
|
|
|
} // End of APIntOps namespace
|
|
|
|
// See friend declaration above. This additional declaration is required in
|
|
// order to compile LLVM with IBM xlC compiler.
|
|
hash_code hash_value(const APInt &Arg);
|
|
} // End of llvm namespace
|
|
|
|
#endif
|