mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-21 16:31:16 +00:00
efba32f21b
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202808 91177308-0d34-0410-b5e6-96231b3b80d8
192 lines
5.7 KiB
C++
192 lines
5.7 KiB
C++
//===----------- ReductionRules.h - Reduction Rules -------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Reduction Rules.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_REDUCTIONRULES_H
|
|
#define LLVM_REDUCTIONRULES_H
|
|
|
|
#include "Graph.h"
|
|
#include "Math.h"
|
|
#include "Solution.h"
|
|
|
|
namespace PBQP {
|
|
|
|
/// \brief Reduce a node of degree one.
|
|
///
|
|
/// Propagate costs from the given node, which must be of degree one, to its
|
|
/// neighbor. Notify the problem domain.
|
|
template <typename GraphT>
|
|
void applyR1(GraphT &G, typename GraphT::NodeId NId) {
|
|
typedef typename GraphT::NodeId NodeId;
|
|
typedef typename GraphT::EdgeId EdgeId;
|
|
typedef typename GraphT::Vector Vector;
|
|
typedef typename GraphT::Matrix Matrix;
|
|
typedef typename GraphT::RawVector RawVector;
|
|
|
|
assert(G.getNodeDegree(NId) == 1 &&
|
|
"R1 applied to node with degree != 1.");
|
|
|
|
EdgeId EId = *G.adjEdgeIds(NId).begin();
|
|
NodeId MId = G.getEdgeOtherNodeId(EId, NId);
|
|
|
|
const Matrix &ECosts = G.getEdgeCosts(EId);
|
|
const Vector &XCosts = G.getNodeCosts(NId);
|
|
RawVector YCosts = G.getNodeCosts(MId);
|
|
|
|
// Duplicate a little to avoid transposing matrices.
|
|
if (NId == G.getEdgeNode1Id(EId)) {
|
|
for (unsigned j = 0; j < YCosts.getLength(); ++j) {
|
|
PBQPNum Min = ECosts[0][j] + XCosts[0];
|
|
for (unsigned i = 1; i < XCosts.getLength(); ++i) {
|
|
PBQPNum C = ECosts[i][j] + XCosts[i];
|
|
if (C < Min)
|
|
Min = C;
|
|
}
|
|
YCosts[j] += Min;
|
|
}
|
|
} else {
|
|
for (unsigned i = 0; i < YCosts.getLength(); ++i) {
|
|
PBQPNum Min = ECosts[i][0] + XCosts[0];
|
|
for (unsigned j = 1; j < XCosts.getLength(); ++j) {
|
|
PBQPNum C = ECosts[i][j] + XCosts[j];
|
|
if (C < Min)
|
|
Min = C;
|
|
}
|
|
YCosts[i] += Min;
|
|
}
|
|
}
|
|
G.setNodeCosts(MId, YCosts);
|
|
G.disconnectEdge(EId, MId);
|
|
}
|
|
|
|
template <typename GraphT>
|
|
void applyR2(GraphT &G, typename GraphT::NodeId NId) {
|
|
typedef typename GraphT::NodeId NodeId;
|
|
typedef typename GraphT::EdgeId EdgeId;
|
|
typedef typename GraphT::Vector Vector;
|
|
typedef typename GraphT::Matrix Matrix;
|
|
typedef typename GraphT::RawMatrix RawMatrix;
|
|
|
|
assert(G.getNodeDegree(NId) == 2 &&
|
|
"R2 applied to node with degree != 2.");
|
|
|
|
const Vector &XCosts = G.getNodeCosts(NId);
|
|
|
|
typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
|
|
EdgeId YXEId = *AEItr,
|
|
ZXEId = *(++AEItr);
|
|
|
|
NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
|
|
ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
|
|
|
|
bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
|
|
FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
|
|
|
|
const Matrix *YXECosts = FlipEdge1 ?
|
|
new Matrix(G.getEdgeCosts(YXEId).transpose()) :
|
|
&G.getEdgeCosts(YXEId);
|
|
|
|
const Matrix *ZXECosts = FlipEdge2 ?
|
|
new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
|
|
&G.getEdgeCosts(ZXEId);
|
|
|
|
unsigned XLen = XCosts.getLength(),
|
|
YLen = YXECosts->getRows(),
|
|
ZLen = ZXECosts->getRows();
|
|
|
|
RawMatrix Delta(YLen, ZLen);
|
|
|
|
for (unsigned i = 0; i < YLen; ++i) {
|
|
for (unsigned j = 0; j < ZLen; ++j) {
|
|
PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
|
|
for (unsigned k = 1; k < XLen; ++k) {
|
|
PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
|
|
if (C < Min) {
|
|
Min = C;
|
|
}
|
|
}
|
|
Delta[i][j] = Min;
|
|
}
|
|
}
|
|
|
|
if (FlipEdge1)
|
|
delete YXECosts;
|
|
|
|
if (FlipEdge2)
|
|
delete ZXECosts;
|
|
|
|
EdgeId YZEId = G.findEdge(YNId, ZNId);
|
|
|
|
if (YZEId == G.invalidEdgeId()) {
|
|
YZEId = G.addEdge(YNId, ZNId, Delta);
|
|
} else {
|
|
const Matrix &YZECosts = G.getEdgeCosts(YZEId);
|
|
if (YNId == G.getEdgeNode1Id(YZEId)) {
|
|
G.setEdgeCosts(YZEId, Delta + YZECosts);
|
|
} else {
|
|
G.setEdgeCosts(YZEId, Delta.transpose() + YZECosts);
|
|
}
|
|
}
|
|
|
|
G.disconnectEdge(YXEId, YNId);
|
|
G.disconnectEdge(ZXEId, ZNId);
|
|
|
|
// TODO: Try to normalize newly added/modified edge.
|
|
}
|
|
|
|
|
|
// \brief Find a solution to a fully reduced graph by backpropagation.
|
|
//
|
|
// Given a graph and a reduction order, pop each node from the reduction
|
|
// order and greedily compute a minimum solution based on the node costs, and
|
|
// the dependent costs due to previously solved nodes.
|
|
//
|
|
// Note - This does not return the graph to its original (pre-reduction)
|
|
// state: the existing solvers destructively alter the node and edge
|
|
// costs. Given that, the backpropagate function doesn't attempt to
|
|
// replace the edges either, but leaves the graph in its reduced
|
|
// state.
|
|
template <typename GraphT, typename StackT>
|
|
Solution backpropagate(GraphT& G, StackT stack) {
|
|
typedef GraphBase::NodeId NodeId;
|
|
typedef typename GraphT::Matrix Matrix;
|
|
typedef typename GraphT::RawVector RawVector;
|
|
|
|
Solution s;
|
|
|
|
while (!stack.empty()) {
|
|
NodeId NId = stack.back();
|
|
stack.pop_back();
|
|
|
|
RawVector v = G.getNodeCosts(NId);
|
|
|
|
for (auto EId : G.adjEdgeIds(NId)) {
|
|
const Matrix& edgeCosts = G.getEdgeCosts(EId);
|
|
if (NId == G.getEdgeNode1Id(EId)) {
|
|
NodeId mId = G.getEdgeNode2Id(EId);
|
|
v += edgeCosts.getColAsVector(s.getSelection(mId));
|
|
} else {
|
|
NodeId mId = G.getEdgeNode1Id(EId);
|
|
v += edgeCosts.getRowAsVector(s.getSelection(mId));
|
|
}
|
|
}
|
|
|
|
s.setSelection(NId, v.minIndex());
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
}
|
|
|
|
#endif // LLVM_REDUCTIONRULES_H
|