llvm-6502/unittests/IR/IRBuilderTest.cpp
Rafael Espindola 3f0a9af13b Fix resetting the DataLayout in a Module.
No tool does this currently, but as everything else in a module we should be
able to change its DataLayout.

Most of the fix is in DataLayout to make sure it can be reset properly.

The test uses Module::setDataLayout since the fact that we mutate a DataLayout
is an implementation detail. The module could hold a OwningPtr<DataLayout> and
the DataLayout itself could be immutable.

Thanks to Philip Reames for pushing me in the right direction.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202198 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-25 22:23:04 +00:00

289 lines
9.3 KiB
C++

//===- llvm/unittest/IR/IRBuilderTest.cpp - IRBuilder tests ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/IRBuilder.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/NoFolder.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class IRBuilderTest : public testing::Test {
protected:
virtual void SetUp() {
M.reset(new Module("MyModule", Ctx));
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx),
/*isVarArg=*/false);
F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
BB = BasicBlock::Create(Ctx, "", F);
GV = new GlobalVariable(*M, Type::getFloatTy(Ctx), true,
GlobalValue::ExternalLinkage, 0);
}
virtual void TearDown() {
BB = 0;
M.reset();
}
LLVMContext Ctx;
OwningPtr<Module> M;
Function *F;
BasicBlock *BB;
GlobalVariable *GV;
};
TEST_F(IRBuilderTest, Lifetime) {
IRBuilder<> Builder(BB);
AllocaInst *Var1 = Builder.CreateAlloca(Builder.getInt8Ty());
AllocaInst *Var2 = Builder.CreateAlloca(Builder.getInt32Ty());
AllocaInst *Var3 = Builder.CreateAlloca(Builder.getInt8Ty(),
Builder.getInt32(123));
CallInst *Start1 = Builder.CreateLifetimeStart(Var1);
CallInst *Start2 = Builder.CreateLifetimeStart(Var2);
CallInst *Start3 = Builder.CreateLifetimeStart(Var3, Builder.getInt64(100));
EXPECT_EQ(Start1->getArgOperand(0), Builder.getInt64(-1));
EXPECT_EQ(Start2->getArgOperand(0), Builder.getInt64(-1));
EXPECT_EQ(Start3->getArgOperand(0), Builder.getInt64(100));
EXPECT_EQ(Start1->getArgOperand(1), Var1);
EXPECT_NE(Start2->getArgOperand(1), Var2);
EXPECT_EQ(Start3->getArgOperand(1), Var3);
Value *End1 = Builder.CreateLifetimeEnd(Var1);
Builder.CreateLifetimeEnd(Var2);
Builder.CreateLifetimeEnd(Var3);
IntrinsicInst *II_Start1 = dyn_cast<IntrinsicInst>(Start1);
IntrinsicInst *II_End1 = dyn_cast<IntrinsicInst>(End1);
ASSERT_TRUE(II_Start1 != NULL);
EXPECT_EQ(II_Start1->getIntrinsicID(), Intrinsic::lifetime_start);
ASSERT_TRUE(II_End1 != NULL);
EXPECT_EQ(II_End1->getIntrinsicID(), Intrinsic::lifetime_end);
}
TEST_F(IRBuilderTest, CreateCondBr) {
IRBuilder<> Builder(BB);
BasicBlock *TBB = BasicBlock::Create(Ctx, "", F);
BasicBlock *FBB = BasicBlock::Create(Ctx, "", F);
BranchInst *BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB);
TerminatorInst *TI = BB->getTerminator();
EXPECT_EQ(BI, TI);
EXPECT_EQ(2u, TI->getNumSuccessors());
EXPECT_EQ(TBB, TI->getSuccessor(0));
EXPECT_EQ(FBB, TI->getSuccessor(1));
BI->eraseFromParent();
MDNode *Weights = MDBuilder(Ctx).createBranchWeights(42, 13);
BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB, Weights);
TI = BB->getTerminator();
EXPECT_EQ(BI, TI);
EXPECT_EQ(2u, TI->getNumSuccessors());
EXPECT_EQ(TBB, TI->getSuccessor(0));
EXPECT_EQ(FBB, TI->getSuccessor(1));
EXPECT_EQ(Weights, TI->getMetadata(LLVMContext::MD_prof));
}
TEST_F(IRBuilderTest, LandingPadName) {
IRBuilder<> Builder(BB);
LandingPadInst *LP = Builder.CreateLandingPad(Builder.getInt32Ty(),
Builder.getInt32(0), 0, "LP");
EXPECT_EQ(LP->getName(), "LP");
}
TEST_F(IRBuilderTest, DataLayout) {
OwningPtr<Module> M(new Module("test", Ctx));
M->setDataLayout("e-n32");
EXPECT_TRUE(M->getDataLayout()->isLegalInteger(32));
M->setDataLayout("e");
EXPECT_FALSE(M->getDataLayout()->isLegalInteger(32));
}
TEST_F(IRBuilderTest, GetIntTy) {
IRBuilder<> Builder(BB);
IntegerType *Ty1 = Builder.getInt1Ty();
EXPECT_EQ(Ty1, IntegerType::get(Ctx, 1));
DataLayout* DL = new DataLayout(M.get());
IntegerType *IntPtrTy = Builder.getIntPtrTy(DL);
unsigned IntPtrBitSize = DL->getPointerSizeInBits(0);
EXPECT_EQ(IntPtrTy, IntegerType::get(Ctx, IntPtrBitSize));
delete DL;
}
TEST_F(IRBuilderTest, FastMathFlags) {
IRBuilder<> Builder(BB);
Value *F;
Instruction *FDiv, *FAdd;
F = Builder.CreateLoad(GV);
F = Builder.CreateFAdd(F, F);
EXPECT_FALSE(Builder.getFastMathFlags().any());
ASSERT_TRUE(isa<Instruction>(F));
FAdd = cast<Instruction>(F);
EXPECT_FALSE(FAdd->hasNoNaNs());
FastMathFlags FMF;
Builder.SetFastMathFlags(FMF);
F = Builder.CreateFAdd(F, F);
EXPECT_FALSE(Builder.getFastMathFlags().any());
FMF.setUnsafeAlgebra();
Builder.SetFastMathFlags(FMF);
F = Builder.CreateFAdd(F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
ASSERT_TRUE(isa<Instruction>(F));
FAdd = cast<Instruction>(F);
EXPECT_TRUE(FAdd->hasNoNaNs());
// Now, try it with CreateBinOp
F = Builder.CreateBinOp(Instruction::FAdd, F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
ASSERT_TRUE(isa<Instruction>(F));
FAdd = cast<Instruction>(F);
EXPECT_TRUE(FAdd->hasNoNaNs());
F = Builder.CreateFDiv(F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().UnsafeAlgebra);
ASSERT_TRUE(isa<Instruction>(F));
FDiv = cast<Instruction>(F);
EXPECT_TRUE(FDiv->hasAllowReciprocal());
Builder.clearFastMathFlags();
F = Builder.CreateFDiv(F, F);
ASSERT_TRUE(isa<Instruction>(F));
FDiv = cast<Instruction>(F);
EXPECT_FALSE(FDiv->hasAllowReciprocal());
FMF.clear();
FMF.setAllowReciprocal();
Builder.SetFastMathFlags(FMF);
F = Builder.CreateFDiv(F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal);
ASSERT_TRUE(isa<Instruction>(F));
FDiv = cast<Instruction>(F);
EXPECT_TRUE(FDiv->hasAllowReciprocal());
Builder.clearFastMathFlags();
F = Builder.CreateFDiv(F, F);
ASSERT_TRUE(isa<Instruction>(F));
FDiv = cast<Instruction>(F);
EXPECT_FALSE(FDiv->getFastMathFlags().any());
FDiv->copyFastMathFlags(FAdd);
EXPECT_TRUE(FDiv->hasNoNaNs());
}
TEST_F(IRBuilderTest, WrapFlags) {
IRBuilder<true, NoFolder> Builder(BB);
// Test instructions.
GlobalVariable *G = new GlobalVariable(*M, Builder.getInt32Ty(), true,
GlobalValue::ExternalLinkage, 0);
Value *V = Builder.CreateLoad(G);
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNSWAdd(V, V))->hasNoSignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNSWMul(V, V))->hasNoSignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNSWSub(V, V))->hasNoSignedWrap());
EXPECT_TRUE(cast<BinaryOperator>(
Builder.CreateShl(V, V, "", /* NUW */ false, /* NSW */ true))
->hasNoSignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNUWAdd(V, V))->hasNoUnsignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNUWMul(V, V))->hasNoUnsignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNUWSub(V, V))->hasNoUnsignedWrap());
EXPECT_TRUE(cast<BinaryOperator>(
Builder.CreateShl(V, V, "", /* NUW */ true, /* NSW */ false))
->hasNoUnsignedWrap());
// Test operators created with constants.
Constant *C = Builder.getInt32(42);
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWAdd(C, C))
->hasNoSignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWSub(C, C))
->hasNoSignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWMul(C, C))
->hasNoSignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(
Builder.CreateShl(C, C, "", /* NUW */ false, /* NSW */ true))
->hasNoSignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWAdd(C, C))
->hasNoUnsignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWSub(C, C))
->hasNoUnsignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWMul(C, C))
->hasNoUnsignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(
Builder.CreateShl(C, C, "", /* NUW */ true, /* NSW */ false))
->hasNoUnsignedWrap());
}
TEST_F(IRBuilderTest, RAIIHelpersTest) {
IRBuilder<> Builder(BB);
EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal());
MDBuilder MDB(M->getContext());
MDNode *FPMathA = MDB.createFPMath(0.01f);
MDNode *FPMathB = MDB.createFPMath(0.1f);
Builder.SetDefaultFPMathTag(FPMathA);
{
IRBuilder<>::FastMathFlagGuard Guard(Builder);
FastMathFlags FMF;
FMF.setAllowReciprocal();
Builder.SetFastMathFlags(FMF);
Builder.SetDefaultFPMathTag(FPMathB);
EXPECT_TRUE(Builder.getFastMathFlags().allowReciprocal());
EXPECT_EQ(FPMathB, Builder.getDefaultFPMathTag());
}
EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal());
EXPECT_EQ(FPMathA, Builder.getDefaultFPMathTag());
Value *F = Builder.CreateLoad(GV);
{
IRBuilder<>::InsertPointGuard Guard(Builder);
Builder.SetInsertPoint(cast<Instruction>(F));
EXPECT_EQ(F, Builder.GetInsertPoint());
}
EXPECT_EQ(BB->end(), Builder.GetInsertPoint());
EXPECT_EQ(BB, Builder.GetInsertBlock());
}
}