llvm-6502/unittests/IR/PassManagerTest.cpp
Chandler Carruth 3f081983cc [PM] Fix the analysis templates' usage of IRUnitT.
This is supposed to be the whole type of the IR unit, and so we
shouldn't pass a pointer to it but rather the value itself. In turn, we
need to provide a 'Module *' as that type argument (for example). This
will become more relevant with SCCs or other units which may not be
passed as a pointer type, but also brings consistency with the
transformation pass templates.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195445 91177308-0d34-0410-b5e6-96231b3b80d8
2013-11-22 11:34:43 +00:00

187 lines
5.0 KiB
C++

//===- llvm/unittest/IR/PassManager.cpp - PassManager tests ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Assembly/Parser.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class TestAnalysisPass {
public:
typedef Function *IRUnitT;
struct Result {
Result(int Count) : InstructionCount(Count) {}
int InstructionCount;
};
/// \brief Returns an opaque, unique ID for this pass type.
static void *ID() { return (void *)&PassID; }
TestAnalysisPass(int &Runs) : Runs(Runs) {}
/// \brief Run the analysis pass over the function and return a result.
Result run(Function *F) {
++Runs;
int Count = 0;
for (Function::iterator BBI = F->begin(), BBE = F->end(); BBI != BBE; ++BBI)
for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
++II)
++Count;
return Result(Count);
}
private:
/// \brief Private static data to provide unique ID.
static char PassID;
int &Runs;
};
char TestAnalysisPass::PassID;
struct TestModulePass {
TestModulePass(int &RunCount) : RunCount(RunCount) {}
PreservedAnalyses run(Module *M) {
++RunCount;
return PreservedAnalyses::none();
}
int &RunCount;
};
struct TestPreservingModulePass {
PreservedAnalyses run(Module *M) {
return PreservedAnalyses::all();
}
};
struct TestMinPreservingModulePass {
PreservedAnalyses run(Module *M) {
PreservedAnalyses PA;
PA.preserve<FunctionAnalysisManagerModuleProxy>();
return PA;
}
};
struct TestFunctionPass {
TestFunctionPass(int &RunCount, int &AnalyzedInstrCount)
: RunCount(RunCount), AnalyzedInstrCount(AnalyzedInstrCount) {}
PreservedAnalyses run(Function *F, FunctionAnalysisManager *AM) {
++RunCount;
const TestAnalysisPass::Result &AR = AM->getResult<TestAnalysisPass>(F);
AnalyzedInstrCount += AR.InstructionCount;
return PreservedAnalyses::all();
}
int &RunCount;
int &AnalyzedInstrCount;
};
Module *parseIR(const char *IR) {
LLVMContext &C = getGlobalContext();
SMDiagnostic Err;
return ParseAssemblyString(IR, 0, Err, C);
}
class PassManagerTest : public ::testing::Test {
protected:
OwningPtr<Module> M;
public:
PassManagerTest()
: M(parseIR("define void @f() {\n"
"entry:\n"
" call void @g()\n"
" call void @h()\n"
" ret void\n"
"}\n"
"define void @g() {\n"
" ret void\n"
"}\n"
"define void @h() {\n"
" ret void\n"
"}\n")) {}
};
TEST_F(PassManagerTest, Basic) {
FunctionAnalysisManager FAM;
int AnalysisRuns = 0;
FAM.registerPass(TestAnalysisPass(AnalysisRuns));
ModuleAnalysisManager MAM;
MAM.registerPass(FunctionAnalysisManagerModuleProxy(FAM));
ModulePassManager MPM;
// Count the runs over a Function.
FunctionPassManager FPM1;
int FunctionPassRunCount1 = 0;
int AnalyzedInstrCount1 = 0;
FPM1.addPass(TestFunctionPass(FunctionPassRunCount1, AnalyzedInstrCount1));
MPM.addPass(createModuleToFunctionPassAdaptor(FPM1));
// Count the runs over a module.
int ModulePassRunCount = 0;
MPM.addPass(TestModulePass(ModulePassRunCount));
// Count the runs over a Function in a separate manager.
FunctionPassManager FPM2;
int FunctionPassRunCount2 = 0;
int AnalyzedInstrCount2 = 0;
FPM2.addPass(TestFunctionPass(FunctionPassRunCount2, AnalyzedInstrCount2));
MPM.addPass(createModuleToFunctionPassAdaptor(FPM2));
// A third function pass manager but with only preserving intervening passes.
MPM.addPass(TestPreservingModulePass());
FunctionPassManager FPM3;
int FunctionPassRunCount3 = 0;
int AnalyzedInstrCount3 = 0;
FPM3.addPass(TestFunctionPass(FunctionPassRunCount3, AnalyzedInstrCount3));
MPM.addPass(createModuleToFunctionPassAdaptor(FPM3));
// A fourth function pass manager but with a minimal intervening passes.
MPM.addPass(TestMinPreservingModulePass());
FunctionPassManager FPM4;
int FunctionPassRunCount4 = 0;
int AnalyzedInstrCount4 = 0;
FPM4.addPass(TestFunctionPass(FunctionPassRunCount4, AnalyzedInstrCount4));
MPM.addPass(createModuleToFunctionPassAdaptor(FPM4));
MPM.run(M.get(), &MAM);
// Validate module pass counters.
EXPECT_EQ(1, ModulePassRunCount);
// Validate both function pass counter sets.
EXPECT_EQ(3, FunctionPassRunCount1);
EXPECT_EQ(5, AnalyzedInstrCount1);
EXPECT_EQ(3, FunctionPassRunCount2);
EXPECT_EQ(5, AnalyzedInstrCount2);
EXPECT_EQ(3, FunctionPassRunCount3);
EXPECT_EQ(5, AnalyzedInstrCount3);
EXPECT_EQ(3, FunctionPassRunCount4);
EXPECT_EQ(5, AnalyzedInstrCount4);
// Validate the analysis counters.
EXPECT_EQ(9, AnalysisRuns);
}
}