llvm-6502/lib/VMCore/ConstantFold.cpp
2006-12-18 04:22:56 +00:00

1737 lines
72 KiB
C++

//===- ConstantFolding.cpp - LLVM constant folder -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements folding of constants for LLVM. This implements the
// (internal) ConstantFolding.h interface, which is used by the
// ConstantExpr::get* methods to automatically fold constants when possible.
//
// The current constant folding implementation is implemented in two pieces: the
// template-based folder for simple primitive constants like ConstantInt, and
// the special case hackery that we use to symbolically evaluate expressions
// that use ConstantExprs.
//
//===----------------------------------------------------------------------===//
#include "ConstantFolding.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include <limits>
using namespace llvm;
namespace {
struct VISIBILITY_HIDDEN ConstRules {
ConstRules() {}
virtual ~ConstRules() {}
// Binary Operators...
virtual Constant *add(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *sub(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *mul(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *urem(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *srem(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *frem(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *udiv(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *sdiv(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *fdiv(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *op_and(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *op_or (const Constant *V1, const Constant *V2) const = 0;
virtual Constant *op_xor(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *shl(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *lshr(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *ashr(const Constant *V1, const Constant *V2) const = 0;
virtual Constant *lessthan(const Constant *V1, const Constant *V2) const =0;
virtual Constant *equalto(const Constant *V1, const Constant *V2) const = 0;
// Casting operators.
virtual Constant *castToBool (const Constant *V) const = 0;
virtual Constant *castToSByte (const Constant *V) const = 0;
virtual Constant *castToUByte (const Constant *V) const = 0;
virtual Constant *castToShort (const Constant *V) const = 0;
virtual Constant *castToUShort(const Constant *V) const = 0;
virtual Constant *castToInt (const Constant *V) const = 0;
virtual Constant *castToUInt (const Constant *V) const = 0;
virtual Constant *castToLong (const Constant *V) const = 0;
virtual Constant *castToULong (const Constant *V) const = 0;
virtual Constant *castToFloat (const Constant *V) const = 0;
virtual Constant *castToDouble(const Constant *V) const = 0;
virtual Constant *castToPointer(const Constant *V,
const PointerType *Ty) const = 0;
// ConstRules::get - Return an instance of ConstRules for the specified
// constant operands.
//
static ConstRules &get(const Constant *V1, const Constant *V2);
private:
ConstRules(const ConstRules &); // Do not implement
ConstRules &operator=(const ConstRules &); // Do not implement
};
}
//===----------------------------------------------------------------------===//
// TemplateRules Class
//===----------------------------------------------------------------------===//
//
// TemplateRules - Implement a subclass of ConstRules that provides all
// operations as noops. All other rules classes inherit from this class so
// that if functionality is needed in the future, it can simply be added here
// and to ConstRules without changing anything else...
//
// This class also provides subclasses with typesafe implementations of methods
// so that don't have to do type casting.
//
namespace {
template<class ArgType, class SubClassName>
class VISIBILITY_HIDDEN TemplateRules : public ConstRules {
//===--------------------------------------------------------------------===//
// Redirecting functions that cast to the appropriate types
//===--------------------------------------------------------------------===//
virtual Constant *add(const Constant *V1, const Constant *V2) const {
return SubClassName::Add((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *sub(const Constant *V1, const Constant *V2) const {
return SubClassName::Sub((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *mul(const Constant *V1, const Constant *V2) const {
return SubClassName::Mul((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *udiv(const Constant *V1, const Constant *V2) const {
return SubClassName::UDiv((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *sdiv(const Constant *V1, const Constant *V2) const {
return SubClassName::SDiv((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *fdiv(const Constant *V1, const Constant *V2) const {
return SubClassName::FDiv((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *urem(const Constant *V1, const Constant *V2) const {
return SubClassName::URem((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *srem(const Constant *V1, const Constant *V2) const {
return SubClassName::SRem((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *frem(const Constant *V1, const Constant *V2) const {
return SubClassName::FRem((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *op_and(const Constant *V1, const Constant *V2) const {
return SubClassName::And((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *op_or(const Constant *V1, const Constant *V2) const {
return SubClassName::Or((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *op_xor(const Constant *V1, const Constant *V2) const {
return SubClassName::Xor((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *shl(const Constant *V1, const Constant *V2) const {
return SubClassName::Shl((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *lshr(const Constant *V1, const Constant *V2) const {
return SubClassName::LShr((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *ashr(const Constant *V1, const Constant *V2) const {
return SubClassName::AShr((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *lessthan(const Constant *V1, const Constant *V2) const {
return SubClassName::LessThan((const ArgType *)V1, (const ArgType *)V2);
}
virtual Constant *equalto(const Constant *V1, const Constant *V2) const {
return SubClassName::EqualTo((const ArgType *)V1, (const ArgType *)V2);
}
// Casting operators. ick
virtual Constant *castToBool(const Constant *V) const {
return SubClassName::CastToBool((const ArgType*)V);
}
virtual Constant *castToSByte(const Constant *V) const {
return SubClassName::CastToSByte((const ArgType*)V);
}
virtual Constant *castToUByte(const Constant *V) const {
return SubClassName::CastToUByte((const ArgType*)V);
}
virtual Constant *castToShort(const Constant *V) const {
return SubClassName::CastToShort((const ArgType*)V);
}
virtual Constant *castToUShort(const Constant *V) const {
return SubClassName::CastToUShort((const ArgType*)V);
}
virtual Constant *castToInt(const Constant *V) const {
return SubClassName::CastToInt((const ArgType*)V);
}
virtual Constant *castToUInt(const Constant *V) const {
return SubClassName::CastToUInt((const ArgType*)V);
}
virtual Constant *castToLong(const Constant *V) const {
return SubClassName::CastToLong((const ArgType*)V);
}
virtual Constant *castToULong(const Constant *V) const {
return SubClassName::CastToULong((const ArgType*)V);
}
virtual Constant *castToFloat(const Constant *V) const {
return SubClassName::CastToFloat((const ArgType*)V);
}
virtual Constant *castToDouble(const Constant *V) const {
return SubClassName::CastToDouble((const ArgType*)V);
}
virtual Constant *castToPointer(const Constant *V,
const PointerType *Ty) const {
return SubClassName::CastToPointer((const ArgType*)V, Ty);
}
//===--------------------------------------------------------------------===//
// Default "noop" implementations
//===--------------------------------------------------------------------===//
static Constant *Add (const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *Sub (const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *Mul (const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *SDiv(const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *UDiv(const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *FDiv(const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *URem(const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *SRem(const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *FRem(const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *And (const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *Or (const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *Xor (const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *Shl (const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *LShr(const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *AShr(const ArgType *V1, const ArgType *V2) { return 0; }
static Constant *LessThan(const ArgType *V1, const ArgType *V2) {
return 0;
}
static Constant *EqualTo(const ArgType *V1, const ArgType *V2) {
return 0;
}
// Casting operators. ick
static Constant *CastToBool (const Constant *V) { return 0; }
static Constant *CastToSByte (const Constant *V) { return 0; }
static Constant *CastToUByte (const Constant *V) { return 0; }
static Constant *CastToShort (const Constant *V) { return 0; }
static Constant *CastToUShort(const Constant *V) { return 0; }
static Constant *CastToInt (const Constant *V) { return 0; }
static Constant *CastToUInt (const Constant *V) { return 0; }
static Constant *CastToLong (const Constant *V) { return 0; }
static Constant *CastToULong (const Constant *V) { return 0; }
static Constant *CastToFloat (const Constant *V) { return 0; }
static Constant *CastToDouble(const Constant *V) { return 0; }
static Constant *CastToPointer(const Constant *,
const PointerType *) {return 0;}
public:
virtual ~TemplateRules() {}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// EmptyRules Class
//===----------------------------------------------------------------------===//
//
// EmptyRules provides a concrete base class of ConstRules that does nothing
//
namespace {
struct VISIBILITY_HIDDEN EmptyRules
: public TemplateRules<Constant, EmptyRules> {
static Constant *EqualTo(const Constant *V1, const Constant *V2) {
if (V1 == V2) return ConstantBool::getTrue();
return 0;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// BoolRules Class
//===----------------------------------------------------------------------===//
//
// BoolRules provides a concrete base class of ConstRules for the 'bool' type.
//
namespace {
struct VISIBILITY_HIDDEN BoolRules
: public TemplateRules<ConstantBool, BoolRules> {
static Constant *LessThan(const ConstantBool *V1, const ConstantBool *V2) {
return ConstantBool::get(V1->getValue() < V2->getValue());
}
static Constant *EqualTo(const Constant *V1, const Constant *V2) {
return ConstantBool::get(V1 == V2);
}
static Constant *And(const ConstantBool *V1, const ConstantBool *V2) {
return ConstantBool::get(V1->getValue() & V2->getValue());
}
static Constant *Or(const ConstantBool *V1, const ConstantBool *V2) {
return ConstantBool::get(V1->getValue() | V2->getValue());
}
static Constant *Xor(const ConstantBool *V1, const ConstantBool *V2) {
return ConstantBool::get(V1->getValue() ^ V2->getValue());
}
// Casting operators. ick
#define DEF_CAST(TYPE, CLASS, CTYPE) \
static Constant *CastTo##TYPE (const ConstantBool *V) { \
return CLASS::get(Type::TYPE##Ty, (CTYPE)(bool)V->getValue()); \
}
DEF_CAST(Bool , ConstantBool, bool)
DEF_CAST(SByte , ConstantInt, signed char)
DEF_CAST(UByte , ConstantInt, unsigned char)
DEF_CAST(Short , ConstantInt, signed short)
DEF_CAST(UShort, ConstantInt, unsigned short)
DEF_CAST(Int , ConstantInt, signed int)
DEF_CAST(UInt , ConstantInt, unsigned int)
DEF_CAST(Long , ConstantInt, int64_t)
DEF_CAST(ULong , ConstantInt, uint64_t)
DEF_CAST(Float , ConstantFP , float)
DEF_CAST(Double, ConstantFP , double)
#undef DEF_CAST
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// NullPointerRules Class
//===----------------------------------------------------------------------===//
//
// NullPointerRules provides a concrete base class of ConstRules for null
// pointers.
//
namespace {
struct VISIBILITY_HIDDEN NullPointerRules
: public TemplateRules<ConstantPointerNull, NullPointerRules> {
static Constant *EqualTo(const Constant *V1, const Constant *V2) {
return ConstantBool::getTrue(); // Null pointers are always equal
}
static Constant *CastToBool(const Constant *V) {
return ConstantBool::getFalse();
}
static Constant *CastToSByte (const Constant *V) {
return ConstantInt::get(Type::SByteTy, 0);
}
static Constant *CastToUByte (const Constant *V) {
return ConstantInt::get(Type::UByteTy, 0);
}
static Constant *CastToShort (const Constant *V) {
return ConstantInt::get(Type::ShortTy, 0);
}
static Constant *CastToUShort(const Constant *V) {
return ConstantInt::get(Type::UShortTy, 0);
}
static Constant *CastToInt (const Constant *V) {
return ConstantInt::get(Type::IntTy, 0);
}
static Constant *CastToUInt (const Constant *V) {
return ConstantInt::get(Type::UIntTy, 0);
}
static Constant *CastToLong (const Constant *V) {
return ConstantInt::get(Type::LongTy, 0);
}
static Constant *CastToULong (const Constant *V) {
return ConstantInt::get(Type::ULongTy, 0);
}
static Constant *CastToFloat (const Constant *V) {
return ConstantFP::get(Type::FloatTy, 0);
}
static Constant *CastToDouble(const Constant *V) {
return ConstantFP::get(Type::DoubleTy, 0);
}
static Constant *CastToPointer(const ConstantPointerNull *V,
const PointerType *PTy) {
return ConstantPointerNull::get(PTy);
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// ConstantPackedRules Class
//===----------------------------------------------------------------------===//
/// DoVectorOp - Given two packed constants and a function pointer, apply the
/// function pointer to each element pair, producing a new ConstantPacked
/// constant.
static Constant *EvalVectorOp(const ConstantPacked *V1,
const ConstantPacked *V2,
Constant *(*FP)(Constant*, Constant*)) {
std::vector<Constant*> Res;
for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i)
Res.push_back(FP(const_cast<Constant*>(V1->getOperand(i)),
const_cast<Constant*>(V2->getOperand(i))));
return ConstantPacked::get(Res);
}
/// PackedTypeRules provides a concrete base class of ConstRules for
/// ConstantPacked operands.
///
namespace {
struct VISIBILITY_HIDDEN ConstantPackedRules
: public TemplateRules<ConstantPacked, ConstantPackedRules> {
static Constant *Add(const ConstantPacked *V1, const ConstantPacked *V2) {
return EvalVectorOp(V1, V2, ConstantExpr::getAdd);
}
static Constant *Sub(const ConstantPacked *V1, const ConstantPacked *V2) {
return EvalVectorOp(V1, V2, ConstantExpr::getSub);
}
static Constant *Mul(const ConstantPacked *V1, const ConstantPacked *V2) {
return EvalVectorOp(V1, V2, ConstantExpr::getMul);
}
static Constant *UDiv(const ConstantPacked *V1, const ConstantPacked *V2) {
return EvalVectorOp(V1, V2, ConstantExpr::getUDiv);
}
static Constant *SDiv(const ConstantPacked *V1, const ConstantPacked *V2) {
return EvalVectorOp(V1, V2, ConstantExpr::getSDiv);
}
static Constant *FDiv(const ConstantPacked *V1, const ConstantPacked *V2) {
return EvalVectorOp(V1, V2, ConstantExpr::getFDiv);
}
static Constant *URem(const ConstantPacked *V1, const ConstantPacked *V2) {
return EvalVectorOp(V1, V2, ConstantExpr::getURem);
}
static Constant *SRem(const ConstantPacked *V1, const ConstantPacked *V2) {
return EvalVectorOp(V1, V2, ConstantExpr::getSRem);
}
static Constant *FRem(const ConstantPacked *V1, const ConstantPacked *V2) {
return EvalVectorOp(V1, V2, ConstantExpr::getFRem);
}
static Constant *And(const ConstantPacked *V1, const ConstantPacked *V2) {
return EvalVectorOp(V1, V2, ConstantExpr::getAnd);
}
static Constant *Or (const ConstantPacked *V1, const ConstantPacked *V2) {
return EvalVectorOp(V1, V2, ConstantExpr::getOr);
}
static Constant *Xor(const ConstantPacked *V1, const ConstantPacked *V2) {
return EvalVectorOp(V1, V2, ConstantExpr::getXor);
}
static Constant *LessThan(const ConstantPacked *V1, const ConstantPacked *V2){
return 0;
}
static Constant *EqualTo(const ConstantPacked *V1, const ConstantPacked *V2) {
for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i) {
Constant *C =
ConstantExpr::getSetEQ(const_cast<Constant*>(V1->getOperand(i)),
const_cast<Constant*>(V2->getOperand(i)));
if (ConstantBool *CB = dyn_cast<ConstantBool>(C))
return CB;
}
// Otherwise, could not decide from any element pairs.
return 0;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// GeneralPackedRules Class
//===----------------------------------------------------------------------===//
/// GeneralPackedRules provides a concrete base class of ConstRules for
/// PackedType operands, where both operands are not ConstantPacked. The usual
/// cause for this is that one operand is a ConstantAggregateZero.
///
namespace {
struct VISIBILITY_HIDDEN GeneralPackedRules
: public TemplateRules<Constant, GeneralPackedRules> {
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// DirectIntRules Class
//===----------------------------------------------------------------------===//
//
// DirectIntRules provides implementations of functions that are valid on
// integer types, but not all types in general.
//
namespace {
template <class BuiltinType, Type **Ty>
struct VISIBILITY_HIDDEN DirectIntRules
: public TemplateRules<ConstantInt, DirectIntRules<BuiltinType, Ty> > {
static Constant *Add(const ConstantInt *V1, const ConstantInt *V2) {
BuiltinType R = (BuiltinType)V1->getZExtValue() +
(BuiltinType)V2->getZExtValue();
return ConstantInt::get(*Ty, R);
}
static Constant *Sub(const ConstantInt *V1, const ConstantInt *V2) {
BuiltinType R = (BuiltinType)V1->getZExtValue() -
(BuiltinType)V2->getZExtValue();
return ConstantInt::get(*Ty, R);
}
static Constant *Mul(const ConstantInt *V1, const ConstantInt *V2) {
BuiltinType R = (BuiltinType)V1->getZExtValue() *
(BuiltinType)V2->getZExtValue();
return ConstantInt::get(*Ty, R);
}
static Constant *LessThan(const ConstantInt *V1, const ConstantInt *V2) {
bool R = (BuiltinType)V1->getZExtValue() < (BuiltinType)V2->getZExtValue();
return ConstantBool::get(R);
}
static Constant *EqualTo(const ConstantInt *V1, const ConstantInt *V2) {
bool R = (BuiltinType)V1->getZExtValue() == (BuiltinType)V2->getZExtValue();
return ConstantBool::get(R);
}
static Constant *CastToPointer(const ConstantInt *V,
const PointerType *PTy) {
if (V->isNullValue()) // Is it a FP or Integral null value?
return ConstantPointerNull::get(PTy);
return 0; // Can't const prop other types of pointers
}
// Casting operators. ick
#define DEF_CAST(TYPE, CLASS, CTYPE) \
static Constant *CastTo##TYPE (const ConstantInt *V) { \
return CLASS::get(Type::TYPE##Ty, (CTYPE)((BuiltinType)V->getZExtValue()));\
}
DEF_CAST(Bool , ConstantBool, bool)
DEF_CAST(SByte , ConstantInt, signed char)
DEF_CAST(UByte , ConstantInt, unsigned char)
DEF_CAST(Short , ConstantInt, signed short)
DEF_CAST(UShort, ConstantInt, unsigned short)
DEF_CAST(Int , ConstantInt, signed int)
DEF_CAST(UInt , ConstantInt, unsigned int)
DEF_CAST(Long , ConstantInt, int64_t)
DEF_CAST(ULong , ConstantInt, uint64_t)
DEF_CAST(Float , ConstantFP , float)
DEF_CAST(Double, ConstantFP , double)
#undef DEF_CAST
static Constant *UDiv(const ConstantInt *V1, const ConstantInt *V2) {
if (V2->isNullValue()) // X / 0
return 0;
BuiltinType R = (BuiltinType)(V1->getZExtValue() / V2->getZExtValue());
return ConstantInt::get(*Ty, R);
}
static Constant *SDiv(const ConstantInt *V1, const ConstantInt *V2) {
if (V2->isNullValue()) // X / 0
return 0;
if (V2->isAllOnesValue() && // MIN_INT / -1
(BuiltinType)V1->getSExtValue() == -(BuiltinType)V1->getSExtValue())
return 0;
BuiltinType R = (BuiltinType)(V1->getSExtValue() / V2->getSExtValue());
return ConstantInt::get(*Ty, R);
}
static Constant *URem(const ConstantInt *V1,
const ConstantInt *V2) {
if (V2->isNullValue()) return 0; // X / 0
BuiltinType R = (BuiltinType)(V1->getZExtValue() % V2->getZExtValue());
return ConstantInt::get(*Ty, R);
}
static Constant *SRem(const ConstantInt *V1,
const ConstantInt *V2) {
if (V2->isNullValue()) return 0; // X % 0
if (V2->isAllOnesValue() && // MIN_INT % -1
(BuiltinType)V1->getSExtValue() == -(BuiltinType)V1->getSExtValue())
return 0;
BuiltinType R = (BuiltinType)(V1->getSExtValue() % V2->getSExtValue());
return ConstantInt::get(*Ty, R);
}
static Constant *And(const ConstantInt *V1, const ConstantInt *V2) {
BuiltinType R =
(BuiltinType)V1->getZExtValue() & (BuiltinType)V2->getZExtValue();
return ConstantInt::get(*Ty, R);
}
static Constant *Or(const ConstantInt *V1, const ConstantInt *V2) {
BuiltinType R =
(BuiltinType)V1->getZExtValue() | (BuiltinType)V2->getZExtValue();
return ConstantInt::get(*Ty, R);
}
static Constant *Xor(const ConstantInt *V1, const ConstantInt *V2) {
BuiltinType R =
(BuiltinType)V1->getZExtValue() ^ (BuiltinType)V2->getZExtValue();
return ConstantInt::get(*Ty, R);
}
static Constant *Shl(const ConstantInt *V1, const ConstantInt *V2) {
BuiltinType R =
(BuiltinType)V1->getZExtValue() << (BuiltinType)V2->getZExtValue();
return ConstantInt::get(*Ty, R);
}
static Constant *LShr(const ConstantInt *V1, const ConstantInt *V2) {
BuiltinType R = BuiltinType(V1->getZExtValue() >> V2->getZExtValue());
return ConstantInt::get(*Ty, R);
}
static Constant *AShr(const ConstantInt *V1, const ConstantInt *V2) {
BuiltinType R = BuiltinType(V1->getSExtValue() >> V2->getZExtValue());
return ConstantInt::get(*Ty, R);
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// DirectFPRules Class
//===----------------------------------------------------------------------===//
//
/// DirectFPRules provides implementations of functions that are valid on
/// floating point types, but not all types in general.
///
namespace {
template <class BuiltinType, Type **Ty>
struct VISIBILITY_HIDDEN DirectFPRules
: public TemplateRules<ConstantFP, DirectFPRules<BuiltinType, Ty> > {
static Constant *Add(const ConstantFP *V1, const ConstantFP *V2) {
BuiltinType R = (BuiltinType)V1->getValue() +
(BuiltinType)V2->getValue();
return ConstantFP::get(*Ty, R);
}
static Constant *Sub(const ConstantFP *V1, const ConstantFP *V2) {
BuiltinType R = (BuiltinType)V1->getValue() - (BuiltinType)V2->getValue();
return ConstantFP::get(*Ty, R);
}
static Constant *Mul(const ConstantFP *V1, const ConstantFP *V2) {
BuiltinType R = (BuiltinType)V1->getValue() * (BuiltinType)V2->getValue();
return ConstantFP::get(*Ty, R);
}
static Constant *LessThan(const ConstantFP *V1, const ConstantFP *V2) {
bool R = (BuiltinType)V1->getValue() < (BuiltinType)V2->getValue();
return ConstantBool::get(R);
}
static Constant *EqualTo(const ConstantFP *V1, const ConstantFP *V2) {
bool R = (BuiltinType)V1->getValue() == (BuiltinType)V2->getValue();
return ConstantBool::get(R);
}
static Constant *CastToPointer(const ConstantFP *V,
const PointerType *PTy) {
if (V->isNullValue()) // Is it a FP or Integral null value?
return ConstantPointerNull::get(PTy);
return 0; // Can't const prop other types of pointers
}
// Casting operators. ick
#define DEF_CAST(TYPE, CLASS, CTYPE) \
static Constant *CastTo##TYPE (const ConstantFP *V) { \
return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getValue()); \
}
DEF_CAST(Bool , ConstantBool, bool)
DEF_CAST(SByte , ConstantInt, signed char)
DEF_CAST(UByte , ConstantInt, unsigned char)
DEF_CAST(Short , ConstantInt, signed short)
DEF_CAST(UShort, ConstantInt, unsigned short)
DEF_CAST(Int , ConstantInt, signed int)
DEF_CAST(UInt , ConstantInt, unsigned int)
DEF_CAST(Long , ConstantInt, int64_t)
DEF_CAST(ULong , ConstantInt, uint64_t)
DEF_CAST(Float , ConstantFP , float)
DEF_CAST(Double, ConstantFP , double)
#undef DEF_CAST
static Constant *FRem(const ConstantFP *V1, const ConstantFP *V2) {
if (V2->isNullValue()) return 0;
BuiltinType Result = std::fmod((BuiltinType)V1->getValue(),
(BuiltinType)V2->getValue());
return ConstantFP::get(*Ty, Result);
}
static Constant *FDiv(const ConstantFP *V1, const ConstantFP *V2) {
BuiltinType inf = std::numeric_limits<BuiltinType>::infinity();
if (V2->isExactlyValue(0.0)) return ConstantFP::get(*Ty, inf);
if (V2->isExactlyValue(-0.0)) return ConstantFP::get(*Ty, -inf);
BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
return ConstantFP::get(*Ty, R);
}
};
} // end anonymous namespace
static ManagedStatic<EmptyRules> EmptyR;
static ManagedStatic<BoolRules> BoolR;
static ManagedStatic<NullPointerRules> NullPointerR;
static ManagedStatic<ConstantPackedRules> ConstantPackedR;
static ManagedStatic<GeneralPackedRules> GeneralPackedR;
static ManagedStatic<DirectIntRules<signed char , &Type::SByteTy> > SByteR;
static ManagedStatic<DirectIntRules<unsigned char , &Type::UByteTy> > UByteR;
static ManagedStatic<DirectIntRules<signed short , &Type::ShortTy> > ShortR;
static ManagedStatic<DirectIntRules<unsigned short, &Type::UShortTy> > UShortR;
static ManagedStatic<DirectIntRules<signed int , &Type::IntTy> > IntR;
static ManagedStatic<DirectIntRules<unsigned int , &Type::UIntTy> > UIntR;
static ManagedStatic<DirectIntRules<int64_t , &Type::LongTy> > LongR;
static ManagedStatic<DirectIntRules<uint64_t , &Type::ULongTy> > ULongR;
static ManagedStatic<DirectFPRules <float , &Type::FloatTy> > FloatR;
static ManagedStatic<DirectFPRules <double , &Type::DoubleTy> > DoubleR;
/// ConstRules::get - This method returns the constant rules implementation that
/// implements the semantics of the two specified constants.
ConstRules &ConstRules::get(const Constant *V1, const Constant *V2) {
if (isa<ConstantExpr>(V1) || isa<ConstantExpr>(V2) ||
isa<GlobalValue>(V1) || isa<GlobalValue>(V2) ||
isa<UndefValue>(V1) || isa<UndefValue>(V2))
return *EmptyR;
switch (V1->getType()->getTypeID()) {
default: assert(0 && "Unknown value type for constant folding!");
case Type::BoolTyID: return *BoolR;
case Type::PointerTyID: return *NullPointerR;
case Type::SByteTyID: return *SByteR;
case Type::UByteTyID: return *UByteR;
case Type::ShortTyID: return *ShortR;
case Type::UShortTyID: return *UShortR;
case Type::IntTyID: return *IntR;
case Type::UIntTyID: return *UIntR;
case Type::LongTyID: return *LongR;
case Type::ULongTyID: return *ULongR;
case Type::FloatTyID: return *FloatR;
case Type::DoubleTyID: return *DoubleR;
case Type::PackedTyID:
if (isa<ConstantPacked>(V1) && isa<ConstantPacked>(V2))
return *ConstantPackedR;
return *GeneralPackedR; // Constant folding rules for ConstantAggregateZero.
}
}
//===----------------------------------------------------------------------===//
// ConstantFold*Instruction Implementations
//===----------------------------------------------------------------------===//
/// CastConstantPacked - Convert the specified ConstantPacked node to the
/// specified packed type. At this point, we know that the elements of the
/// input packed constant are all simple integer or FP values.
static Constant *CastConstantPacked(ConstantPacked *CP,
const PackedType *DstTy) {
unsigned SrcNumElts = CP->getType()->getNumElements();
unsigned DstNumElts = DstTy->getNumElements();
const Type *SrcEltTy = CP->getType()->getElementType();
const Type *DstEltTy = DstTy->getElementType();
// If both vectors have the same number of elements (thus, the elements
// are the same size), perform the conversion now.
if (SrcNumElts == DstNumElts) {
std::vector<Constant*> Result;
// If the src and dest elements are both integers, or both floats, we can
// just BitCast each element because the elements are the same size.
if ((SrcEltTy->isIntegral() && DstEltTy->isIntegral()) ||
(SrcEltTy->isFloatingPoint() && DstEltTy->isFloatingPoint())) {
for (unsigned i = 0; i != SrcNumElts; ++i)
Result.push_back(
ConstantExpr::getBitCast(CP->getOperand(i), DstEltTy));
return ConstantPacked::get(Result);
}
// If this is an int-to-fp cast ..
if (SrcEltTy->isIntegral()) {
// Ensure that it is int-to-fp cast
assert(DstEltTy->isFloatingPoint());
if (DstEltTy->getTypeID() == Type::DoubleTyID) {
for (unsigned i = 0; i != SrcNumElts; ++i) {
double V =
BitsToDouble(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
Result.push_back(ConstantFP::get(Type::DoubleTy, V));
}
return ConstantPacked::get(Result);
}
assert(DstEltTy == Type::FloatTy && "Unknown fp type!");
for (unsigned i = 0; i != SrcNumElts; ++i) {
float V =
BitsToFloat(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
Result.push_back(ConstantFP::get(Type::FloatTy, V));
}
return ConstantPacked::get(Result);
}
// Otherwise, this is an fp-to-int cast.
assert(SrcEltTy->isFloatingPoint() && DstEltTy->isIntegral());
if (SrcEltTy->getTypeID() == Type::DoubleTyID) {
for (unsigned i = 0; i != SrcNumElts; ++i) {
uint64_t V =
DoubleToBits(cast<ConstantFP>(CP->getOperand(i))->getValue());
Constant *C = ConstantInt::get(Type::ULongTy, V);
Result.push_back(ConstantExpr::getBitCast(C, DstEltTy ));
}
return ConstantPacked::get(Result);
}
assert(SrcEltTy->getTypeID() == Type::FloatTyID);
for (unsigned i = 0; i != SrcNumElts; ++i) {
uint32_t V = FloatToBits(cast<ConstantFP>(CP->getOperand(i))->getValue());
Constant *C = ConstantInt::get(Type::UIntTy, V);
Result.push_back(ConstantExpr::getBitCast(C, DstEltTy));
}
return ConstantPacked::get(Result);
}
// Otherwise, this is a cast that changes element count and size. Handle
// casts which shrink the elements here.
// FIXME: We need to know endianness to do this!
return 0;
}
/// This function determines which opcode to use to fold two constant cast
/// expressions together. It uses CastInst::isEliminableCastPair to determine
/// the opcode. Consequently its just a wrapper around that function.
/// @Determine if it is valid to fold a cast of a cast
static unsigned
foldConstantCastPair(
unsigned opc, ///< opcode of the second cast constant expression
const ConstantExpr*Op, ///< the first cast constant expression
const Type *DstTy ///< desintation type of the first cast
) {
assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
assert(CastInst::isCast(opc) && "Invalid cast opcode");
// The the types and opcodes for the two Cast constant expressions
const Type *SrcTy = Op->getOperand(0)->getType();
const Type *MidTy = Op->getType();
Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
Instruction::CastOps secondOp = Instruction::CastOps(opc);
// Let CastInst::isEliminableCastPair do the heavy lifting.
return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
Type::ULongTy);
}
Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
const Type *DestTy) {
const Type *SrcTy = V->getType();
if (isa<UndefValue>(V))
return UndefValue::get(DestTy);
// If the cast operand is a constant expression, there's a few things we can
// do to try to simplify it.
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
if (CE->isCast()) {
// Try hard to fold cast of cast because they are often eliminable.
if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
} else if (CE->getOpcode() == Instruction::GetElementPtr) {
// If all of the indexes in the GEP are null values, there is no pointer
// adjustment going on. We might as well cast the source pointer.
bool isAllNull = true;
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
if (!CE->getOperand(i)->isNullValue()) {
isAllNull = false;
break;
}
if (isAllNull)
// This is casting one pointer type to another, always BitCast
return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
}
}
// We actually have to do a cast now, but first, we might need to fix up
// the value of the operand.
switch (opc) {
case Instruction::PtrToInt:
case Instruction::FPTrunc:
case Instruction::FPExt:
break;
case Instruction::FPToUI: {
ConstRules &Rules = ConstRules::get(V, V);
V = Rules.castToULong(V); // make sure we get an unsigned value first
break;
}
case Instruction::FPToSI: {
ConstRules &Rules = ConstRules::get(V, V);
V = Rules.castToLong(V); // make sure we get a signed value first
break;
}
case Instruction::IntToPtr: //always treated as unsigned
case Instruction::UIToFP:
case Instruction::ZExt:
// A ZExt always produces an unsigned value so we need to cast the value
// now before we try to cast it to the destination type
if (isa<ConstantInt>(V))
V = ConstantInt::get(SrcTy->getUnsignedVersion(),
cast<ConstantIntegral>(V)->getZExtValue());
break;
case Instruction::SIToFP:
case Instruction::SExt:
// A SExt always produces a signed value so we need to cast the value
// now before we try to cast it to the destiniation type.
if (isa<ConstantInt>(V))
V = ConstantInt::get(SrcTy->getSignedVersion(),
cast<ConstantIntegral>(V)->getSExtValue());
else if (const ConstantBool *CB = dyn_cast<ConstantBool>(V))
V = ConstantInt::get(Type::SByteTy, CB->getValue() ? -1 : 0);
break;
case Instruction::Trunc:
// We just handle trunc directly here. The code below doesn't work for
// trunc to bool.
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
return ConstantIntegral::get(DestTy, CI->getZExtValue());
return 0;
case Instruction::BitCast:
if (SrcTy == DestTy) return (Constant*)V; // no-op cast
// Check to see if we are casting a pointer to an aggregate to a pointer to
// the first element. If so, return the appropriate GEP instruction.
if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
std::vector<Value*> IdxList;
IdxList.push_back(Constant::getNullValue(Type::IntTy));
const Type *ElTy = PTy->getElementType();
while (ElTy != DPTy->getElementType()) {
if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
if (STy->getNumElements() == 0) break;
ElTy = STy->getElementType(0);
IdxList.push_back(Constant::getNullValue(Type::UIntTy));
} else if (const SequentialType *STy =
dyn_cast<SequentialType>(ElTy)) {
if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
ElTy = STy->getElementType();
IdxList.push_back(IdxList[0]);
} else {
break;
}
}
if (ElTy == DPTy->getElementType())
return ConstantExpr::getGetElementPtr(
const_cast<Constant*>(V),IdxList);
}
// Handle casts from one packed constant to another. We know that the src
// and dest type have the same size (otherwise its an illegal cast).
if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
if (const PackedType *SrcTy = dyn_cast<PackedType>(V->getType())) {
assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
"Not cast between same sized vectors!");
// First, check for null and undef
if (isa<ConstantAggregateZero>(V))
return Constant::getNullValue(DestTy);
if (isa<UndefValue>(V))
return UndefValue::get(DestTy);
if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) {
// This is a cast from a ConstantPacked of one type to a
// ConstantPacked of another type. Check to see if all elements of
// the input are simple.
bool AllSimpleConstants = true;
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
if (!isa<ConstantInt>(CP->getOperand(i)) &&
!isa<ConstantFP>(CP->getOperand(i))) {
AllSimpleConstants = false;
break;
}
}
// If all of the elements are simple constants, we can fold this.
if (AllSimpleConstants)
return CastConstantPacked(const_cast<ConstantPacked*>(CP), DestPTy);
}
}
}
// Finally, implement bitcast folding now. The code below doesn't handle
// bitcast right.
if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
return ConstantPointerNull::get(cast<PointerType>(DestTy));
// Handle integral constant input.
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
// Integral -> Integral, must be changing sign.
if (DestTy->isIntegral())
return ConstantInt::get(DestTy, CI->getZExtValue());
if (DestTy->isFloatingPoint()) {
if (DestTy == Type::FloatTy)
return ConstantFP::get(DestTy, BitsToFloat(CI->getZExtValue()));
assert(DestTy == Type::DoubleTy && "Unknown FP type!");
return ConstantFP::get(DestTy, BitsToDouble(CI->getZExtValue()));
}
// Otherwise, can't fold this (packed?)
return 0;
}
// Handle ConstantFP input.
if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
// FP -> Integral.
if (DestTy->isIntegral()) {
if (DestTy == Type::IntTy || DestTy == Type::UIntTy)
return ConstantInt::get(DestTy, FloatToBits(FP->getValue()));
assert((DestTy == Type::LongTy || DestTy == Type::ULongTy)
&& "Incorrect integer type for bitcast!");
return ConstantInt::get(DestTy, DoubleToBits(FP->getValue()));
}
}
return 0;
default:
assert(!"Invalid CE CastInst opcode");
break;
}
// Okay, no more folding possible, time to cast
ConstRules &Rules = ConstRules::get(V, V);
switch (DestTy->getTypeID()) {
case Type::BoolTyID: return Rules.castToBool(V);
case Type::UByteTyID: return Rules.castToUByte(V);
case Type::SByteTyID: return Rules.castToSByte(V);
case Type::UShortTyID: return Rules.castToUShort(V);
case Type::ShortTyID: return Rules.castToShort(V);
case Type::UIntTyID: return Rules.castToUInt(V);
case Type::IntTyID: return Rules.castToInt(V);
case Type::ULongTyID: return Rules.castToULong(V);
case Type::LongTyID: return Rules.castToLong(V);
case Type::FloatTyID: return Rules.castToFloat(V);
case Type::DoubleTyID: return Rules.castToDouble(V);
case Type::PointerTyID:
return Rules.castToPointer(V, cast<PointerType>(DestTy));
// what about packed ?
default: return 0;
}
}
Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
const Constant *V1,
const Constant *V2) {
if (const ConstantBool *CB = dyn_cast<ConstantBool>(Cond))
return const_cast<Constant*>(CB->getValue() ? V1 : V2);
if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
if (V1 == V2) return const_cast<Constant*>(V1);
return 0;
}
Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
const Constant *Idx) {
if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
return UndefValue::get(cast<PackedType>(Val->getType())->getElementType());
if (Val->isNullValue()) // ee(zero, x) -> zero
return Constant::getNullValue(
cast<PackedType>(Val->getType())->getElementType());
if (const ConstantPacked *CVal = dyn_cast<ConstantPacked>(Val)) {
if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
return const_cast<Constant*>(CVal->getOperand(CIdx->getZExtValue()));
} else if (isa<UndefValue>(Idx)) {
// ee({w,x,y,z}, undef) -> w (an arbitrary value).
return const_cast<Constant*>(CVal->getOperand(0));
}
}
return 0;
}
Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
const Constant *Elt,
const Constant *Idx) {
const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
if (!CIdx) return 0;
uint64_t idxVal = CIdx->getZExtValue();
if (isa<UndefValue>(Val)) {
// Insertion of scalar constant into packed undef
// Optimize away insertion of undef
if (isa<UndefValue>(Elt))
return const_cast<Constant*>(Val);
// Otherwise break the aggregate undef into multiple undefs and do
// the insertion
unsigned numOps =
cast<PackedType>(Val->getType())->getNumElements();
std::vector<Constant*> Ops;
Ops.reserve(numOps);
for (unsigned i = 0; i < numOps; ++i) {
const Constant *Op =
(i == idxVal) ? Elt : UndefValue::get(Elt->getType());
Ops.push_back(const_cast<Constant*>(Op));
}
return ConstantPacked::get(Ops);
}
if (isa<ConstantAggregateZero>(Val)) {
// Insertion of scalar constant into packed aggregate zero
// Optimize away insertion of zero
if (Elt->isNullValue())
return const_cast<Constant*>(Val);
// Otherwise break the aggregate zero into multiple zeros and do
// the insertion
unsigned numOps =
cast<PackedType>(Val->getType())->getNumElements();
std::vector<Constant*> Ops;
Ops.reserve(numOps);
for (unsigned i = 0; i < numOps; ++i) {
const Constant *Op =
(i == idxVal) ? Elt : Constant::getNullValue(Elt->getType());
Ops.push_back(const_cast<Constant*>(Op));
}
return ConstantPacked::get(Ops);
}
if (const ConstantPacked *CVal = dyn_cast<ConstantPacked>(Val)) {
// Insertion of scalar constant into packed constant
std::vector<Constant*> Ops;
Ops.reserve(CVal->getNumOperands());
for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
const Constant *Op =
(i == idxVal) ? Elt : cast<Constant>(CVal->getOperand(i));
Ops.push_back(const_cast<Constant*>(Op));
}
return ConstantPacked::get(Ops);
}
return 0;
}
Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
const Constant *V2,
const Constant *Mask) {
// TODO:
return 0;
}
/// isZeroSizedType - This type is zero sized if its an array or structure of
/// zero sized types. The only leaf zero sized type is an empty structure.
static bool isMaybeZeroSizedType(const Type *Ty) {
if (isa<OpaqueType>(Ty)) return true; // Can't say.
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
// If all of elements have zero size, this does too.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
return true;
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
return isMaybeZeroSizedType(ATy->getElementType());
}
return false;
}
/// IdxCompare - Compare the two constants as though they were getelementptr
/// indices. This allows coersion of the types to be the same thing.
///
/// If the two constants are the "same" (after coersion), return 0. If the
/// first is less than the second, return -1, if the second is less than the
/// first, return 1. If the constants are not integral, return -2.
///
static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
if (C1 == C2) return 0;
// Ok, we found a different index. Are either of the operands ConstantExprs?
// If so, we can't do anything with them.
if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
return -2; // don't know!
// Ok, we have two differing integer indices. Sign extend them to be the same
// type. Long is always big enough, so we use it.
if (C1->getType() != Type::LongTy && C1->getType() != Type::ULongTy)
C1 = ConstantExpr::getSExt(C1, Type::LongTy);
else
C1 = ConstantExpr::getBitCast(C1, Type::LongTy);
if (C2->getType() != Type::LongTy && C1->getType() != Type::ULongTy)
C2 = ConstantExpr::getSExt(C2, Type::LongTy);
else
C2 = ConstantExpr::getBitCast(C2, Type::LongTy);
if (C1 == C2) return 0; // Are they just differing types?
// If the type being indexed over is really just a zero sized type, there is
// no pointer difference being made here.
if (isMaybeZeroSizedType(ElTy))
return -2; // dunno.
// If they are really different, now that they are the same type, then we
// found a difference!
if (cast<ConstantInt>(C1)->getSExtValue() <
cast<ConstantInt>(C2)->getSExtValue())
return -1;
else
return 1;
}
/// evaluateRelation - This function determines if there is anything we can
/// decide about the two constants provided. This doesn't need to handle simple
/// things like integer comparisons, but should instead handle ConstantExprs
/// and GlobalValues. If we can determine that the two constants have a
/// particular relation to each other, we should return the corresponding SetCC
/// code, otherwise return Instruction::BinaryOpsEnd.
///
/// To simplify this code we canonicalize the relation so that the first
/// operand is always the most "complex" of the two. We consider simple
/// constants (like ConstantInt) to be the simplest, followed by
/// GlobalValues, followed by ConstantExpr's (the most complex).
///
static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
assert(V1->getType() == V2->getType() &&
"Cannot compare different types of values!");
if (V1 == V2) return Instruction::SetEQ;
if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
// We distilled this down to a simple case, use the standard constant
// folder.
ConstantBool *R = dyn_cast<ConstantBool>(ConstantExpr::getSetEQ(V1, V2));
if (R && R->getValue()) return Instruction::SetEQ;
R = dyn_cast<ConstantBool>(ConstantExpr::getSetLT(V1, V2));
if (R && R->getValue()) return Instruction::SetLT;
R = dyn_cast<ConstantBool>(ConstantExpr::getSetGT(V1, V2));
if (R && R->getValue()) return Instruction::SetGT;
// If we couldn't figure it out, bail.
return Instruction::BinaryOpsEnd;
}
// If the first operand is simple, swap operands.
Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
if (SwappedRelation != Instruction::BinaryOpsEnd)
return SetCondInst::getSwappedCondition(SwappedRelation);
} else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
if (isa<ConstantExpr>(V2)) { // Swap as necessary.
Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
if (SwappedRelation != Instruction::BinaryOpsEnd)
return SetCondInst::getSwappedCondition(SwappedRelation);
else
return Instruction::BinaryOpsEnd;
}
// Now we know that the RHS is a GlobalValue or simple constant,
// which (since the types must match) means that it's a ConstantPointerNull.
if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
return Instruction::SetNE;
} else {
// GlobalVals can never be null.
assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
if (!CPR1->hasExternalWeakLinkage())
return Instruction::SetNE;
}
} else {
// Ok, the LHS is known to be a constantexpr. The RHS can be any of a
// constantexpr, a CPR, or a simple constant.
ConstantExpr *CE1 = cast<ConstantExpr>(V1);
Constant *CE1Op0 = CE1->getOperand(0);
switch (CE1->getOpcode()) {
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
break; // We don't do anything with floating point.
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
// If the cast is not actually changing bits, and the second operand is a
// null pointer, do the comparison with the pre-casted value.
if (V2->isNullValue() &&
(isa<PointerType>(CE1->getType()) || CE1->getType()->isIntegral()))
return evaluateRelation(CE1Op0,
Constant::getNullValue(CE1Op0->getType()));
// If the dest type is a pointer type, and the RHS is a constantexpr cast
// from the same type as the src of the LHS, evaluate the inputs. This is
// important for things like "seteq (cast 4 to int*), (cast 5 to int*)",
// which happens a lot in compilers with tagged integers.
if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
if (isa<PointerType>(CE1->getType()) && CE2->isCast() &&
CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
CE1->getOperand(0)->getType()->isIntegral()) {
return evaluateRelation(CE1->getOperand(0), CE2->getOperand(0));
}
break;
case Instruction::GetElementPtr:
// Ok, since this is a getelementptr, we know that the constant has a
// pointer type. Check the various cases.
if (isa<ConstantPointerNull>(V2)) {
// If we are comparing a GEP to a null pointer, check to see if the base
// of the GEP equals the null pointer.
if (GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
if (GV->hasExternalWeakLinkage())
// Weak linkage GVals could be zero or not. We're comparing that
// to null pointer so its greater-or-equal
return Instruction::SetGE;
else
// If its not weak linkage, the GVal must have a non-zero address
// so the result is greater-than
return Instruction::SetGT;
} else if (isa<ConstantPointerNull>(CE1Op0)) {
// If we are indexing from a null pointer, check to see if we have any
// non-zero indices.
for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
if (!CE1->getOperand(i)->isNullValue())
// Offsetting from null, must not be equal.
return Instruction::SetGT;
// Only zero indexes from null, must still be zero.
return Instruction::SetEQ;
}
// Otherwise, we can't really say if the first operand is null or not.
} else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
if (isa<ConstantPointerNull>(CE1Op0)) {
if (CPR2->hasExternalWeakLinkage())
// Weak linkage GVals could be zero or not. We're comparing it to
// a null pointer, so its less-or-equal
return Instruction::SetLE;
else
// If its not weak linkage, the GVal must have a non-zero address
// so the result is less-than
return Instruction::SetLT;
} else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
if (CPR1 == CPR2) {
// If this is a getelementptr of the same global, then it must be
// different. Because the types must match, the getelementptr could
// only have at most one index, and because we fold getelementptr's
// with a single zero index, it must be nonzero.
assert(CE1->getNumOperands() == 2 &&
!CE1->getOperand(1)->isNullValue() &&
"Suprising getelementptr!");
return Instruction::SetGT;
} else {
// If they are different globals, we don't know what the value is,
// but they can't be equal.
return Instruction::SetNE;
}
}
} else {
const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
const Constant *CE2Op0 = CE2->getOperand(0);
// There are MANY other foldings that we could perform here. They will
// probably be added on demand, as they seem needed.
switch (CE2->getOpcode()) {
default: break;
case Instruction::GetElementPtr:
// By far the most common case to handle is when the base pointers are
// obviously to the same or different globals.
if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
return Instruction::SetNE;
// Ok, we know that both getelementptr instructions are based on the
// same global. From this, we can precisely determine the relative
// ordering of the resultant pointers.
unsigned i = 1;
// Compare all of the operands the GEP's have in common.
gep_type_iterator GTI = gep_type_begin(CE1);
for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
++i, ++GTI)
switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
GTI.getIndexedType())) {
case -1: return Instruction::SetLT;
case 1: return Instruction::SetGT;
case -2: return Instruction::BinaryOpsEnd;
}
// Ok, we ran out of things they have in common. If any leftovers
// are non-zero then we have a difference, otherwise we are equal.
for (; i < CE1->getNumOperands(); ++i)
if (!CE1->getOperand(i)->isNullValue())
if (isa<ConstantIntegral>(CE1->getOperand(i)))
return Instruction::SetGT;
else
return Instruction::BinaryOpsEnd; // Might be equal.
for (; i < CE2->getNumOperands(); ++i)
if (!CE2->getOperand(i)->isNullValue())
if (isa<ConstantIntegral>(CE2->getOperand(i)))
return Instruction::SetLT;
else
return Instruction::BinaryOpsEnd; // Might be equal.
return Instruction::SetEQ;
}
}
}
default:
break;
}
}
return Instruction::BinaryOpsEnd;
}
Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
const Constant *V1,
const Constant *V2) {
Constant *C = 0;
switch (Opcode) {
default: break;
case Instruction::Add: C = ConstRules::get(V1, V2).add(V1, V2); break;
case Instruction::Sub: C = ConstRules::get(V1, V2).sub(V1, V2); break;
case Instruction::Mul: C = ConstRules::get(V1, V2).mul(V1, V2); break;
case Instruction::UDiv: C = ConstRules::get(V1, V2).udiv(V1, V2); break;
case Instruction::SDiv: C = ConstRules::get(V1, V2).sdiv(V1, V2); break;
case Instruction::FDiv: C = ConstRules::get(V1, V2).fdiv(V1, V2); break;
case Instruction::URem: C = ConstRules::get(V1, V2).urem(V1, V2); break;
case Instruction::SRem: C = ConstRules::get(V1, V2).srem(V1, V2); break;
case Instruction::FRem: C = ConstRules::get(V1, V2).frem(V1, V2); break;
case Instruction::And: C = ConstRules::get(V1, V2).op_and(V1, V2); break;
case Instruction::Or: C = ConstRules::get(V1, V2).op_or (V1, V2); break;
case Instruction::Xor: C = ConstRules::get(V1, V2).op_xor(V1, V2); break;
case Instruction::Shl: C = ConstRules::get(V1, V2).shl(V1, V2); break;
case Instruction::LShr: C = ConstRules::get(V1, V2).lshr(V1, V2); break;
case Instruction::AShr: C = ConstRules::get(V1, V2).ashr(V1, V2); break;
case Instruction::SetEQ:
// SetEQ(null,GV) -> false
if (V1->isNullValue()) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V2))
if (!GV->hasExternalWeakLinkage())
return ConstantBool::getFalse();
// SetEQ(GV,null) -> false
} else if (V2->isNullValue()) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1))
if (!GV->hasExternalWeakLinkage())
return ConstantBool::getFalse();
}
C = ConstRules::get(V1, V2).equalto(V1, V2);
break;
case Instruction::SetLT: C = ConstRules::get(V1, V2).lessthan(V1, V2);break;
case Instruction::SetGT: C = ConstRules::get(V1, V2).lessthan(V2, V1);break;
case Instruction::SetNE:
// SetNE(null,GV) -> true
if (V1->isNullValue()) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V2))
if (!GV->hasExternalWeakLinkage())
return ConstantBool::getTrue();
// SetNE(GV,null) -> true
} else if (V2->isNullValue()) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1))
if (!GV->hasExternalWeakLinkage())
return ConstantBool::getTrue();
}
// V1 != V2 === !(V1 == V2)
C = ConstRules::get(V1, V2).equalto(V1, V2);
if (C) return ConstantExpr::getNot(C);
break;
case Instruction::SetLE: // V1 <= V2 === !(V2 < V1)
C = ConstRules::get(V1, V2).lessthan(V2, V1);
if (C) return ConstantExpr::getNot(C);
break;
case Instruction::SetGE: // V1 >= V2 === !(V1 < V2)
C = ConstRules::get(V1, V2).lessthan(V1, V2);
if (C) return ConstantExpr::getNot(C);
break;
}
// If we successfully folded the expression, return it now.
if (C) return C;
if (SetCondInst::isComparison(Opcode)) {
if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
return UndefValue::get(Type::BoolTy);
switch (evaluateRelation(const_cast<Constant*>(V1),
const_cast<Constant*>(V2))) {
default: assert(0 && "Unknown relational!");
case Instruction::BinaryOpsEnd:
break; // Couldn't determine anything about these constants.
case Instruction::SetEQ: // We know the constants are equal!
// If we know the constants are equal, we can decide the result of this
// computation precisely.
return ConstantBool::get(Opcode == Instruction::SetEQ ||
Opcode == Instruction::SetLE ||
Opcode == Instruction::SetGE);
case Instruction::SetLT:
// If we know that V1 < V2, we can decide the result of this computation
// precisely.
return ConstantBool::get(Opcode == Instruction::SetLT ||
Opcode == Instruction::SetNE ||
Opcode == Instruction::SetLE);
case Instruction::SetGT:
// If we know that V1 > V2, we can decide the result of this computation
// precisely.
return ConstantBool::get(Opcode == Instruction::SetGT ||
Opcode == Instruction::SetNE ||
Opcode == Instruction::SetGE);
case Instruction::SetLE:
// If we know that V1 <= V2, we can only partially decide this relation.
if (Opcode == Instruction::SetGT) return ConstantBool::getFalse();
if (Opcode == Instruction::SetLT) return ConstantBool::getTrue();
break;
case Instruction::SetGE:
// If we know that V1 >= V2, we can only partially decide this relation.
if (Opcode == Instruction::SetLT) return ConstantBool::getFalse();
if (Opcode == Instruction::SetGT) return ConstantBool::getTrue();
break;
case Instruction::SetNE:
// If we know that V1 != V2, we can only partially decide this relation.
if (Opcode == Instruction::SetEQ) return ConstantBool::getFalse();
if (Opcode == Instruction::SetNE) return ConstantBool::getTrue();
break;
}
}
if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) {
switch (Opcode) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Xor:
return UndefValue::get(V1->getType());
case Instruction::Mul:
case Instruction::And:
return Constant::getNullValue(V1->getType());
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
if (!isa<UndefValue>(V2)) // undef / X -> 0
return Constant::getNullValue(V1->getType());
return const_cast<Constant*>(V2); // X / undef -> undef
case Instruction::Or: // X | undef -> -1
return ConstantInt::getAllOnesValue(V1->getType());
case Instruction::LShr:
if (isa<UndefValue>(V2) && isa<UndefValue>(V1))
return const_cast<Constant*>(V1); // undef lshr undef -> undef
return Constant::getNullValue(V1->getType()); // X lshr undef -> 0
// undef lshr X -> 0
case Instruction::AShr:
if (!isa<UndefValue>(V2))
return const_cast<Constant*>(V1); // undef ashr X --> undef
else if (isa<UndefValue>(V1))
return const_cast<Constant*>(V1); // undef ashr undef -> undef
else
return const_cast<Constant*>(V1); // X ashr undef --> X
case Instruction::Shl:
// undef << X -> 0 or X << undef -> 0
return Constant::getNullValue(V1->getType());
}
}
if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(V1)) {
if (isa<ConstantExpr>(V2)) {
// There are many possible foldings we could do here. We should probably
// at least fold add of a pointer with an integer into the appropriate
// getelementptr. This will improve alias analysis a bit.
} else {
// Just implement a couple of simple identities.
switch (Opcode) {
case Instruction::Add:
if (V2->isNullValue()) return const_cast<Constant*>(V1); // X + 0 == X
break;
case Instruction::Sub:
if (V2->isNullValue()) return const_cast<Constant*>(V1); // X - 0 == X
break;
case Instruction::Mul:
if (V2->isNullValue()) return const_cast<Constant*>(V2); // X * 0 == 0
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
if (CI->getZExtValue() == 1)
return const_cast<Constant*>(V1); // X * 1 == X
break;
case Instruction::UDiv:
case Instruction::SDiv:
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
if (CI->getZExtValue() == 1)
return const_cast<Constant*>(V1); // X / 1 == X
break;
case Instruction::URem:
case Instruction::SRem:
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
if (CI->getZExtValue() == 1)
return Constant::getNullValue(CI->getType()); // X % 1 == 0
break;
case Instruction::And:
if (cast<ConstantIntegral>(V2)->isAllOnesValue())
return const_cast<Constant*>(V1); // X & -1 == X
if (V2->isNullValue()) return const_cast<Constant*>(V2); // X & 0 == 0
if (CE1->isCast() && isa<GlobalValue>(CE1->getOperand(0))) {
GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
// Functions are at least 4-byte aligned. If and'ing the address of a
// function with a constant < 4, fold it to zero.
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
if (CI->getZExtValue() < 4 && isa<Function>(CPR))
return Constant::getNullValue(CI->getType());
}
break;
case Instruction::Or:
if (V2->isNullValue()) return const_cast<Constant*>(V1); // X | 0 == X
if (cast<ConstantIntegral>(V2)->isAllOnesValue())
return const_cast<Constant*>(V2); // X | -1 == -1
break;
case Instruction::Xor:
if (V2->isNullValue()) return const_cast<Constant*>(V1); // X ^ 0 == X
break;
}
}
} else if (isa<ConstantExpr>(V2)) {
// If V2 is a constant expr and V1 isn't, flop them around and fold the
// other way if possible.
switch (Opcode) {
case Instruction::Add:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::SetEQ:
case Instruction::SetNE:
// No change of opcode required.
return ConstantFoldBinaryInstruction(Opcode, V2, V1);
case Instruction::SetLT:
case Instruction::SetGT:
case Instruction::SetLE:
case Instruction::SetGE:
// Change the opcode as necessary to swap the operands.
Opcode = SetCondInst::getSwappedCondition((Instruction::BinaryOps)Opcode);
return ConstantFoldBinaryInstruction(Opcode, V2, V1);
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Sub:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
default: // These instructions cannot be flopped around.
break;
}
}
return 0;
}
Constant *llvm::ConstantFoldCompare(
unsigned opcode, Constant *C1, Constant *C2, unsigned short predicate)
{
// Place holder for future folding of ICmp and FCmp instructions
return 0;
}
Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
const std::vector<Value*> &IdxList) {
if (IdxList.size() == 0 ||
(IdxList.size() == 1 && cast<Constant>(IdxList[0])->isNullValue()))
return const_cast<Constant*>(C);
if (isa<UndefValue>(C)) {
const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
true);
assert(Ty != 0 && "Invalid indices for GEP!");
return UndefValue::get(PointerType::get(Ty));
}
Constant *Idx0 = cast<Constant>(IdxList[0]);
if (C->isNullValue()) {
bool isNull = true;
for (unsigned i = 0, e = IdxList.size(); i != e; ++i)
if (!cast<Constant>(IdxList[i])->isNullValue()) {
isNull = false;
break;
}
if (isNull) {
const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
true);
assert(Ty != 0 && "Invalid indices for GEP!");
return ConstantPointerNull::get(PointerType::get(Ty));
}
if (IdxList.size() == 1) {
const Type *ElTy = cast<PointerType>(C->getType())->getElementType();
if (uint32_t ElSize = ElTy->getPrimitiveSize()) {
// gep null, C is equal to C*sizeof(nullty). If nullty is a known llvm
// type, we can statically fold this.
Constant *R = ConstantInt::get(Type::UIntTy, ElSize);
// We know R is unsigned, Idx0 is signed because it must be an index
// through a sequential type (gep pointer operand) which is always
// signed.
R = ConstantExpr::getSExtOrBitCast(R, Idx0->getType());
R = ConstantExpr::getMul(R, Idx0); // signed multiply
// R is a signed integer, C is the GEP pointer so -> IntToPtr
return ConstantExpr::getIntToPtr(R, C->getType());
}
}
}
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
// Combine Indices - If the source pointer to this getelementptr instruction
// is a getelementptr instruction, combine the indices of the two
// getelementptr instructions into a single instruction.
//
if (CE->getOpcode() == Instruction::GetElementPtr) {
const Type *LastTy = 0;
for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
I != E; ++I)
LastTy = *I;
if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
std::vector<Value*> NewIndices;
NewIndices.reserve(IdxList.size() + CE->getNumOperands());
for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
NewIndices.push_back(CE->getOperand(i));
// Add the last index of the source with the first index of the new GEP.
// Make sure to handle the case when they are actually different types.
Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
// Otherwise it must be an array.
if (!Idx0->isNullValue()) {
const Type *IdxTy = Combined->getType();
if (IdxTy != Idx0->getType()) {
Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::LongTy);
Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
Type::LongTy);
Combined = ConstantExpr::get(Instruction::Add, C1, C2);
} else {
Combined =
ConstantExpr::get(Instruction::Add, Idx0, Combined);
}
}
NewIndices.push_back(Combined);
NewIndices.insert(NewIndices.end(), IdxList.begin()+1, IdxList.end());
return ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices);
}
}
// Implement folding of:
// int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
// long 0, long 0)
// To: int* getelementptr ([3 x int]* %X, long 0, long 0)
//
if (CE->isCast() && IdxList.size() > 1 && Idx0->isNullValue())
if (const PointerType *SPT =
dyn_cast<PointerType>(CE->getOperand(0)->getType()))
if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
if (const ArrayType *CAT =
dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
if (CAT->getElementType() == SAT->getElementType())
return ConstantExpr::getGetElementPtr(
(Constant*)CE->getOperand(0), IdxList);
}
return 0;
}