Chris Lattner 0969c50cb8 - Make DSCallSite not inherit from std::vector. Renamed methods slightly.
Make copy ctor have two versions to avoid dealing with conditional template
    argument.  DSCallSite ctor now takes all arguments instead of taking one
    and being populated later.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4240 91177308-0d34-0410-b5e6-96231b3b80d8
2002-10-21 02:08:03 +00:00

227 lines
8.1 KiB
C++

//===- Steensgaard.cpp - Context Insensitive Alias Analysis ---------------===//
//
// This pass uses the data structure graphs to implement a simple context
// insensitive alias analysis. It does this by computing the local analysis
// graphs for all of the functions, then merging them together into a single big
// graph without cloning.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Analysis/DSGraph.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Module.h"
#include "Support/Statistic.h"
namespace {
class Steens : public Pass, public AliasAnalysis {
DSGraph *ResultGraph;
public:
Steens() : ResultGraph(0) {}
~Steens() { assert(ResultGraph == 0 && "releaseMemory not called?"); }
//------------------------------------------------
// Implement the Pass API
//
// run - Build up the result graph, representing the pointer graph for the
// program.
//
bool run(Module &M);
virtual void releaseMemory() { delete ResultGraph; ResultGraph = 0; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll(); // Does not transform code...
AU.addRequired<LocalDataStructures>(); // Uses local dsgraph
AU.addRequired<AliasAnalysis>(); // Chains to another AA impl...
}
// print - Implement the Pass::print method...
void print(std::ostream &O, const Module *M) const {
assert(ResultGraph && "Result graph has not yet been computed!");
ResultGraph->writeGraphToFile(O, "steensgaards");
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
// alias - This is the only method here that does anything interesting...
Result alias(const Value *V1, const Value *V2) const;
/// canCallModify - We are not interprocedural, so we do nothing exciting.
///
Result canCallModify(const CallInst &CI, const Value *Ptr) const {
return MayAlias;
}
/// canInvokeModify - We are not interprocedural, so we do nothing exciting.
///
Result canInvokeModify(const InvokeInst &I, const Value *Ptr) const {
return MayAlias; // We are not interprocedural
}
private:
void ResolveFunctionCall(Function *F, const DSCallSite &Call,
DSNodeHandle &RetVal);
};
// Register the pass...
RegisterOpt<Steens> X("steens-aa",
"Steensgaard's FlowInsensitive/ConIns alias analysis");
// Register as an implementation of AliasAnalysis
RegisterAnalysisGroup<AliasAnalysis, Steens> Y;
}
/// ResolveFunctionCall - Resolve the actual arguments of a call to function F
/// with the specified call site descriptor. This function links the arguments
/// and the return value for the call site context-insensitively.
///
void Steens::ResolveFunctionCall(Function *F,
const DSCallSite &Call,
DSNodeHandle &RetVal) {
assert(ResultGraph != 0 && "Result graph not allocated!");
std::map<Value*, DSNodeHandle> &ValMap = ResultGraph->getValueMap();
// Handle the return value of the function...
if (Call.getRetVal().getNode() && RetVal.getNode())
RetVal.mergeWith(Call.getRetVal());
// Loop over all pointer arguments, resolving them to their provided pointers
unsigned PtrArgIdx = 0;
for (Function::aiterator AI = F->abegin(), AE = F->aend(); AI != AE; ++AI) {
std::map<Value*, DSNodeHandle>::iterator I = ValMap.find(AI);
if (I != ValMap.end()) // If its a pointer argument...
I->second.addEdgeTo(Call.getPtrArg(PtrArgIdx++));
}
assert(PtrArgIdx == Call.getNumPtrArgs() && "Argument resolution mismatch!");
}
/// run - Build up the result graph, representing the pointer graph for the
/// program.
///
bool Steens::run(Module &M) {
assert(ResultGraph == 0 && "Result graph already allocated!");
LocalDataStructures &LDS = getAnalysis<LocalDataStructures>();
// Create a new, empty, graph...
ResultGraph = new DSGraph();
// RetValMap - Keep track of the return values for all functions that return
// valid pointers.
//
std::map<Function*, DSNodeHandle> RetValMap;
// Loop over the rest of the module, merging graphs for non-external functions
// into this graph.
//
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal()) {
std::map<Value*, DSNodeHandle> ValMap;
{ // Scope to free NodeMap memory ASAP
std::map<const DSNode*, DSNode*> NodeMap;
const DSGraph &FDSG = LDS.getDSGraph(*I);
DSNodeHandle RetNode = ResultGraph->cloneInto(FDSG, ValMap, NodeMap);
// Keep track of the return node of the function's graph if it returns a
// value...
//
if (RetNode.getNode())
RetValMap[I] = RetNode;
}
// Incorporate the inlined Function's ValueMap into the global ValueMap...
std::map<Value*, DSNodeHandle> &GVM = ResultGraph->getValueMap();
while (!ValMap.empty()) { // Loop over value map, moving entries over...
const std::pair<Value*, DSNodeHandle> &DSN = *ValMap.begin();
std::map<Value*, DSNodeHandle>::iterator I = GVM.find(DSN.first);
if (I == GVM.end())
GVM[DSN.first] = DSN.second;
else
I->second.mergeWith(DSN.second);
ValMap.erase(ValMap.begin());
}
}
// FIXME: Must recalculate and use the Incomplete markers!!
// Now that we have all of the graphs inlined, we can go about eliminating
// call nodes...
//
std::vector<DSCallSite> &Calls =
ResultGraph->getFunctionCalls();
for (unsigned i = 0; i != Calls.size(); ) {
DSCallSite &CurCall = Calls[i];
// Loop over the called functions, eliminating as many as possible...
std::vector<GlobalValue*> CallTargets =
CurCall.getCallee().getNode()->getGlobals();
for (unsigned c = 0; c != CallTargets.size(); ) {
// If we can eliminate this function call, do so!
bool Eliminated = false;
if (Function *F = dyn_cast<Function>(CallTargets[c]))
if (!F->isExternal()) {
ResolveFunctionCall(F, CurCall, RetValMap[F]);
Eliminated = true;
}
if (Eliminated)
CallTargets.erase(CallTargets.begin()+c);
else
++c; // Cannot eliminate this call, skip over it...
}
if (CallTargets.empty()) // Eliminated all calls?
Calls.erase(Calls.begin()+i); // Remove from call list...
else
++i; // Skip this call site...
}
// Update the "incomplete" markers on the nodes, ignoring unknownness due to
// incoming arguments...
ResultGraph->maskIncompleteMarkers();
ResultGraph->markIncompleteNodes(false);
// Remove any nodes that are dead after all of the merging we have done...
ResultGraph->removeTriviallyDeadNodes();
DEBUG(print(std::cerr, &M));
return false;
}
// alias - This is the only method here that does anything interesting...
AliasAnalysis::Result Steens::alias(const Value *V1, const Value *V2) const {
assert(ResultGraph && "Result grcaph has not yet been computed!");
std::map<Value*, DSNodeHandle> &GVM = ResultGraph->getValueMap();
std::map<Value*, DSNodeHandle>::iterator I = GVM.find(const_cast<Value*>(V1));
if (I != GVM.end() && I->second.getNode()) {
DSNodeHandle &V1H = I->second;
std::map<Value*, DSNodeHandle>::iterator J=GVM.find(const_cast<Value*>(V2));
if (J != GVM.end() && J->second.getNode()) {
DSNodeHandle &V2H = J->second;
// If the two pointers point to different data structure graph nodes, they
// cannot alias!
if (V1H.getNode() != V2H.getNode())
return NoAlias;
// FIXME: If the two pointers point to the same node, and the offsets are
// different, and the LinkIndex vector doesn't alias the section, then the
// two pointers do not alias. We need access size information for the two
// accesses though!
//
}
}
// If we cannot determine alias properties based on our graph, fall back on
// some other AA implementation.
//
return getAnalysis<AliasAnalysis>().alias(V1, V2);
}