llvm-6502/lib/Transforms/IPO/SimplifyLibCalls.cpp
Devang Patel 3e15bf33e0 Use 'static const char' instead of 'static const int'.
Due to darwin gcc bug, one version of darwin linker coalesces
static const int, which defauts PassID based pass identification.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36652 91177308-0d34-0410-b5e6-96231b3b80d8
2007-05-02 21:39:20 +00:00

2022 lines
80 KiB
C++

//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a module pass that applies a variety of small
// optimizations for calls to specific well-known function calls (e.g. runtime
// library functions). For example, a call to the function "exit(3)" that
// occurs within the main() function can be transformed into a simple "return 3"
// instruction. Any optimization that takes this form (replace call to library
// function with simpler code that provides the same result) belongs in this
// file.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "simplify-libcalls"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/ADT/hash_map"
#include "llvm/ADT/Statistic.h"
#include "llvm/Config/config.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/IPO.h"
using namespace llvm;
/// This statistic keeps track of the total number of library calls that have
/// been simplified regardless of which call it is.
STATISTIC(SimplifiedLibCalls, "Number of library calls simplified");
namespace {
// Forward declarations
class LibCallOptimization;
class SimplifyLibCalls;
/// This list is populated by the constructor for LibCallOptimization class.
/// Therefore all subclasses are registered here at static initialization time
/// and this list is what the SimplifyLibCalls pass uses to apply the individual
/// optimizations to the call sites.
/// @brief The list of optimizations deriving from LibCallOptimization
static LibCallOptimization *OptList = 0;
/// This class is the abstract base class for the set of optimizations that
/// corresponds to one library call. The SimplifyLibCalls pass will call the
/// ValidateCalledFunction method to ask the optimization if a given Function
/// is the kind that the optimization can handle. If the subclass returns true,
/// then SImplifyLibCalls will also call the OptimizeCall method to perform,
/// or attempt to perform, the optimization(s) for the library call. Otherwise,
/// OptimizeCall won't be called. Subclasses are responsible for providing the
/// name of the library call (strlen, strcpy, etc.) to the LibCallOptimization
/// constructor. This is used to efficiently select which call instructions to
/// optimize. The criteria for a "lib call" is "anything with well known
/// semantics", typically a library function that is defined by an international
/// standard. Because the semantics are well known, the optimizations can
/// generally short-circuit actually calling the function if there's a simpler
/// way (e.g. strlen(X) can be reduced to a constant if X is a constant global).
/// @brief Base class for library call optimizations
class VISIBILITY_HIDDEN LibCallOptimization {
LibCallOptimization **Prev, *Next;
const char *FunctionName; ///< Name of the library call we optimize
#ifndef NDEBUG
Statistic occurrences; ///< debug statistic (-debug-only=simplify-libcalls)
#endif
public:
/// The \p fname argument must be the name of the library function being
/// optimized by the subclass.
/// @brief Constructor that registers the optimization.
LibCallOptimization(const char *FName, const char *Description)
: FunctionName(FName) {
#ifndef NDEBUG
occurrences.construct("simplify-libcalls", Description);
#endif
// Register this optimizer in the list of optimizations.
Next = OptList;
OptList = this;
Prev = &OptList;
if (Next) Next->Prev = &Next;
}
/// getNext - All libcall optimizations are chained together into a list,
/// return the next one in the list.
LibCallOptimization *getNext() { return Next; }
/// @brief Deregister from the optlist
virtual ~LibCallOptimization() {
*Prev = Next;
if (Next) Next->Prev = Prev;
}
/// The implementation of this function in subclasses should determine if
/// \p F is suitable for the optimization. This method is called by
/// SimplifyLibCalls::runOnModule to short circuit visiting all the call
/// sites of such a function if that function is not suitable in the first
/// place. If the called function is suitabe, this method should return true;
/// false, otherwise. This function should also perform any lazy
/// initialization that the LibCallOptimization needs to do, if its to return
/// true. This avoids doing initialization until the optimizer is actually
/// going to be called upon to do some optimization.
/// @brief Determine if the function is suitable for optimization
virtual bool ValidateCalledFunction(
const Function* F, ///< The function that is the target of call sites
SimplifyLibCalls& SLC ///< The pass object invoking us
) = 0;
/// The implementations of this function in subclasses is the heart of the
/// SimplifyLibCalls algorithm. Sublcasses of this class implement
/// OptimizeCall to determine if (a) the conditions are right for optimizing
/// the call and (b) to perform the optimization. If an action is taken
/// against ci, the subclass is responsible for returning true and ensuring
/// that ci is erased from its parent.
/// @brief Optimize a call, if possible.
virtual bool OptimizeCall(
CallInst* ci, ///< The call instruction that should be optimized.
SimplifyLibCalls& SLC ///< The pass object invoking us
) = 0;
/// @brief Get the name of the library call being optimized
const char *getFunctionName() const { return FunctionName; }
bool ReplaceCallWith(CallInst *CI, Value *V) {
if (!CI->use_empty())
CI->replaceAllUsesWith(V);
CI->eraseFromParent();
return true;
}
/// @brief Called by SimplifyLibCalls to update the occurrences statistic.
void succeeded() {
#ifndef NDEBUG
DEBUG(++occurrences);
#endif
}
};
/// This class is an LLVM Pass that applies each of the LibCallOptimization
/// instances to all the call sites in a module, relatively efficiently. The
/// purpose of this pass is to provide optimizations for calls to well-known
/// functions with well-known semantics, such as those in the c library. The
/// class provides the basic infrastructure for handling runOnModule. Whenever
/// this pass finds a function call, it asks the appropriate optimizer to
/// validate the call (ValidateLibraryCall). If it is validated, then
/// the OptimizeCall method is also called.
/// @brief A ModulePass for optimizing well-known function calls.
class VISIBILITY_HIDDEN SimplifyLibCalls : public ModulePass {
public:
static const char ID; // Pass identifcation, replacement for typeid
SimplifyLibCalls() : ModulePass((intptr_t)&ID) {}
/// We need some target data for accurate signature details that are
/// target dependent. So we require target data in our AnalysisUsage.
/// @brief Require TargetData from AnalysisUsage.
virtual void getAnalysisUsage(AnalysisUsage& Info) const {
// Ask that the TargetData analysis be performed before us so we can use
// the target data.
Info.addRequired<TargetData>();
}
/// For this pass, process all of the function calls in the module, calling
/// ValidateLibraryCall and OptimizeCall as appropriate.
/// @brief Run all the lib call optimizations on a Module.
virtual bool runOnModule(Module &M) {
reset(M);
bool result = false;
hash_map<std::string, LibCallOptimization*> OptznMap;
for (LibCallOptimization *Optzn = OptList; Optzn; Optzn = Optzn->getNext())
OptznMap[Optzn->getFunctionName()] = Optzn;
// The call optimizations can be recursive. That is, the optimization might
// generate a call to another function which can also be optimized. This way
// we make the LibCallOptimization instances very specific to the case they
// handle. It also means we need to keep running over the function calls in
// the module until we don't get any more optimizations possible.
bool found_optimization = false;
do {
found_optimization = false;
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
// All the "well-known" functions are external and have external linkage
// because they live in a runtime library somewhere and were (probably)
// not compiled by LLVM. So, we only act on external functions that
// have external or dllimport linkage and non-empty uses.
if (!FI->isDeclaration() ||
!(FI->hasExternalLinkage() || FI->hasDLLImportLinkage()) ||
FI->use_empty())
continue;
// Get the optimization class that pertains to this function
hash_map<std::string, LibCallOptimization*>::iterator OMI =
OptznMap.find(FI->getName());
if (OMI == OptznMap.end()) continue;
LibCallOptimization *CO = OMI->second;
// Make sure the called function is suitable for the optimization
if (!CO->ValidateCalledFunction(FI, *this))
continue;
// Loop over each of the uses of the function
for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end();
UI != UE ; ) {
// If the use of the function is a call instruction
if (CallInst* CI = dyn_cast<CallInst>(*UI++)) {
// Do the optimization on the LibCallOptimization.
if (CO->OptimizeCall(CI, *this)) {
++SimplifiedLibCalls;
found_optimization = result = true;
CO->succeeded();
}
}
}
}
} while (found_optimization);
return result;
}
/// @brief Return the *current* module we're working on.
Module* getModule() const { return M; }
/// @brief Return the *current* target data for the module we're working on.
TargetData* getTargetData() const { return TD; }
/// @brief Return the size_t type -- syntactic shortcut
const Type* getIntPtrType() const { return TD->getIntPtrType(); }
/// @brief Return a Function* for the putchar libcall
Constant *get_putchar() {
if (!putchar_func)
putchar_func =
M->getOrInsertFunction("putchar", Type::Int32Ty, Type::Int32Ty, NULL);
return putchar_func;
}
/// @brief Return a Function* for the puts libcall
Constant *get_puts() {
if (!puts_func)
puts_func = M->getOrInsertFunction("puts", Type::Int32Ty,
PointerType::get(Type::Int8Ty),
NULL);
return puts_func;
}
/// @brief Return a Function* for the fputc libcall
Constant *get_fputc(const Type* FILEptr_type) {
if (!fputc_func)
fputc_func = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty,
FILEptr_type, NULL);
return fputc_func;
}
/// @brief Return a Function* for the fputs libcall
Constant *get_fputs(const Type* FILEptr_type) {
if (!fputs_func)
fputs_func = M->getOrInsertFunction("fputs", Type::Int32Ty,
PointerType::get(Type::Int8Ty),
FILEptr_type, NULL);
return fputs_func;
}
/// @brief Return a Function* for the fwrite libcall
Constant *get_fwrite(const Type* FILEptr_type) {
if (!fwrite_func)
fwrite_func = M->getOrInsertFunction("fwrite", TD->getIntPtrType(),
PointerType::get(Type::Int8Ty),
TD->getIntPtrType(),
TD->getIntPtrType(),
FILEptr_type, NULL);
return fwrite_func;
}
/// @brief Return a Function* for the sqrt libcall
Constant *get_sqrt() {
if (!sqrt_func)
sqrt_func = M->getOrInsertFunction("sqrt", Type::DoubleTy,
Type::DoubleTy, NULL);
return sqrt_func;
}
/// @brief Return a Function* for the strcpy libcall
Constant *get_strcpy() {
if (!strcpy_func)
strcpy_func = M->getOrInsertFunction("strcpy",
PointerType::get(Type::Int8Ty),
PointerType::get(Type::Int8Ty),
PointerType::get(Type::Int8Ty),
NULL);
return strcpy_func;
}
/// @brief Return a Function* for the strlen libcall
Constant *get_strlen() {
if (!strlen_func)
strlen_func = M->getOrInsertFunction("strlen", TD->getIntPtrType(),
PointerType::get(Type::Int8Ty),
NULL);
return strlen_func;
}
/// @brief Return a Function* for the memchr libcall
Constant *get_memchr() {
if (!memchr_func)
memchr_func = M->getOrInsertFunction("memchr",
PointerType::get(Type::Int8Ty),
PointerType::get(Type::Int8Ty),
Type::Int32Ty, TD->getIntPtrType(),
NULL);
return memchr_func;
}
/// @brief Return a Function* for the memcpy libcall
Constant *get_memcpy() {
if (!memcpy_func) {
const Type *SBP = PointerType::get(Type::Int8Ty);
const char *N = TD->getIntPtrType() == Type::Int32Ty ?
"llvm.memcpy.i32" : "llvm.memcpy.i64";
memcpy_func = M->getOrInsertFunction(N, Type::VoidTy, SBP, SBP,
TD->getIntPtrType(), Type::Int32Ty,
NULL);
}
return memcpy_func;
}
Constant *getUnaryFloatFunction(const char *Name, Constant *&Cache) {
if (!Cache)
Cache = M->getOrInsertFunction(Name, Type::FloatTy, Type::FloatTy, NULL);
return Cache;
}
Constant *get_floorf() { return getUnaryFloatFunction("floorf", floorf_func);}
Constant *get_ceilf() { return getUnaryFloatFunction( "ceilf", ceilf_func);}
Constant *get_roundf() { return getUnaryFloatFunction("roundf", roundf_func);}
Constant *get_rintf() { return getUnaryFloatFunction( "rintf", rintf_func);}
Constant *get_nearbyintf() { return getUnaryFloatFunction("nearbyintf",
nearbyintf_func); }
private:
/// @brief Reset our cached data for a new Module
void reset(Module& mod) {
M = &mod;
TD = &getAnalysis<TargetData>();
putchar_func = 0;
puts_func = 0;
fputc_func = 0;
fputs_func = 0;
fwrite_func = 0;
memcpy_func = 0;
memchr_func = 0;
sqrt_func = 0;
strcpy_func = 0;
strlen_func = 0;
floorf_func = 0;
ceilf_func = 0;
roundf_func = 0;
rintf_func = 0;
nearbyintf_func = 0;
}
private:
/// Caches for function pointers.
Constant *putchar_func, *puts_func;
Constant *fputc_func, *fputs_func, *fwrite_func;
Constant *memcpy_func, *memchr_func;
Constant *sqrt_func;
Constant *strcpy_func, *strlen_func;
Constant *floorf_func, *ceilf_func, *roundf_func;
Constant *rintf_func, *nearbyintf_func;
Module *M; ///< Cached Module
TargetData *TD; ///< Cached TargetData
};
const char SimplifyLibCalls::ID = 0;
// Register the pass
RegisterPass<SimplifyLibCalls>
X("simplify-libcalls", "Simplify well-known library calls");
} // anonymous namespace
// The only public symbol in this file which just instantiates the pass object
ModulePass *llvm::createSimplifyLibCallsPass() {
return new SimplifyLibCalls();
}
// Classes below here, in the anonymous namespace, are all subclasses of the
// LibCallOptimization class, each implementing all optimizations possible for a
// single well-known library call. Each has a static singleton instance that
// auto registers it into the "optlist" global above.
namespace {
// Forward declare utility functions.
static bool GetConstantStringInfo(Value *V, std::string &Str);
static Value *CastToCStr(Value *V, Instruction *IP);
/// This LibCallOptimization will find instances of a call to "exit" that occurs
/// within the "main" function and change it to a simple "ret" instruction with
/// the same value passed to the exit function. When this is done, it splits the
/// basic block at the exit(3) call and deletes the call instruction.
/// @brief Replace calls to exit in main with a simple return
struct VISIBILITY_HIDDEN ExitInMainOptimization : public LibCallOptimization {
ExitInMainOptimization() : LibCallOptimization("exit",
"Number of 'exit' calls simplified") {}
// Make sure the called function looks like exit (int argument, int return
// type, external linkage, not varargs).
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
return F->arg_size() >= 1 && F->arg_begin()->getType()->isInteger();
}
virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) {
// To be careful, we check that the call to exit is coming from "main", that
// main has external linkage, and the return type of main and the argument
// to exit have the same type.
Function *from = ci->getParent()->getParent();
if (from->hasExternalLinkage())
if (from->getReturnType() == ci->getOperand(1)->getType())
if (from->getName() == "main") {
// Okay, time to actually do the optimization. First, get the basic
// block of the call instruction
BasicBlock* bb = ci->getParent();
// Create a return instruction that we'll replace the call with.
// Note that the argument of the return is the argument of the call
// instruction.
new ReturnInst(ci->getOperand(1), ci);
// Split the block at the call instruction which places it in a new
// basic block.
bb->splitBasicBlock(ci);
// The block split caused a branch instruction to be inserted into
// the end of the original block, right after the return instruction
// that we put there. That's not a valid block, so delete the branch
// instruction.
bb->getInstList().pop_back();
// Now we can finally get rid of the call instruction which now lives
// in the new basic block.
ci->eraseFromParent();
// Optimization succeeded, return true.
return true;
}
// We didn't pass the criteria for this optimization so return false
return false;
}
} ExitInMainOptimizer;
/// This LibCallOptimization will simplify a call to the strcat library
/// function. The simplification is possible only if the string being
/// concatenated is a constant array or a constant expression that results in
/// a constant string. In this case we can replace it with strlen + llvm.memcpy
/// of the constant string. Both of these calls are further reduced, if possible
/// on subsequent passes.
/// @brief Simplify the strcat library function.
struct VISIBILITY_HIDDEN StrCatOptimization : public LibCallOptimization {
public:
/// @brief Default constructor
StrCatOptimization() : LibCallOptimization("strcat",
"Number of 'strcat' calls simplified") {}
public:
/// @brief Make sure that the "strcat" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 2 &&
FT->getReturnType() == PointerType::get(Type::Int8Ty) &&
FT->getParamType(0) == FT->getReturnType() &&
FT->getParamType(1) == FT->getReturnType();
}
/// @brief Optimize the strcat library function
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// Extract some information from the instruction
Value *Dst = CI->getOperand(1);
Value *Src = CI->getOperand(2);
// Extract the initializer (while making numerous checks) from the
// source operand of the call to strcat.
std::string SrcStr;
if (!GetConstantStringInfo(Src, SrcStr))
return false;
// Handle the simple, do-nothing case
if (SrcStr.empty())
return ReplaceCallWith(CI, Dst);
// We need to find the end of the destination string. That's where the
// memory is to be moved to. We just generate a call to strlen.
CallInst *DstLen = new CallInst(SLC.get_strlen(), Dst,
Dst->getName()+".len", CI);
// Now that we have the destination's length, we must index into the
// destination's pointer to get the actual memcpy destination (end of
// the string .. we're concatenating).
Dst = new GetElementPtrInst(Dst, DstLen, Dst->getName()+".indexed", CI);
// We have enough information to now generate the memcpy call to
// do the concatenation for us.
Value *Vals[] = {
Dst, Src,
ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1), // copy nul byte.
ConstantInt::get(Type::Int32Ty, 1) // alignment
};
new CallInst(SLC.get_memcpy(), Vals, 4, "", CI);
return ReplaceCallWith(CI, Dst);
}
} StrCatOptimizer;
/// This LibCallOptimization will simplify a call to the strchr library
/// function. It optimizes out cases where the arguments are both constant
/// and the result can be determined statically.
/// @brief Simplify the strcmp library function.
struct VISIBILITY_HIDDEN StrChrOptimization : public LibCallOptimization {
public:
StrChrOptimization() : LibCallOptimization("strchr",
"Number of 'strchr' calls simplified") {}
/// @brief Make sure that the "strchr" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 2 &&
FT->getReturnType() == PointerType::get(Type::Int8Ty) &&
FT->getParamType(0) == FT->getReturnType() &&
isa<IntegerType>(FT->getParamType(1));
}
/// @brief Perform the strchr optimizations
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// Check that the first argument to strchr is a constant array of sbyte.
std::string Str;
if (!GetConstantStringInfo(CI->getOperand(1), Str))
return false;
// If the second operand is not constant, just lower this to memchr since we
// know the length of the input string.
ConstantInt *CSI = dyn_cast<ConstantInt>(CI->getOperand(2));
if (!CSI) {
Value *Args[3] = {
CI->getOperand(1),
CI->getOperand(2),
ConstantInt::get(SLC.getIntPtrType(), Str.size()+1)
};
return ReplaceCallWith(CI, new CallInst(SLC.get_memchr(), Args, 3,
CI->getName(), CI));
}
// strchr can find the nul character.
Str += '\0';
// Get the character we're looking for
char CharValue = CSI->getSExtValue();
// Compute the offset
uint64_t i = 0;
while (1) {
if (i == Str.size()) // Didn't find the char. strchr returns null.
return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
// Did we find our match?
if (Str[i] == CharValue)
break;
++i;
}
// strchr(s+n,c) -> gep(s+n+i,c)
// (if c is a constant integer and s is a constant string)
Value *Idx = ConstantInt::get(Type::Int64Ty, i);
Value *GEP = new GetElementPtrInst(CI->getOperand(1), Idx,
CI->getOperand(1)->getName() +
".strchr", CI);
return ReplaceCallWith(CI, GEP);
}
} StrChrOptimizer;
/// This LibCallOptimization will simplify a call to the strcmp library
/// function. It optimizes out cases where one or both arguments are constant
/// and the result can be determined statically.
/// @brief Simplify the strcmp library function.
struct VISIBILITY_HIDDEN StrCmpOptimization : public LibCallOptimization {
public:
StrCmpOptimization() : LibCallOptimization("strcmp",
"Number of 'strcmp' calls simplified") {}
/// @brief Make sure that the "strcmp" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 2 &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getParamType(0) == PointerType::get(Type::Int8Ty);
}
/// @brief Perform the strcmp optimization
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// First, check to see if src and destination are the same. If they are,
// then the optimization is to replace the CallInst with a constant 0
// because the call is a no-op.
Value *Str1P = CI->getOperand(1);
Value *Str2P = CI->getOperand(2);
if (Str1P == Str2P) // strcmp(x,x) -> 0
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
std::string Str1;
if (!GetConstantStringInfo(Str1P, Str1))
return false;
if (Str1.empty()) {
// strcmp("", x) -> *x
Value *V = new LoadInst(Str2P, CI->getName()+".load", CI);
V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
return ReplaceCallWith(CI, V);
}
std::string Str2;
if (!GetConstantStringInfo(Str2P, Str2))
return false;
if (Str2.empty()) {
// strcmp(x,"") -> *x
Value *V = new LoadInst(Str1P, CI->getName()+".load", CI);
V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
return ReplaceCallWith(CI, V);
}
// strcmp(x, y) -> cnst (if both x and y are constant strings)
int R = strcmp(Str1.c_str(), Str2.c_str());
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R));
}
} StrCmpOptimizer;
/// This LibCallOptimization will simplify a call to the strncmp library
/// function. It optimizes out cases where one or both arguments are constant
/// and the result can be determined statically.
/// @brief Simplify the strncmp library function.
struct VISIBILITY_HIDDEN StrNCmpOptimization : public LibCallOptimization {
public:
StrNCmpOptimization() : LibCallOptimization("strncmp",
"Number of 'strncmp' calls simplified") {}
/// @brief Make sure that the "strncmp" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 3 &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getParamType(0) == PointerType::get(Type::Int8Ty) &&
isa<IntegerType>(FT->getParamType(2));
return false;
}
/// @brief Perform the strncmp optimization
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// First, check to see if src and destination are the same. If they are,
// then the optimization is to replace the CallInst with a constant 0
// because the call is a no-op.
Value *Str1P = CI->getOperand(1);
Value *Str2P = CI->getOperand(2);
if (Str1P == Str2P) // strncmp(x,x, n) -> 0
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
// Check the length argument, if it is Constant zero then the strings are
// considered equal.
uint64_t Length;
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
Length = LengthArg->getZExtValue();
else
return false;
if (Length == 0) // strncmp(x,y,0) -> 0
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
std::string Str1;
if (!GetConstantStringInfo(Str1P, Str1))
return false;
if (Str1.empty()) {
// strncmp("", x, n) -> *x
Value *V = new LoadInst(Str2P, CI->getName()+".load", CI);
V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
return ReplaceCallWith(CI, V);
}
std::string Str2;
if (!GetConstantStringInfo(Str2P, Str2))
return false;
if (Str2.empty()) {
// strncmp(x, "", n) -> *x
Value *V = new LoadInst(Str1P, CI->getName()+".load", CI);
V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
return ReplaceCallWith(CI, V);
}
// strncmp(x, y, n) -> cnst (if both x and y are constant strings)
int R = strncmp(Str1.c_str(), Str2.c_str(), Length);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R));
}
} StrNCmpOptimizer;
/// This LibCallOptimization will simplify a call to the strcpy library
/// function. Two optimizations are possible:
/// (1) If src and dest are the same and not volatile, just return dest
/// (2) If the src is a constant then we can convert to llvm.memmove
/// @brief Simplify the strcpy library function.
struct VISIBILITY_HIDDEN StrCpyOptimization : public LibCallOptimization {
public:
StrCpyOptimization() : LibCallOptimization("strcpy",
"Number of 'strcpy' calls simplified") {}
/// @brief Make sure that the "strcpy" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 2 &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getReturnType() == FT->getParamType(0) &&
FT->getParamType(0) == PointerType::get(Type::Int8Ty);
}
/// @brief Perform the strcpy optimization
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// First, check to see if src and destination are the same. If they are,
// then the optimization is to replace the CallInst with the destination
// because the call is a no-op. Note that this corresponds to the
// degenerate strcpy(X,X) case which should have "undefined" results
// according to the C specification. However, it occurs sometimes and
// we optimize it as a no-op.
Value *Dst = CI->getOperand(1);
Value *Src = CI->getOperand(2);
if (Dst == Src) {
// strcpy(x, x) -> x
return ReplaceCallWith(CI, Dst);
}
// Get the length of the constant string referenced by the Src operand.
std::string SrcStr;
if (!GetConstantStringInfo(Src, SrcStr))
return false;
// If the constant string's length is zero we can optimize this by just
// doing a store of 0 at the first byte of the destination
if (SrcStr.size() == 0) {
new StoreInst(ConstantInt::get(Type::Int8Ty, 0), Dst, CI);
return ReplaceCallWith(CI, Dst);
}
// We have enough information to now generate the memcpy call to
// do the concatenation for us.
Value *MemcpyOps[] = {
Dst, Src, // Pass length including nul byte.
ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1),
ConstantInt::get(Type::Int32Ty, 1) // alignment
};
new CallInst(SLC.get_memcpy(), MemcpyOps, 4, "", CI);
return ReplaceCallWith(CI, Dst);
}
} StrCpyOptimizer;
/// This LibCallOptimization will simplify a call to the strlen library
/// function by replacing it with a constant value if the string provided to
/// it is a constant array.
/// @brief Simplify the strlen library function.
struct VISIBILITY_HIDDEN StrLenOptimization : public LibCallOptimization {
StrLenOptimization() : LibCallOptimization("strlen",
"Number of 'strlen' calls simplified") {}
/// @brief Make sure that the "strlen" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 1 &&
FT->getParamType(0) == PointerType::get(Type::Int8Ty) &&
isa<IntegerType>(FT->getReturnType());
}
/// @brief Perform the strlen optimization
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// Make sure we're dealing with an sbyte* here.
Value *Src = CI->getOperand(1);
// Does the call to strlen have exactly one use?
if (CI->hasOneUse()) {
// Is that single use a icmp operator?
if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CI->use_back()))
// Is it compared against a constant integer?
if (ConstantInt *Cst = dyn_cast<ConstantInt>(Cmp->getOperand(1))) {
// If its compared against length 0 with == or !=
if (Cst->getZExtValue() == 0 && Cmp->isEquality()) {
// strlen(x) != 0 -> *x != 0
// strlen(x) == 0 -> *x == 0
Value *V = new LoadInst(Src, Src->getName()+".first", CI);
V = new ICmpInst(Cmp->getPredicate(), V,
ConstantInt::get(Type::Int8Ty, 0),
Cmp->getName()+".strlen", CI);
Cmp->replaceAllUsesWith(V);
Cmp->eraseFromParent();
return ReplaceCallWith(CI, 0); // no uses.
}
}
}
// Get the length of the constant string operand
std::string Str;
if (!GetConstantStringInfo(Src, Str))
return false;
// strlen("xyz") -> 3 (for example)
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), Str.size()));
}
} StrLenOptimizer;
/// IsOnlyUsedInEqualsComparison - Return true if it only matters that the value
/// is equal or not-equal to zero.
static bool IsOnlyUsedInEqualsZeroComparison(Instruction *I) {
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI) {
if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
if (IC->isEquality())
if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
if (C->isNullValue())
continue;
// Unknown instruction.
return false;
}
return true;
}
/// This memcmpOptimization will simplify a call to the memcmp library
/// function.
struct VISIBILITY_HIDDEN memcmpOptimization : public LibCallOptimization {
/// @brief Default Constructor
memcmpOptimization()
: LibCallOptimization("memcmp", "Number of 'memcmp' calls simplified") {}
/// @brief Make sure that the "memcmp" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) {
Function::const_arg_iterator AI = F->arg_begin();
if (F->arg_size() != 3 || !isa<PointerType>(AI->getType())) return false;
if (!isa<PointerType>((++AI)->getType())) return false;
if (!(++AI)->getType()->isInteger()) return false;
if (!F->getReturnType()->isInteger()) return false;
return true;
}
/// Because of alignment and instruction information that we don't have, we
/// leave the bulk of this to the code generators.
///
/// Note that we could do much more if we could force alignment on otherwise
/// small aligned allocas, or if we could indicate that loads have a small
/// alignment.
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &TD) {
Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
// If the two operands are the same, return zero.
if (LHS == RHS) {
// memcmp(s,s,x) -> 0
return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
}
// Make sure we have a constant length.
ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
if (!LenC) return false;
uint64_t Len = LenC->getZExtValue();
// If the length is zero, this returns 0.
switch (Len) {
case 0:
// memcmp(s1,s2,0) -> 0
return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
case 1: {
// memcmp(S1,S2,1) -> *(ubyte*)S1 - *(ubyte*)S2
const Type *UCharPtr = PointerType::get(Type::Int8Ty);
CastInst *Op1Cast = CastInst::create(
Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI);
CastInst *Op2Cast = CastInst::create(
Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI);
Value *S1V = new LoadInst(Op1Cast, LHS->getName()+".val", CI);
Value *S2V = new LoadInst(Op2Cast, RHS->getName()+".val", CI);
Value *RV = BinaryOperator::createSub(S1V, S2V, CI->getName()+".diff",CI);
if (RV->getType() != CI->getType())
RV = CastInst::createIntegerCast(RV, CI->getType(), false,
RV->getName(), CI);
return ReplaceCallWith(CI, RV);
}
case 2:
if (IsOnlyUsedInEqualsZeroComparison(CI)) {
// TODO: IF both are aligned, use a short load/compare.
// memcmp(S1,S2,2) -> S1[0]-S2[0] | S1[1]-S2[1] iff only ==/!= 0 matters
const Type *UCharPtr = PointerType::get(Type::Int8Ty);
CastInst *Op1Cast = CastInst::create(
Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI);
CastInst *Op2Cast = CastInst::create(
Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI);
Value *S1V1 = new LoadInst(Op1Cast, LHS->getName()+".val1", CI);
Value *S2V1 = new LoadInst(Op2Cast, RHS->getName()+".val1", CI);
Value *D1 = BinaryOperator::createSub(S1V1, S2V1,
CI->getName()+".d1", CI);
Constant *One = ConstantInt::get(Type::Int32Ty, 1);
Value *G1 = new GetElementPtrInst(Op1Cast, One, "next1v", CI);
Value *G2 = new GetElementPtrInst(Op2Cast, One, "next2v", CI);
Value *S1V2 = new LoadInst(G1, LHS->getName()+".val2", CI);
Value *S2V2 = new LoadInst(G2, RHS->getName()+".val2", CI);
Value *D2 = BinaryOperator::createSub(S1V2, S2V2,
CI->getName()+".d1", CI);
Value *Or = BinaryOperator::createOr(D1, D2, CI->getName()+".res", CI);
if (Or->getType() != CI->getType())
Or = CastInst::createIntegerCast(Or, CI->getType(), false /*ZExt*/,
Or->getName(), CI);
return ReplaceCallWith(CI, Or);
}
break;
default:
break;
}
return false;
}
} memcmpOptimizer;
/// This LibCallOptimization will simplify a call to the memcpy library
/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8
/// bytes depending on the length of the string and the alignment. Additional
/// optimizations are possible in code generation (sequence of immediate store)
/// @brief Simplify the memcpy library function.
struct VISIBILITY_HIDDEN LLVMMemCpyMoveOptzn : public LibCallOptimization {
LLVMMemCpyMoveOptzn(const char* fname, const char* desc)
: LibCallOptimization(fname, desc) {}
/// @brief Make sure that the "memcpy" function has the right prototype
virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& TD) {
// Just make sure this has 4 arguments per LLVM spec.
return (f->arg_size() == 4);
}
/// Because of alignment and instruction information that we don't have, we
/// leave the bulk of this to the code generators. The optimization here just
/// deals with a few degenerate cases where the length of the string and the
/// alignment match the sizes of our intrinsic types so we can do a load and
/// store instead of the memcpy call.
/// @brief Perform the memcpy optimization.
virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& TD) {
// Make sure we have constant int values to work with
ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3));
if (!LEN)
return false;
ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4));
if (!ALIGN)
return false;
// If the length is larger than the alignment, we can't optimize
uint64_t len = LEN->getZExtValue();
uint64_t alignment = ALIGN->getZExtValue();
if (alignment == 0)
alignment = 1; // Alignment 0 is identity for alignment 1
if (len > alignment)
return false;
// Get the type we will cast to, based on size of the string
Value* dest = ci->getOperand(1);
Value* src = ci->getOperand(2);
const Type* castType = 0;
switch (len) {
case 0:
// memcpy(d,s,0,a) -> d
return ReplaceCallWith(ci, 0);
case 1: castType = Type::Int8Ty; break;
case 2: castType = Type::Int16Ty; break;
case 4: castType = Type::Int32Ty; break;
case 8: castType = Type::Int64Ty; break;
default:
return false;
}
// Cast source and dest to the right sized primitive and then load/store
CastInst* SrcCast = CastInst::create(Instruction::BitCast,
src, PointerType::get(castType), src->getName()+".cast", ci);
CastInst* DestCast = CastInst::create(Instruction::BitCast,
dest, PointerType::get(castType),dest->getName()+".cast", ci);
LoadInst* LI = new LoadInst(SrcCast,SrcCast->getName()+".val",ci);
new StoreInst(LI, DestCast, ci);
return ReplaceCallWith(ci, 0);
}
};
/// This LibCallOptimization will simplify a call to the memcpy/memmove library
/// functions.
LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer32("llvm.memcpy.i32",
"Number of 'llvm.memcpy' calls simplified");
LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer64("llvm.memcpy.i64",
"Number of 'llvm.memcpy' calls simplified");
LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer32("llvm.memmove.i32",
"Number of 'llvm.memmove' calls simplified");
LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer64("llvm.memmove.i64",
"Number of 'llvm.memmove' calls simplified");
/// This LibCallOptimization will simplify a call to the memset library
/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8
/// bytes depending on the length argument.
struct VISIBILITY_HIDDEN LLVMMemSetOptimization : public LibCallOptimization {
/// @brief Default Constructor
LLVMMemSetOptimization(const char *Name) : LibCallOptimization(Name,
"Number of 'llvm.memset' calls simplified") {}
/// @brief Make sure that the "memset" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) {
// Just make sure this has 3 arguments per LLVM spec.
return F->arg_size() == 4;
}
/// Because of alignment and instruction information that we don't have, we
/// leave the bulk of this to the code generators. The optimization here just
/// deals with a few degenerate cases where the length parameter is constant
/// and the alignment matches the sizes of our intrinsic types so we can do
/// store instead of the memcpy call. Other calls are transformed into the
/// llvm.memset intrinsic.
/// @brief Perform the memset optimization.
virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &TD) {
// Make sure we have constant int values to work with
ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3));
if (!LEN)
return false;
ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4));
if (!ALIGN)
return false;
// Extract the length and alignment
uint64_t len = LEN->getZExtValue();
uint64_t alignment = ALIGN->getZExtValue();
// Alignment 0 is identity for alignment 1
if (alignment == 0)
alignment = 1;
// If the length is zero, this is a no-op
if (len == 0) {
// memset(d,c,0,a) -> noop
return ReplaceCallWith(ci, 0);
}
// If the length is larger than the alignment, we can't optimize
if (len > alignment)
return false;
// Make sure we have a constant ubyte to work with so we can extract
// the value to be filled.
ConstantInt* FILL = dyn_cast<ConstantInt>(ci->getOperand(2));
if (!FILL)
return false;
if (FILL->getType() != Type::Int8Ty)
return false;
// memset(s,c,n) -> store s, c (for n=1,2,4,8)
// Extract the fill character
uint64_t fill_char = FILL->getZExtValue();
uint64_t fill_value = fill_char;
// Get the type we will cast to, based on size of memory area to fill, and
// and the value we will store there.
Value* dest = ci->getOperand(1);
const Type* castType = 0;
switch (len) {
case 1:
castType = Type::Int8Ty;
break;
case 2:
castType = Type::Int16Ty;
fill_value |= fill_char << 8;
break;
case 4:
castType = Type::Int32Ty;
fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24;
break;
case 8:
castType = Type::Int64Ty;
fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24;
fill_value |= fill_char << 32 | fill_char << 40 | fill_char << 48;
fill_value |= fill_char << 56;
break;
default:
return false;
}
// Cast dest to the right sized primitive and then load/store
CastInst* DestCast = new BitCastInst(dest, PointerType::get(castType),
dest->getName()+".cast", ci);
new StoreInst(ConstantInt::get(castType,fill_value),DestCast, ci);
return ReplaceCallWith(ci, 0);
}
};
LLVMMemSetOptimization MemSet32Optimizer("llvm.memset.i32");
LLVMMemSetOptimization MemSet64Optimizer("llvm.memset.i64");
/// This LibCallOptimization will simplify calls to the "pow" library
/// function. It looks for cases where the result of pow is well known and
/// substitutes the appropriate value.
/// @brief Simplify the pow library function.
struct VISIBILITY_HIDDEN PowOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
PowOptimization() : LibCallOptimization("pow",
"Number of 'pow' calls simplified") {}
/// @brief Make sure that the "pow" function has the right prototype
virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
// Just make sure this has 2 arguments
return (f->arg_size() == 2);
}
/// @brief Perform the pow optimization.
virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
const Type *Ty = cast<Function>(ci->getOperand(0))->getReturnType();
Value* base = ci->getOperand(1);
Value* expn = ci->getOperand(2);
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(base)) {
double Op1V = Op1->getValue();
if (Op1V == 1.0) // pow(1.0,x) -> 1.0
return ReplaceCallWith(ci, ConstantFP::get(Ty, 1.0));
} else if (ConstantFP* Op2 = dyn_cast<ConstantFP>(expn)) {
double Op2V = Op2->getValue();
if (Op2V == 0.0) {
// pow(x,0.0) -> 1.0
return ReplaceCallWith(ci, ConstantFP::get(Ty,1.0));
} else if (Op2V == 0.5) {
// pow(x,0.5) -> sqrt(x)
CallInst* sqrt_inst = new CallInst(SLC.get_sqrt(), base,
ci->getName()+".pow",ci);
return ReplaceCallWith(ci, sqrt_inst);
} else if (Op2V == 1.0) {
// pow(x,1.0) -> x
return ReplaceCallWith(ci, base);
} else if (Op2V == -1.0) {
// pow(x,-1.0) -> 1.0/x
Value *div_inst =
BinaryOperator::createFDiv(ConstantFP::get(Ty, 1.0), base,
ci->getName()+".pow", ci);
return ReplaceCallWith(ci, div_inst);
}
}
return false; // opt failed
}
} PowOptimizer;
/// This LibCallOptimization will simplify calls to the "printf" library
/// function. It looks for cases where the result of printf is not used and the
/// operation can be reduced to something simpler.
/// @brief Simplify the printf library function.
struct VISIBILITY_HIDDEN PrintfOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
PrintfOptimization() : LibCallOptimization("printf",
"Number of 'printf' calls simplified") {}
/// @brief Make sure that the "printf" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
// Just make sure this has at least 1 argument and returns an integer or
// void type.
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() >= 1 &&
(isa<IntegerType>(FT->getReturnType()) ||
FT->getReturnType() == Type::VoidTy);
}
/// @brief Perform the printf optimization.
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// All the optimizations depend on the length of the first argument and the
// fact that it is a constant string array. Check that now
std::string FormatStr;
if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
return false;
// If this is a simple constant string with no format specifiers that ends
// with a \n, turn it into a puts call.
if (FormatStr.empty()) {
// Tolerate printf's declared void.
if (CI->use_empty()) return ReplaceCallWith(CI, 0);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
}
if (FormatStr.size() == 1) {
// Turn this into a putchar call, even if it is a %.
Value *V = ConstantInt::get(Type::Int32Ty, FormatStr[0]);
new CallInst(SLC.get_putchar(), V, "", CI);
if (CI->use_empty()) return ReplaceCallWith(CI, 0);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
}
// Check to see if the format str is something like "foo\n", in which case
// we convert it to a puts call. We don't allow it to contain any format
// characters.
if (FormatStr[FormatStr.size()-1] == '\n' &&
FormatStr.find('%') == std::string::npos) {
// Create a string literal with no \n on it. We expect the constant merge
// pass to be run after this pass, to merge duplicate strings.
FormatStr.erase(FormatStr.end()-1);
Constant *Init = ConstantArray::get(FormatStr, true);
Constant *GV = new GlobalVariable(Init->getType(), true,
GlobalVariable::InternalLinkage,
Init, "str",
CI->getParent()->getParent()->getParent());
// Cast GV to be a pointer to char.
GV = ConstantExpr::getBitCast(GV, PointerType::get(Type::Int8Ty));
new CallInst(SLC.get_puts(), GV, "", CI);
if (CI->use_empty()) return ReplaceCallWith(CI, 0);
return ReplaceCallWith(CI,
ConstantInt::get(CI->getType(), FormatStr.size()));
}
// Only support %c or "%s\n" for now.
if (FormatStr.size() < 2 || FormatStr[0] != '%')
return false;
// Get the second character and switch on its value
switch (FormatStr[1]) {
default: return false;
case 's':
if (FormatStr != "%s\n" || CI->getNumOperands() < 3 ||
// TODO: could insert strlen call to compute string length.
!CI->use_empty())
return false;
// printf("%s\n",str) -> puts(str)
new CallInst(SLC.get_puts(), CastToCStr(CI->getOperand(2), CI),
CI->getName(), CI);
return ReplaceCallWith(CI, 0);
case 'c': {
// printf("%c",c) -> putchar(c)
if (FormatStr.size() != 2 || CI->getNumOperands() < 3)
return false;
Value *V = CI->getOperand(2);
if (!isa<IntegerType>(V->getType()) ||
cast<IntegerType>(V->getType())->getBitWidth() > 32)
return false;
V = CastInst::createZExtOrBitCast(V, Type::Int32Ty, CI->getName()+".int",
CI);
new CallInst(SLC.get_putchar(), V, "", CI);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
}
}
}
} PrintfOptimizer;
/// This LibCallOptimization will simplify calls to the "fprintf" library
/// function. It looks for cases where the result of fprintf is not used and the
/// operation can be reduced to something simpler.
/// @brief Simplify the fprintf library function.
struct VISIBILITY_HIDDEN FPrintFOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
FPrintFOptimization() : LibCallOptimization("fprintf",
"Number of 'fprintf' calls simplified") {}
/// @brief Make sure that the "fprintf" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 2 && // two fixed arguments.
FT->getParamType(1) == PointerType::get(Type::Int8Ty) &&
isa<PointerType>(FT->getParamType(0)) &&
isa<IntegerType>(FT->getReturnType());
}
/// @brief Perform the fprintf optimization.
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// If the call has more than 3 operands, we can't optimize it
if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4)
return false;
// All the optimizations depend on the format string.
std::string FormatStr;
if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
return false;
// If this is just a format string, turn it into fwrite.
if (CI->getNumOperands() == 3) {
for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
if (FormatStr[i] == '%')
return false; // we found a format specifier
// fprintf(file,fmt) -> fwrite(fmt,strlen(fmt),file)
const Type *FILEty = CI->getOperand(1)->getType();
Value *FWriteArgs[] = {
CI->getOperand(2),
ConstantInt::get(SLC.getIntPtrType(), FormatStr.size()),
ConstantInt::get(SLC.getIntPtrType(), 1),
CI->getOperand(1)
};
new CallInst(SLC.get_fwrite(FILEty), FWriteArgs, 4, CI->getName(), CI);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(),
FormatStr.size()));
}
// The remaining optimizations require the format string to be length 2:
// "%s" or "%c".
if (FormatStr.size() != 2 || FormatStr[0] != '%')
return false;
// Get the second character and switch on its value
switch (FormatStr[1]) {
case 'c': {
// fprintf(file,"%c",c) -> fputc(c,file)
const Type *FILETy = CI->getOperand(1)->getType();
Value *C = CastInst::createZExtOrBitCast(CI->getOperand(3), Type::Int32Ty,
CI->getName()+".int", CI);
new CallInst(SLC.get_fputc(FILETy), C, CI->getOperand(1), "", CI);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
}
case 's': {
const Type *FILETy = CI->getOperand(1)->getType();
// If the result of the fprintf call is used, we can't do this.
// TODO: we should insert a strlen call.
if (!CI->use_empty())
return false;
// fprintf(file,"%s",str) -> fputs(str,file)
new CallInst(SLC.get_fputs(FILETy), CastToCStr(CI->getOperand(3), CI),
CI->getOperand(1), CI->getName(), CI);
return ReplaceCallWith(CI, 0);
}
default:
return false;
}
}
} FPrintFOptimizer;
/// This LibCallOptimization will simplify calls to the "sprintf" library
/// function. It looks for cases where the result of sprintf is not used and the
/// operation can be reduced to something simpler.
/// @brief Simplify the sprintf library function.
struct VISIBILITY_HIDDEN SPrintFOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
SPrintFOptimization() : LibCallOptimization("sprintf",
"Number of 'sprintf' calls simplified") {}
/// @brief Make sure that the "sprintf" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 2 && // two fixed arguments.
FT->getParamType(1) == PointerType::get(Type::Int8Ty) &&
FT->getParamType(0) == FT->getParamType(1) &&
isa<IntegerType>(FT->getReturnType());
}
/// @brief Perform the sprintf optimization.
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// If the call has more than 3 operands, we can't optimize it
if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4)
return false;
std::string FormatStr;
if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
return false;
if (CI->getNumOperands() == 3) {
// Make sure there's no % in the constant array
for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
if (FormatStr[i] == '%')
return false; // we found a format specifier
// sprintf(str,fmt) -> llvm.memcpy(str,fmt,strlen(fmt),1)
Value *MemCpyArgs[] = {
CI->getOperand(1), CI->getOperand(2),
ConstantInt::get(SLC.getIntPtrType(),
FormatStr.size()+1), // Copy the nul byte.
ConstantInt::get(Type::Int32Ty, 1)
};
new CallInst(SLC.get_memcpy(), MemCpyArgs, 4, "", CI);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(),
FormatStr.size()));
}
// The remaining optimizations require the format string to be "%s" or "%c".
if (FormatStr.size() != 2 || FormatStr[0] != '%')
return false;
// Get the second character and switch on its value
switch (FormatStr[1]) {
case 'c': {
// sprintf(dest,"%c",chr) -> store chr, dest
Value *V = CastInst::createTruncOrBitCast(CI->getOperand(3),
Type::Int8Ty, "char", CI);
new StoreInst(V, CI->getOperand(1), CI);
Value *Ptr = new GetElementPtrInst(CI->getOperand(1),
ConstantInt::get(Type::Int32Ty, 1),
CI->getOperand(1)->getName()+".end",
CI);
new StoreInst(ConstantInt::get(Type::Int8Ty,0), Ptr, CI);
return ReplaceCallWith(CI, ConstantInt::get(Type::Int32Ty, 1));
}
case 's': {
// sprintf(dest,"%s",str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
Value *Len = new CallInst(SLC.get_strlen(),
CastToCStr(CI->getOperand(3), CI),
CI->getOperand(3)->getName()+".len", CI);
Value *UnincLen = Len;
Len = BinaryOperator::createAdd(Len, ConstantInt::get(Len->getType(), 1),
Len->getName()+"1", CI);
Value *MemcpyArgs[4] = {
CI->getOperand(1),
CastToCStr(CI->getOperand(3), CI),
Len,
ConstantInt::get(Type::Int32Ty, 1)
};
new CallInst(SLC.get_memcpy(), MemcpyArgs, 4, "", CI);
// The strlen result is the unincremented number of bytes in the string.
if (!CI->use_empty()) {
if (UnincLen->getType() != CI->getType())
UnincLen = CastInst::createIntegerCast(UnincLen, CI->getType(), false,
Len->getName(), CI);
CI->replaceAllUsesWith(UnincLen);
}
return ReplaceCallWith(CI, 0);
}
}
return false;
}
} SPrintFOptimizer;
/// This LibCallOptimization will simplify calls to the "fputs" library
/// function. It looks for cases where the result of fputs is not used and the
/// operation can be reduced to something simpler.
/// @brief Simplify the fputs library function.
struct VISIBILITY_HIDDEN FPutsOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
FPutsOptimization() : LibCallOptimization("fputs",
"Number of 'fputs' calls simplified") {}
/// @brief Make sure that the "fputs" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
// Just make sure this has 2 arguments
return F->arg_size() == 2;
}
/// @brief Perform the fputs optimization.
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// If the result is used, none of these optimizations work.
if (!CI->use_empty())
return false;
// All the optimizations depend on the length of the first argument and the
// fact that it is a constant string array. Check that now
std::string Str;
if (!GetConstantStringInfo(CI->getOperand(1), Str))
return false;
const Type *FILETy = CI->getOperand(2)->getType();
// fputs(s,F) -> fwrite(s,1,len,F) (if s is constant and strlen(s) > 1)
Value *FWriteParms[4] = {
CI->getOperand(1),
ConstantInt::get(SLC.getIntPtrType(), Str.size()),
ConstantInt::get(SLC.getIntPtrType(), 1),
CI->getOperand(2)
};
new CallInst(SLC.get_fwrite(FILETy), FWriteParms, 4, "", CI);
return ReplaceCallWith(CI, 0); // Known to have no uses (see above).
}
} FPutsOptimizer;
/// This LibCallOptimization will simplify calls to the "fwrite" function.
struct VISIBILITY_HIDDEN FWriteOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
FWriteOptimization() : LibCallOptimization("fwrite",
"Number of 'fwrite' calls simplified") {}
/// @brief Make sure that the "fputs" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
const FunctionType *FT = F->getFunctionType();
return FT->getNumParams() == 4 &&
FT->getParamType(0) == PointerType::get(Type::Int8Ty) &&
FT->getParamType(1) == FT->getParamType(2) &&
isa<IntegerType>(FT->getParamType(1)) &&
isa<PointerType>(FT->getParamType(3)) &&
isa<IntegerType>(FT->getReturnType());
}
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// Get the element size and count.
uint64_t EltSize, EltCount;
if (ConstantInt *C = dyn_cast<ConstantInt>(CI->getOperand(2)))
EltSize = C->getZExtValue();
else
return false;
if (ConstantInt *C = dyn_cast<ConstantInt>(CI->getOperand(3)))
EltCount = C->getZExtValue();
else
return false;
// If this is writing zero records, remove the call (it's a noop).
if (EltSize * EltCount == 0)
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
// If this is writing one byte, turn it into fputc.
if (EltSize == 1 && EltCount == 1) {
// fwrite(s,1,1,F) -> fputc(s[0],F)
Value *Ptr = CI->getOperand(1);
Value *Val = new LoadInst(Ptr, Ptr->getName()+".byte", CI);
Val = new ZExtInst(Val, Type::Int32Ty, Val->getName()+".int", CI);
const Type *FILETy = CI->getOperand(4)->getType();
new CallInst(SLC.get_fputc(FILETy), Val, CI->getOperand(4), "", CI);
return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
}
return false;
}
} FWriteOptimizer;
/// This LibCallOptimization will simplify calls to the "isdigit" library
/// function. It simply does range checks the parameter explicitly.
/// @brief Simplify the isdigit library function.
struct VISIBILITY_HIDDEN isdigitOptimization : public LibCallOptimization {
public:
isdigitOptimization() : LibCallOptimization("isdigit",
"Number of 'isdigit' calls simplified") {}
/// @brief Make sure that the "isdigit" function has the right prototype
virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
// Just make sure this has 1 argument
return (f->arg_size() == 1);
}
/// @brief Perform the toascii optimization.
virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
if (ConstantInt* CI = dyn_cast<ConstantInt>(ci->getOperand(1))) {
// isdigit(c) -> 0 or 1, if 'c' is constant
uint64_t val = CI->getZExtValue();
if (val >= '0' && val <= '9')
return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 1));
else
return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 0));
}
// isdigit(c) -> (unsigned)c - '0' <= 9
CastInst* cast = CastInst::createIntegerCast(ci->getOperand(1),
Type::Int32Ty, false/*ZExt*/, ci->getOperand(1)->getName()+".uint", ci);
BinaryOperator* sub_inst = BinaryOperator::createSub(cast,
ConstantInt::get(Type::Int32Ty,0x30),
ci->getOperand(1)->getName()+".sub",ci);
ICmpInst* setcond_inst = new ICmpInst(ICmpInst::ICMP_ULE,sub_inst,
ConstantInt::get(Type::Int32Ty,9),
ci->getOperand(1)->getName()+".cmp",ci);
CastInst* c2 = new ZExtInst(setcond_inst, Type::Int32Ty,
ci->getOperand(1)->getName()+".isdigit", ci);
return ReplaceCallWith(ci, c2);
}
} isdigitOptimizer;
struct VISIBILITY_HIDDEN isasciiOptimization : public LibCallOptimization {
public:
isasciiOptimization()
: LibCallOptimization("isascii", "Number of 'isascii' calls simplified") {}
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
return F->arg_size() == 1 && F->arg_begin()->getType()->isInteger() &&
F->getReturnType()->isInteger();
}
/// @brief Perform the isascii optimization.
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
// isascii(c) -> (unsigned)c < 128
Value *V = CI->getOperand(1);
Value *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, V,
ConstantInt::get(V->getType(), 128),
V->getName()+".isascii", CI);
if (Cmp->getType() != CI->getType())
Cmp = new ZExtInst(Cmp, CI->getType(), Cmp->getName(), CI);
return ReplaceCallWith(CI, Cmp);
}
} isasciiOptimizer;
/// This LibCallOptimization will simplify calls to the "toascii" library
/// function. It simply does the corresponding and operation to restrict the
/// range of values to the ASCII character set (0-127).
/// @brief Simplify the toascii library function.
struct VISIBILITY_HIDDEN ToAsciiOptimization : public LibCallOptimization {
public:
/// @brief Default Constructor
ToAsciiOptimization() : LibCallOptimization("toascii",
"Number of 'toascii' calls simplified") {}
/// @brief Make sure that the "fputs" function has the right prototype
virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
// Just make sure this has 2 arguments
return (f->arg_size() == 1);
}
/// @brief Perform the toascii optimization.
virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
// toascii(c) -> (c & 0x7f)
Value *chr = ci->getOperand(1);
Value *and_inst = BinaryOperator::createAnd(chr,
ConstantInt::get(chr->getType(),0x7F),ci->getName()+".toascii",ci);
return ReplaceCallWith(ci, and_inst);
}
} ToAsciiOptimizer;
/// This LibCallOptimization will simplify calls to the "ffs" library
/// calls which find the first set bit in an int, long, or long long. The
/// optimization is to compute the result at compile time if the argument is
/// a constant.
/// @brief Simplify the ffs library function.
struct VISIBILITY_HIDDEN FFSOptimization : public LibCallOptimization {
protected:
/// @brief Subclass Constructor
FFSOptimization(const char* funcName, const char* description)
: LibCallOptimization(funcName, description) {}
public:
/// @brief Default Constructor
FFSOptimization() : LibCallOptimization("ffs",
"Number of 'ffs' calls simplified") {}
/// @brief Make sure that the "ffs" function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
// Just make sure this has 2 arguments
return F->arg_size() == 1 && F->getReturnType() == Type::Int32Ty;
}
/// @brief Perform the ffs optimization.
virtual bool OptimizeCall(CallInst *TheCall, SimplifyLibCalls &SLC) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(TheCall->getOperand(1))) {
// ffs(cnst) -> bit#
// ffsl(cnst) -> bit#
// ffsll(cnst) -> bit#
uint64_t val = CI->getZExtValue();
int result = 0;
if (val) {
++result;
while ((val & 1) == 0) {
++result;
val >>= 1;
}
}
return ReplaceCallWith(TheCall, ConstantInt::get(Type::Int32Ty, result));
}
// ffs(x) -> x == 0 ? 0 : llvm.cttz(x)+1
// ffsl(x) -> x == 0 ? 0 : llvm.cttz(x)+1
// ffsll(x) -> x == 0 ? 0 : llvm.cttz(x)+1
const Type *ArgType = TheCall->getOperand(1)->getType();
const char *CTTZName;
assert(ArgType->getTypeID() == Type::IntegerTyID &&
"llvm.cttz argument is not an integer?");
unsigned BitWidth = cast<IntegerType>(ArgType)->getBitWidth();
if (BitWidth == 8)
CTTZName = "llvm.cttz.i8";
else if (BitWidth == 16)
CTTZName = "llvm.cttz.i16";
else if (BitWidth == 32)
CTTZName = "llvm.cttz.i32";
else {
assert(BitWidth == 64 && "Unknown bitwidth");
CTTZName = "llvm.cttz.i64";
}
Constant *F = SLC.getModule()->getOrInsertFunction(CTTZName, ArgType,
ArgType, NULL);
Value *V = CastInst::createIntegerCast(TheCall->getOperand(1), ArgType,
false/*ZExt*/, "tmp", TheCall);
Value *V2 = new CallInst(F, V, "tmp", TheCall);
V2 = CastInst::createIntegerCast(V2, Type::Int32Ty, false/*ZExt*/,
"tmp", TheCall);
V2 = BinaryOperator::createAdd(V2, ConstantInt::get(Type::Int32Ty, 1),
"tmp", TheCall);
Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, V,
Constant::getNullValue(V->getType()), "tmp",
TheCall);
V2 = new SelectInst(Cond, ConstantInt::get(Type::Int32Ty, 0), V2,
TheCall->getName(), TheCall);
return ReplaceCallWith(TheCall, V2);
}
} FFSOptimizer;
/// This LibCallOptimization will simplify calls to the "ffsl" library
/// calls. It simply uses FFSOptimization for which the transformation is
/// identical.
/// @brief Simplify the ffsl library function.
struct VISIBILITY_HIDDEN FFSLOptimization : public FFSOptimization {
public:
/// @brief Default Constructor
FFSLOptimization() : FFSOptimization("ffsl",
"Number of 'ffsl' calls simplified") {}
} FFSLOptimizer;
/// This LibCallOptimization will simplify calls to the "ffsll" library
/// calls. It simply uses FFSOptimization for which the transformation is
/// identical.
/// @brief Simplify the ffsl library function.
struct VISIBILITY_HIDDEN FFSLLOptimization : public FFSOptimization {
public:
/// @brief Default Constructor
FFSLLOptimization() : FFSOptimization("ffsll",
"Number of 'ffsll' calls simplified") {}
} FFSLLOptimizer;
/// This optimizes unary functions that take and return doubles.
struct UnaryDoubleFPOptimizer : public LibCallOptimization {
UnaryDoubleFPOptimizer(const char *Fn, const char *Desc)
: LibCallOptimization(Fn, Desc) {}
// Make sure that this function has the right prototype
virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
return F->arg_size() == 1 && F->arg_begin()->getType() == Type::DoubleTy &&
F->getReturnType() == Type::DoubleTy;
}
/// ShrinkFunctionToFloatVersion - If the input to this function is really a
/// float, strength reduce this to a float version of the function,
/// e.g. floor((double)FLT) -> (double)floorf(FLT). This can only be called
/// when the target supports the destination function and where there can be
/// no precision loss.
static bool ShrinkFunctionToFloatVersion(CallInst *CI, SimplifyLibCalls &SLC,
Constant *(SimplifyLibCalls::*FP)()){
if (FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1)))
if (Cast->getOperand(0)->getType() == Type::FloatTy) {
Value *New = new CallInst((SLC.*FP)(), Cast->getOperand(0),
CI->getName(), CI);
New = new FPExtInst(New, Type::DoubleTy, CI->getName(), CI);
CI->replaceAllUsesWith(New);
CI->eraseFromParent();
if (Cast->use_empty())
Cast->eraseFromParent();
return true;
}
return false;
}
};
struct VISIBILITY_HIDDEN FloorOptimization : public UnaryDoubleFPOptimizer {
FloorOptimization()
: UnaryDoubleFPOptimizer("floor", "Number of 'floor' calls simplified") {}
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
#ifdef HAVE_FLOORF
// If this is a float argument passed in, convert to floorf.
if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_floorf))
return true;
#endif
return false; // opt failed
}
} FloorOptimizer;
struct VISIBILITY_HIDDEN CeilOptimization : public UnaryDoubleFPOptimizer {
CeilOptimization()
: UnaryDoubleFPOptimizer("ceil", "Number of 'ceil' calls simplified") {}
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
#ifdef HAVE_CEILF
// If this is a float argument passed in, convert to ceilf.
if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_ceilf))
return true;
#endif
return false; // opt failed
}
} CeilOptimizer;
struct VISIBILITY_HIDDEN RoundOptimization : public UnaryDoubleFPOptimizer {
RoundOptimization()
: UnaryDoubleFPOptimizer("round", "Number of 'round' calls simplified") {}
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
#ifdef HAVE_ROUNDF
// If this is a float argument passed in, convert to roundf.
if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_roundf))
return true;
#endif
return false; // opt failed
}
} RoundOptimizer;
struct VISIBILITY_HIDDEN RintOptimization : public UnaryDoubleFPOptimizer {
RintOptimization()
: UnaryDoubleFPOptimizer("rint", "Number of 'rint' calls simplified") {}
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
#ifdef HAVE_RINTF
// If this is a float argument passed in, convert to rintf.
if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_rintf))
return true;
#endif
return false; // opt failed
}
} RintOptimizer;
struct VISIBILITY_HIDDEN NearByIntOptimization : public UnaryDoubleFPOptimizer {
NearByIntOptimization()
: UnaryDoubleFPOptimizer("nearbyint",
"Number of 'nearbyint' calls simplified") {}
virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
#ifdef HAVE_NEARBYINTF
// If this is a float argument passed in, convert to nearbyintf.
if (ShrinkFunctionToFloatVersion(CI, SLC,&SimplifyLibCalls::get_nearbyintf))
return true;
#endif
return false; // opt failed
}
} NearByIntOptimizer;
/// GetConstantStringInfo - This function computes the length of a
/// null-terminated constant array of integers. This function can't rely on the
/// size of the constant array because there could be a null terminator in the
/// middle of the array.
///
/// We also have to bail out if we find a non-integer constant initializer
/// of one of the elements or if there is no null-terminator. The logic
/// below checks each of these conditions and will return true only if all
/// conditions are met. If the conditions aren't met, this returns false.
///
/// If successful, the \p Array param is set to the constant array being
/// indexed, the \p Length parameter is set to the length of the null-terminated
/// string pointed to by V, the \p StartIdx value is set to the first
/// element of the Array that V points to, and true is returned.
static bool GetConstantStringInfo(Value *V, std::string &Str) {
// Look through noop bitcast instructions.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
if (BCI->getType() == BCI->getOperand(0)->getType())
return GetConstantStringInfo(BCI->getOperand(0), Str);
return false;
}
// If the value is not a GEP instruction nor a constant expression with a
// GEP instruction, then return false because ConstantArray can't occur
// any other way
User *GEP = 0;
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
GEP = GEPI;
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
if (CE->getOpcode() != Instruction::GetElementPtr)
return false;
GEP = CE;
} else {
return false;
}
// Make sure the GEP has exactly three arguments.
if (GEP->getNumOperands() != 3)
return false;
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
if (!Idx->isZero())
return false;
} else
return false;
// If the second index isn't a ConstantInt, then this is a variable index
// into the array. If this occurs, we can't say anything meaningful about
// the string.
uint64_t StartIdx = 0;
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
StartIdx = CI->getZExtValue();
else
return false;
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
if (!GV || !GV->isConstant() || !GV->hasInitializer())
return false;
Constant *GlobalInit = GV->getInitializer();
// Handle the ConstantAggregateZero case
if (isa<ConstantAggregateZero>(GlobalInit)) {
// This is a degenerate case. The initializer is constant zero so the
// length of the string must be zero.
Str.clear();
return true;
}
// Must be a Constant Array
ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
if (!Array) return false;
// Get the number of elements in the array
uint64_t NumElts = Array->getType()->getNumElements();
// Traverse the constant array from StartIdx (derived above) which is
// the place the GEP refers to in the array.
for (unsigned i = StartIdx; i < NumElts; ++i) {
Constant *Elt = Array->getOperand(i);
ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
if (!CI) // This array isn't suitable, non-int initializer.
return false;
if (CI->isZero())
return true; // we found end of string, success!
Str += (char)CI->getZExtValue();
}
return false; // The array isn't null terminated.
}
/// CastToCStr - Return V if it is an sbyte*, otherwise cast it to sbyte*,
/// inserting the cast before IP, and return the cast.
/// @brief Cast a value to a "C" string.
static Value *CastToCStr(Value *V, Instruction *IP) {
assert(isa<PointerType>(V->getType()) &&
"Can't cast non-pointer type to C string type");
const Type *SBPTy = PointerType::get(Type::Int8Ty);
if (V->getType() != SBPTy)
return new BitCastInst(V, SBPTy, V->getName(), IP);
return V;
}
// TODO:
// Additional cases that we need to add to this file:
//
// cbrt:
// * cbrt(expN(X)) -> expN(x/3)
// * cbrt(sqrt(x)) -> pow(x,1/6)
// * cbrt(sqrt(x)) -> pow(x,1/9)
//
// cos, cosf, cosl:
// * cos(-x) -> cos(x)
//
// exp, expf, expl:
// * exp(log(x)) -> x
//
// log, logf, logl:
// * log(exp(x)) -> x
// * log(x**y) -> y*log(x)
// * log(exp(y)) -> y*log(e)
// * log(exp2(y)) -> y*log(2)
// * log(exp10(y)) -> y*log(10)
// * log(sqrt(x)) -> 0.5*log(x)
// * log(pow(x,y)) -> y*log(x)
//
// lround, lroundf, lroundl:
// * lround(cnst) -> cnst'
//
// memcmp:
// * memcmp(x,y,l) -> cnst
// (if all arguments are constant and strlen(x) <= l and strlen(y) <= l)
//
// memmove:
// * memmove(d,s,l,a) -> memcpy(d,s,l,a)
// (if s is a global constant array)
//
// pow, powf, powl:
// * pow(exp(x),y) -> exp(x*y)
// * pow(sqrt(x),y) -> pow(x,y*0.5)
// * pow(pow(x,y),z)-> pow(x,y*z)
//
// puts:
// * puts("") -> putchar("\n")
//
// round, roundf, roundl:
// * round(cnst) -> cnst'
//
// signbit:
// * signbit(cnst) -> cnst'
// * signbit(nncst) -> 0 (if pstv is a non-negative constant)
//
// sqrt, sqrtf, sqrtl:
// * sqrt(expN(x)) -> expN(x*0.5)
// * sqrt(Nroot(x)) -> pow(x,1/(2*N))
// * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
//
// stpcpy:
// * stpcpy(str, "literal") ->
// llvm.memcpy(str,"literal",strlen("literal")+1,1)
// strrchr:
// * strrchr(s,c) -> reverse_offset_of_in(c,s)
// (if c is a constant integer and s is a constant string)
// * strrchr(s1,0) -> strchr(s1,0)
//
// strncat:
// * strncat(x,y,0) -> x
// * strncat(x,y,0) -> x (if strlen(y) = 0)
// * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y))
//
// strncpy:
// * strncpy(d,s,0) -> d
// * strncpy(d,s,l) -> memcpy(d,s,l,1)
// (if s and l are constants)
//
// strpbrk:
// * strpbrk(s,a) -> offset_in_for(s,a)
// (if s and a are both constant strings)
// * strpbrk(s,"") -> 0
// * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1)
//
// strspn, strcspn:
// * strspn(s,a) -> const_int (if both args are constant)
// * strspn("",a) -> 0
// * strspn(s,"") -> 0
// * strcspn(s,a) -> const_int (if both args are constant)
// * strcspn("",a) -> 0
// * strcspn(s,"") -> strlen(a)
//
// strstr:
// * strstr(x,x) -> x
// * strstr(s1,s2) -> offset_of_s2_in(s1)
// (if s1 and s2 are constant strings)
//
// tan, tanf, tanl:
// * tan(atan(x)) -> x
//
// trunc, truncf, truncl:
// * trunc(cnst) -> cnst'
//
//
}