llvm-6502/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp

356 lines
14 KiB
C++

//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements routines for translating functions from LLVM IR into
// Machine IR.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "function-lowering-info"
#include "FunctionLoweringInfo.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
/// of insertvalue or extractvalue indices that identify a member, return
/// the linearized index of the start of the member.
///
unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
const unsigned *Indices,
const unsigned *IndicesEnd,
unsigned CurIndex) {
// Base case: We're done.
if (Indices && Indices == IndicesEnd)
return CurIndex;
// Given a struct type, recursively traverse the elements.
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
for (StructType::element_iterator EB = STy->element_begin(),
EI = EB,
EE = STy->element_end();
EI != EE; ++EI) {
if (Indices && *Indices == unsigned(EI - EB))
return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
}
return CurIndex;
}
// Given an array type, recursively traverse the elements.
else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
const Type *EltTy = ATy->getElementType();
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
if (Indices && *Indices == i)
return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
}
return CurIndex;
}
// We haven't found the type we're looking for, so keep searching.
return CurIndex + 1;
}
/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
/// EVTs that represent all the individual underlying
/// non-aggregate types that comprise it.
///
/// If Offsets is non-null, it points to a vector to be filled in
/// with the in-memory offsets of each of the individual values.
///
void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
SmallVectorImpl<EVT> &ValueVTs,
SmallVectorImpl<uint64_t> *Offsets,
uint64_t StartingOffset) {
// Given a struct type, recursively traverse the elements.
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
for (StructType::element_iterator EB = STy->element_begin(),
EI = EB,
EE = STy->element_end();
EI != EE; ++EI)
ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
StartingOffset + SL->getElementOffset(EI - EB));
return;
}
// Given an array type, recursively traverse the elements.
if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
const Type *EltTy = ATy->getElementType();
uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
StartingOffset + i * EltSize);
return;
}
// Interpret void as zero return values.
if (Ty->isVoidTy())
return;
// Base case: we can get an EVT for this LLVM IR type.
ValueVTs.push_back(TLI.getValueType(Ty));
if (Offsets)
Offsets->push_back(StartingOffset);
}
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
/// PHI nodes or outside of the basic block that defines it, or used by a
/// switch or atomic instruction, which may expand to multiple basic blocks.
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
if (isa<PHINode>(I)) return true;
BasicBlock *BB = I->getParent();
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
return true;
return false;
}
/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
/// entry block, return true. This includes arguments used by switches, since
/// the switch may expand into multiple basic blocks.
static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
// With FastISel active, we may be splitting blocks, so force creation
// of virtual registers for all non-dead arguments.
// Don't force virtual registers for byval arguments though, because
// fast-isel can't handle those in all cases.
if (EnableFastISel && !A->hasByValAttr())
return A->use_empty();
BasicBlock *Entry = A->getParent()->begin();
for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
return false; // Use not in entry block.
return true;
}
FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
: TLI(tli) {
}
void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
bool EnableFastISel) {
Fn = &fn;
MF = &mf;
RegInfo = &MF->getRegInfo();
// Create a vreg for each argument register that is not dead and is used
// outside of the entry block for the function.
for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
AI != E; ++AI)
if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
InitializeRegForValue(AI);
// Initialize the mapping of values to registers. This is only set up for
// instruction values that are used outside of the block that defines
// them.
Function::iterator BB = Fn->begin(), EB = Fn->end();
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
const Type *Ty = AI->getAllocatedType();
uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
unsigned Align =
std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
AI->getAlignment());
TySize *= CUI->getZExtValue(); // Get total allocated size.
if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
StaticAllocaMap[AI] =
MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
}
for (; BB != EB; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
if (!isa<AllocaInst>(I) ||
!StaticAllocaMap.count(cast<AllocaInst>(I)))
InitializeRegForValue(I);
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
// also creates the initial PHI MachineInstrs, though none of the input
// operands are populated.
for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
MBBMap[BB] = MBB;
MF->push_back(MBB);
// Transfer the address-taken flag. This is necessary because there could
// be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
// the first one should be marked.
if (BB->hasAddressTaken())
MBB->setHasAddressTaken();
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
// appropriate.
PHINode *PN;
DebugLoc DL;
for (BasicBlock::iterator
I = BB->begin(), E = BB->end(); I != E; ++I) {
PN = dyn_cast<PHINode>(I);
if (!PN || PN->use_empty()) continue;
unsigned PHIReg = ValueMap[PN];
assert(PHIReg && "PHI node does not have an assigned virtual register!");
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, PN->getType(), ValueVTs);
for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
EVT VT = ValueVTs[vti];
unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
for (unsigned i = 0; i != NumRegisters; ++i)
BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i);
PHIReg += NumRegisters;
}
}
}
}
/// clear - Clear out all the function-specific state. This returns this
/// FunctionLoweringInfo to an empty state, ready to be used for a
/// different function.
void FunctionLoweringInfo::clear() {
MBBMap.clear();
ValueMap.clear();
StaticAllocaMap.clear();
#ifndef NDEBUG
CatchInfoLost.clear();
CatchInfoFound.clear();
#endif
LiveOutRegInfo.clear();
}
unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
}
/// CreateRegForValue - Allocate the appropriate number of virtual registers of
/// the correctly promoted or expanded types. Assign these registers
/// consecutive vreg numbers and return the first assigned number.
///
/// In the case that the given value has struct or array type, this function
/// will assign registers for each member or element.
///
unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, V->getType(), ValueVTs);
unsigned FirstReg = 0;
for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
EVT ValueVT = ValueVTs[Value];
EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
for (unsigned i = 0; i != NumRegs; ++i) {
unsigned R = MakeReg(RegisterVT);
if (!FirstReg) FirstReg = R;
}
}
return FirstReg;
}
/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
V = V->stripPointerCasts();
GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
assert ((GV || isa<ConstantPointerNull>(V)) &&
"TypeInfo must be a global variable or NULL");
return GV;
}
/// AddCatchInfo - Extract the personality and type infos from an eh.selector
/// call, and add them to the specified machine basic block.
void llvm::AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
MachineBasicBlock *MBB) {
// Inform the MachineModuleInfo of the personality for this landing pad.
ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
assert(CE->getOpcode() == Instruction::BitCast &&
isa<Function>(CE->getOperand(0)) &&
"Personality should be a function");
MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
// Gather all the type infos for this landing pad and pass them along to
// MachineModuleInfo.
std::vector<GlobalVariable *> TyInfo;
unsigned N = I.getNumOperands();
for (unsigned i = N - 1; i > 2; --i) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
unsigned FilterLength = CI->getZExtValue();
unsigned FirstCatch = i + FilterLength + !FilterLength;
assert (FirstCatch <= N && "Invalid filter length");
if (FirstCatch < N) {
TyInfo.reserve(N - FirstCatch);
for (unsigned j = FirstCatch; j < N; ++j)
TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
MMI->addCatchTypeInfo(MBB, TyInfo);
TyInfo.clear();
}
if (!FilterLength) {
// Cleanup.
MMI->addCleanup(MBB);
} else {
// Filter.
TyInfo.reserve(FilterLength - 1);
for (unsigned j = i + 1; j < FirstCatch; ++j)
TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
MMI->addFilterTypeInfo(MBB, TyInfo);
TyInfo.clear();
}
N = i;
}
}
if (N > 3) {
TyInfo.reserve(N - 3);
for (unsigned j = 3; j < N; ++j)
TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
MMI->addCatchTypeInfo(MBB, TyInfo);
}
}
void llvm::CopyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
// Apply the catch info to DestBB.
AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
#ifndef NDEBUG
if (!FLI.MBBMap[SrcBB]->isLandingPad())
FLI.CatchInfoFound.insert(EHSel);
#endif
}
}