llvm-6502/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
Daniel Berlin 29dbbd73de Move IDF Calculation to a separate file, expose an interface to it.
Summary:
MemorySSA uses this algorithm as well, and this enables us to reuse the code in both places.

There are no actual algorithm or datastructure changes in here, just code movement.

Reviewers: qcolombet, chandlerc

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D9118

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235406 91177308-0d34-0410-b5e6-96231b3b80d8
2015-04-21 19:13:02 +00:00

989 lines
36 KiB
C++

//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file promotes memory references to be register references. It promotes
// alloca instructions which only have loads and stores as uses. An alloca is
// transformed by using iterated dominator frontiers to place PHI nodes, then
// traversing the function in depth-first order to rewrite loads and stores as
// appropriate.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "mem2reg"
STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
bool llvm::isAllocaPromotable(const AllocaInst *AI) {
// FIXME: If the memory unit is of pointer or integer type, we can permit
// assignments to subsections of the memory unit.
unsigned AS = AI->getType()->getAddressSpace();
// Only allow direct and non-volatile loads and stores...
for (const User *U : AI->users()) {
if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
// Note that atomic loads can be transformed; atomic semantics do
// not have any meaning for a local alloca.
if (LI->isVolatile())
return false;
} else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
if (SI->getOperand(0) == AI)
return false; // Don't allow a store OF the AI, only INTO the AI.
// Note that atomic stores can be transformed; atomic semantics do
// not have any meaning for a local alloca.
if (SI->isVolatile())
return false;
} else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
II->getIntrinsicID() != Intrinsic::lifetime_end)
return false;
} else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
return false;
if (!onlyUsedByLifetimeMarkers(BCI))
return false;
} else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
return false;
if (!GEPI->hasAllZeroIndices())
return false;
if (!onlyUsedByLifetimeMarkers(GEPI))
return false;
} else {
return false;
}
}
return true;
}
namespace {
struct AllocaInfo {
SmallVector<BasicBlock *, 32> DefiningBlocks;
SmallVector<BasicBlock *, 32> UsingBlocks;
StoreInst *OnlyStore;
BasicBlock *OnlyBlock;
bool OnlyUsedInOneBlock;
Value *AllocaPointerVal;
DbgDeclareInst *DbgDeclare;
void clear() {
DefiningBlocks.clear();
UsingBlocks.clear();
OnlyStore = nullptr;
OnlyBlock = nullptr;
OnlyUsedInOneBlock = true;
AllocaPointerVal = nullptr;
DbgDeclare = nullptr;
}
/// Scan the uses of the specified alloca, filling in the AllocaInfo used
/// by the rest of the pass to reason about the uses of this alloca.
void AnalyzeAlloca(AllocaInst *AI) {
clear();
// As we scan the uses of the alloca instruction, keep track of stores,
// and decide whether all of the loads and stores to the alloca are within
// the same basic block.
for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
Instruction *User = cast<Instruction>(*UI++);
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
// Remember the basic blocks which define new values for the alloca
DefiningBlocks.push_back(SI->getParent());
AllocaPointerVal = SI->getOperand(0);
OnlyStore = SI;
} else {
LoadInst *LI = cast<LoadInst>(User);
// Otherwise it must be a load instruction, keep track of variable
// reads.
UsingBlocks.push_back(LI->getParent());
AllocaPointerVal = LI;
}
if (OnlyUsedInOneBlock) {
if (!OnlyBlock)
OnlyBlock = User->getParent();
else if (OnlyBlock != User->getParent())
OnlyUsedInOneBlock = false;
}
}
DbgDeclare = FindAllocaDbgDeclare(AI);
}
};
// Data package used by RenamePass()
class RenamePassData {
public:
typedef std::vector<Value *> ValVector;
RenamePassData() : BB(nullptr), Pred(nullptr), Values() {}
RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
: BB(B), Pred(P), Values(V) {}
BasicBlock *BB;
BasicBlock *Pred;
ValVector Values;
void swap(RenamePassData &RHS) {
std::swap(BB, RHS.BB);
std::swap(Pred, RHS.Pred);
Values.swap(RHS.Values);
}
};
/// \brief This assigns and keeps a per-bb relative ordering of load/store
/// instructions in the block that directly load or store an alloca.
///
/// This functionality is important because it avoids scanning large basic
/// blocks multiple times when promoting many allocas in the same block.
class LargeBlockInfo {
/// \brief For each instruction that we track, keep the index of the
/// instruction.
///
/// The index starts out as the number of the instruction from the start of
/// the block.
DenseMap<const Instruction *, unsigned> InstNumbers;
public:
/// This code only looks at accesses to allocas.
static bool isInterestingInstruction(const Instruction *I) {
return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
(isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
}
/// Get or calculate the index of the specified instruction.
unsigned getInstructionIndex(const Instruction *I) {
assert(isInterestingInstruction(I) &&
"Not a load/store to/from an alloca?");
// If we already have this instruction number, return it.
DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
if (It != InstNumbers.end())
return It->second;
// Scan the whole block to get the instruction. This accumulates
// information for every interesting instruction in the block, in order to
// avoid gratuitus rescans.
const BasicBlock *BB = I->getParent();
unsigned InstNo = 0;
for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E;
++BBI)
if (isInterestingInstruction(BBI))
InstNumbers[BBI] = InstNo++;
It = InstNumbers.find(I);
assert(It != InstNumbers.end() && "Didn't insert instruction?");
return It->second;
}
void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
void clear() { InstNumbers.clear(); }
};
struct PromoteMem2Reg {
/// The alloca instructions being promoted.
std::vector<AllocaInst *> Allocas;
DominatorTree &DT;
DIBuilder DIB;
/// An AliasSetTracker object to update. If null, don't update it.
AliasSetTracker *AST;
/// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
AssumptionCache *AC;
/// Reverse mapping of Allocas.
DenseMap<AllocaInst *, unsigned> AllocaLookup;
/// \brief The PhiNodes we're adding.
///
/// That map is used to simplify some Phi nodes as we iterate over it, so
/// it should have deterministic iterators. We could use a MapVector, but
/// since we already maintain a map from BasicBlock* to a stable numbering
/// (BBNumbers), the DenseMap is more efficient (also supports removal).
DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
/// For each PHI node, keep track of which entry in Allocas it corresponds
/// to.
DenseMap<PHINode *, unsigned> PhiToAllocaMap;
/// If we are updating an AliasSetTracker, then for each alloca that is of
/// pointer type, we keep track of what to copyValue to the inserted PHI
/// nodes here.
std::vector<Value *> PointerAllocaValues;
/// For each alloca, we keep track of the dbg.declare intrinsic that
/// describes it, if any, so that we can convert it to a dbg.value
/// intrinsic if the alloca gets promoted.
SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
/// The set of basic blocks the renamer has already visited.
///
SmallPtrSet<BasicBlock *, 16> Visited;
/// Contains a stable numbering of basic blocks to avoid non-determinstic
/// behavior.
DenseMap<BasicBlock *, unsigned> BBNumbers;
/// Lazily compute the number of predecessors a block has.
DenseMap<const BasicBlock *, unsigned> BBNumPreds;
public:
PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
AliasSetTracker *AST, AssumptionCache *AC)
: Allocas(Allocas.begin(), Allocas.end()), DT(DT),
DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
AST(AST), AC(AC) {}
void run();
private:
void RemoveFromAllocasList(unsigned &AllocaIdx) {
Allocas[AllocaIdx] = Allocas.back();
Allocas.pop_back();
--AllocaIdx;
}
unsigned getNumPreds(const BasicBlock *BB) {
unsigned &NP = BBNumPreds[BB];
if (NP == 0)
NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
return NP - 1;
}
void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
void RenamePass(BasicBlock *BB, BasicBlock *Pred,
RenamePassData::ValVector &IncVals,
std::vector<RenamePassData> &Worklist);
bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
};
} // end of anonymous namespace
static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
// Knowing that this alloca is promotable, we know that it's safe to kill all
// instructions except for load and store.
for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
Instruction *I = cast<Instruction>(*UI);
++UI;
if (isa<LoadInst>(I) || isa<StoreInst>(I))
continue;
if (!I->getType()->isVoidTy()) {
// The only users of this bitcast/GEP instruction are lifetime intrinsics.
// Follow the use/def chain to erase them now instead of leaving it for
// dead code elimination later.
for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
Instruction *Inst = cast<Instruction>(*UUI);
++UUI;
Inst->eraseFromParent();
}
}
I->eraseFromParent();
}
}
/// \brief Rewrite as many loads as possible given a single store.
///
/// When there is only a single store, we can use the domtree to trivially
/// replace all of the dominated loads with the stored value. Do so, and return
/// true if this has successfully promoted the alloca entirely. If this returns
/// false there were some loads which were not dominated by the single store
/// and thus must be phi-ed with undef. We fall back to the standard alloca
/// promotion algorithm in that case.
static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
LargeBlockInfo &LBI,
DominatorTree &DT,
AliasSetTracker *AST) {
StoreInst *OnlyStore = Info.OnlyStore;
bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
BasicBlock *StoreBB = OnlyStore->getParent();
int StoreIndex = -1;
// Clear out UsingBlocks. We will reconstruct it here if needed.
Info.UsingBlocks.clear();
for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
Instruction *UserInst = cast<Instruction>(*UI++);
if (!isa<LoadInst>(UserInst)) {
assert(UserInst == OnlyStore && "Should only have load/stores");
continue;
}
LoadInst *LI = cast<LoadInst>(UserInst);
// Okay, if we have a load from the alloca, we want to replace it with the
// only value stored to the alloca. We can do this if the value is
// dominated by the store. If not, we use the rest of the mem2reg machinery
// to insert the phi nodes as needed.
if (!StoringGlobalVal) { // Non-instructions are always dominated.
if (LI->getParent() == StoreBB) {
// If we have a use that is in the same block as the store, compare the
// indices of the two instructions to see which one came first. If the
// load came before the store, we can't handle it.
if (StoreIndex == -1)
StoreIndex = LBI.getInstructionIndex(OnlyStore);
if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
// Can't handle this load, bail out.
Info.UsingBlocks.push_back(StoreBB);
continue;
}
} else if (LI->getParent() != StoreBB &&
!DT.dominates(StoreBB, LI->getParent())) {
// If the load and store are in different blocks, use BB dominance to
// check their relationships. If the store doesn't dom the use, bail
// out.
Info.UsingBlocks.push_back(LI->getParent());
continue;
}
}
// Otherwise, we *can* safely rewrite this load.
Value *ReplVal = OnlyStore->getOperand(0);
// If the replacement value is the load, this must occur in unreachable
// code.
if (ReplVal == LI)
ReplVal = UndefValue::get(LI->getType());
LI->replaceAllUsesWith(ReplVal);
if (AST && LI->getType()->isPointerTy())
AST->deleteValue(LI);
LI->eraseFromParent();
LBI.deleteValue(LI);
}
// Finally, after the scan, check to see if the store is all that is left.
if (!Info.UsingBlocks.empty())
return false; // If not, we'll have to fall back for the remainder.
// Record debuginfo for the store and remove the declaration's
// debuginfo.
if (DbgDeclareInst *DDI = Info.DbgDeclare) {
DIBuilder DIB(*AI->getParent()->getParent()->getParent(),
/*AllowUnresolved*/ false);
ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
DDI->eraseFromParent();
LBI.deleteValue(DDI);
}
// Remove the (now dead) store and alloca.
Info.OnlyStore->eraseFromParent();
LBI.deleteValue(Info.OnlyStore);
if (AST)
AST->deleteValue(AI);
AI->eraseFromParent();
LBI.deleteValue(AI);
return true;
}
/// Many allocas are only used within a single basic block. If this is the
/// case, avoid traversing the CFG and inserting a lot of potentially useless
/// PHI nodes by just performing a single linear pass over the basic block
/// using the Alloca.
///
/// If we cannot promote this alloca (because it is read before it is written),
/// return true. This is necessary in cases where, due to control flow, the
/// alloca is potentially undefined on some control flow paths. e.g. code like
/// this is potentially correct:
///
/// for (...) { if (c) { A = undef; undef = B; } }
///
/// ... so long as A is not used before undef is set.
static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
LargeBlockInfo &LBI,
AliasSetTracker *AST) {
// The trickiest case to handle is when we have large blocks. Because of this,
// this code is optimized assuming that large blocks happen. This does not
// significantly pessimize the small block case. This uses LargeBlockInfo to
// make it efficient to get the index of various operations in the block.
// Walk the use-def list of the alloca, getting the locations of all stores.
typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
StoresByIndexTy StoresByIndex;
for (User *U : AI->users())
if (StoreInst *SI = dyn_cast<StoreInst>(U))
StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
// Sort the stores by their index, making it efficient to do a lookup with a
// binary search.
std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first());
// Walk all of the loads from this alloca, replacing them with the nearest
// store above them, if any.
for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
LoadInst *LI = dyn_cast<LoadInst>(*UI++);
if (!LI)
continue;
unsigned LoadIdx = LBI.getInstructionIndex(LI);
// Find the nearest store that has a lower index than this load.
StoresByIndexTy::iterator I =
std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
std::make_pair(LoadIdx,
static_cast<StoreInst *>(nullptr)),
less_first());
if (I == StoresByIndex.begin())
// If there is no store before this load, the load takes the undef value.
LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
else
// Otherwise, there was a store before this load, the load takes its value.
LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0));
if (AST && LI->getType()->isPointerTy())
AST->deleteValue(LI);
LI->eraseFromParent();
LBI.deleteValue(LI);
}
// Remove the (now dead) stores and alloca.
while (!AI->use_empty()) {
StoreInst *SI = cast<StoreInst>(AI->user_back());
// Record debuginfo for the store before removing it.
if (DbgDeclareInst *DDI = Info.DbgDeclare) {
DIBuilder DIB(*AI->getParent()->getParent()->getParent(),
/*AllowUnresolved*/ false);
ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
}
SI->eraseFromParent();
LBI.deleteValue(SI);
}
if (AST)
AST->deleteValue(AI);
AI->eraseFromParent();
LBI.deleteValue(AI);
// The alloca's debuginfo can be removed as well.
if (DbgDeclareInst *DDI = Info.DbgDeclare) {
DDI->eraseFromParent();
LBI.deleteValue(DDI);
}
++NumLocalPromoted;
}
void PromoteMem2Reg::run() {
Function &F = *DT.getRoot()->getParent();
if (AST)
PointerAllocaValues.resize(Allocas.size());
AllocaDbgDeclares.resize(Allocas.size());
AllocaInfo Info;
LargeBlockInfo LBI;
IDFCalculator IDF(DT);
for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
AllocaInst *AI = Allocas[AllocaNum];
assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
assert(AI->getParent()->getParent() == &F &&
"All allocas should be in the same function, which is same as DF!");
removeLifetimeIntrinsicUsers(AI);
if (AI->use_empty()) {
// If there are no uses of the alloca, just delete it now.
if (AST)
AST->deleteValue(AI);
AI->eraseFromParent();
// Remove the alloca from the Allocas list, since it has been processed
RemoveFromAllocasList(AllocaNum);
++NumDeadAlloca;
continue;
}
// Calculate the set of read and write-locations for each alloca. This is
// analogous to finding the 'uses' and 'definitions' of each variable.
Info.AnalyzeAlloca(AI);
// If there is only a single store to this value, replace any loads of
// it that are directly dominated by the definition with the value stored.
if (Info.DefiningBlocks.size() == 1) {
if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) {
// The alloca has been processed, move on.
RemoveFromAllocasList(AllocaNum);
++NumSingleStore;
continue;
}
}
// If the alloca is only read and written in one basic block, just perform a
// linear sweep over the block to eliminate it.
if (Info.OnlyUsedInOneBlock) {
promoteSingleBlockAlloca(AI, Info, LBI, AST);
// The alloca has been processed, move on.
RemoveFromAllocasList(AllocaNum);
continue;
}
// If we haven't computed a numbering for the BB's in the function, do so
// now.
if (BBNumbers.empty()) {
unsigned ID = 0;
for (auto &BB : F)
BBNumbers[&BB] = ID++;
}
// If we have an AST to keep updated, remember some pointer value that is
// stored into the alloca.
if (AST)
PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
// Remember the dbg.declare intrinsic describing this alloca, if any.
if (Info.DbgDeclare)
AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
// Keep the reverse mapping of the 'Allocas' array for the rename pass.
AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
// At this point, we're committed to promoting the alloca using IDF's, and
// the standard SSA construction algorithm. Determine which blocks need PHI
// nodes and see if we can optimize out some work by avoiding insertion of
// dead phi nodes.
// Unique the set of defining blocks for efficient lookup.
SmallPtrSet<BasicBlock *, 32> DefBlocks;
DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
// Determine which blocks the value is live in. These are blocks which lead
// to uses.
SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
// At this point, we're committed to promoting the alloca using IDF's, and
// the standard SSA construction algorithm. Determine which blocks need phi
// nodes and see if we can optimize out some work by avoiding insertion of
// dead phi nodes.
IDF.setLiveInBlocks(LiveInBlocks);
IDF.setDefiningBlocks(DefBlocks);
SmallVector<BasicBlock *, 32> PHIBlocks;
IDF.calculate(PHIBlocks);
if (PHIBlocks.size() > 1)
std::sort(PHIBlocks.begin(), PHIBlocks.end(),
[this](BasicBlock *A, BasicBlock *B) {
return BBNumbers.lookup(A) < BBNumbers.lookup(B);
});
unsigned CurrentVersion = 0;
for (unsigned i = 0, e = PHIBlocks.size(); i != e; ++i)
QueuePhiNode(PHIBlocks[i], AllocaNum, CurrentVersion);
}
if (Allocas.empty())
return; // All of the allocas must have been trivial!
LBI.clear();
// Set the incoming values for the basic block to be null values for all of
// the alloca's. We do this in case there is a load of a value that has not
// been stored yet. In this case, it will get this null value.
//
RenamePassData::ValVector Values(Allocas.size());
for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
// Walks all basic blocks in the function performing the SSA rename algorithm
// and inserting the phi nodes we marked as necessary
//
std::vector<RenamePassData> RenamePassWorkList;
RenamePassWorkList.push_back(RenamePassData(F.begin(), nullptr, Values));
do {
RenamePassData RPD;
RPD.swap(RenamePassWorkList.back());
RenamePassWorkList.pop_back();
// RenamePass may add new worklist entries.
RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
} while (!RenamePassWorkList.empty());
// The renamer uses the Visited set to avoid infinite loops. Clear it now.
Visited.clear();
// Remove the allocas themselves from the function.
for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
Instruction *A = Allocas[i];
// If there are any uses of the alloca instructions left, they must be in
// unreachable basic blocks that were not processed by walking the dominator
// tree. Just delete the users now.
if (!A->use_empty())
A->replaceAllUsesWith(UndefValue::get(A->getType()));
if (AST)
AST->deleteValue(A);
A->eraseFromParent();
}
const DataLayout &DL = F.getParent()->getDataLayout();
// Remove alloca's dbg.declare instrinsics from the function.
for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
DDI->eraseFromParent();
// Loop over all of the PHI nodes and see if there are any that we can get
// rid of because they merge all of the same incoming values. This can
// happen due to undef values coming into the PHI nodes. This process is
// iterative, because eliminating one PHI node can cause others to be removed.
bool EliminatedAPHI = true;
while (EliminatedAPHI) {
EliminatedAPHI = false;
// Iterating over NewPhiNodes is deterministic, so it is safe to try to
// simplify and RAUW them as we go. If it was not, we could add uses to
// the values we replace with in a non-deterministic order, thus creating
// non-deterministic def->use chains.
for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
I = NewPhiNodes.begin(),
E = NewPhiNodes.end();
I != E;) {
PHINode *PN = I->second;
// If this PHI node merges one value and/or undefs, get the value.
if (Value *V = SimplifyInstruction(PN, DL, nullptr, &DT, AC)) {
if (AST && PN->getType()->isPointerTy())
AST->deleteValue(PN);
PN->replaceAllUsesWith(V);
PN->eraseFromParent();
NewPhiNodes.erase(I++);
EliminatedAPHI = true;
continue;
}
++I;
}
}
// At this point, the renamer has added entries to PHI nodes for all reachable
// code. Unfortunately, there may be unreachable blocks which the renamer
// hasn't traversed. If this is the case, the PHI nodes may not
// have incoming values for all predecessors. Loop over all PHI nodes we have
// created, inserting undef values if they are missing any incoming values.
//
for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
I = NewPhiNodes.begin(),
E = NewPhiNodes.end();
I != E; ++I) {
// We want to do this once per basic block. As such, only process a block
// when we find the PHI that is the first entry in the block.
PHINode *SomePHI = I->second;
BasicBlock *BB = SomePHI->getParent();
if (&BB->front() != SomePHI)
continue;
// Only do work here if there the PHI nodes are missing incoming values. We
// know that all PHI nodes that were inserted in a block will have the same
// number of incoming values, so we can just check any of them.
if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
continue;
// Get the preds for BB.
SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
// Ok, now we know that all of the PHI nodes are missing entries for some
// basic blocks. Start by sorting the incoming predecessors for efficient
// access.
std::sort(Preds.begin(), Preds.end());
// Now we loop through all BB's which have entries in SomePHI and remove
// them from the Preds list.
for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
// Do a log(n) search of the Preds list for the entry we want.
SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
"PHI node has entry for a block which is not a predecessor!");
// Remove the entry
Preds.erase(EntIt);
}
// At this point, the blocks left in the preds list must have dummy
// entries inserted into every PHI nodes for the block. Update all the phi
// nodes in this block that we are inserting (there could be phis before
// mem2reg runs).
unsigned NumBadPreds = SomePHI->getNumIncomingValues();
BasicBlock::iterator BBI = BB->begin();
while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
SomePHI->getNumIncomingValues() == NumBadPreds) {
Value *UndefVal = UndefValue::get(SomePHI->getType());
for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
SomePHI->addIncoming(UndefVal, Preds[pred]);
}
}
NewPhiNodes.clear();
}
/// \brief Determine which blocks the value is live in.
///
/// These are blocks which lead to uses. Knowing this allows us to avoid
/// inserting PHI nodes into blocks which don't lead to uses (thus, the
/// inserted phi nodes would be dead).
void PromoteMem2Reg::ComputeLiveInBlocks(
AllocaInst *AI, AllocaInfo &Info,
const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
// To determine liveness, we must iterate through the predecessors of blocks
// where the def is live. Blocks are added to the worklist if we need to
// check their predecessors. Start with all the using blocks.
SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
Info.UsingBlocks.end());
// If any of the using blocks is also a definition block, check to see if the
// definition occurs before or after the use. If it happens before the use,
// the value isn't really live-in.
for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
BasicBlock *BB = LiveInBlockWorklist[i];
if (!DefBlocks.count(BB))
continue;
// Okay, this is a block that both uses and defines the value. If the first
// reference to the alloca is a def (store), then we know it isn't live-in.
for (BasicBlock::iterator I = BB->begin();; ++I) {
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (SI->getOperand(1) != AI)
continue;
// We found a store to the alloca before a load. The alloca is not
// actually live-in here.
LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
LiveInBlockWorklist.pop_back();
--i, --e;
break;
}
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (LI->getOperand(0) != AI)
continue;
// Okay, we found a load before a store to the alloca. It is actually
// live into this block.
break;
}
}
}
// Now that we have a set of blocks where the phi is live-in, recursively add
// their predecessors until we find the full region the value is live.
while (!LiveInBlockWorklist.empty()) {
BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
// The block really is live in here, insert it into the set. If already in
// the set, then it has already been processed.
if (!LiveInBlocks.insert(BB).second)
continue;
// Since the value is live into BB, it is either defined in a predecessor or
// live into it to. Add the preds to the worklist unless they are a
// defining block.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *P = *PI;
// The value is not live into a predecessor if it defines the value.
if (DefBlocks.count(P))
continue;
// Otherwise it is, add to the worklist.
LiveInBlockWorklist.push_back(P);
}
}
}
/// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
///
/// Returns true if there wasn't already a phi-node for that variable
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
unsigned &Version) {
// Look up the basic-block in question.
PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
// If the BB already has a phi node added for the i'th alloca then we're done!
if (PN)
return false;
// Create a PhiNode using the dereferenced type... and add the phi-node to the
// BasicBlock.
PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
Allocas[AllocaNo]->getName() + "." + Twine(Version++),
BB->begin());
++NumPHIInsert;
PhiToAllocaMap[PN] = AllocaNo;
if (AST && PN->getType()->isPointerTy())
AST->copyValue(PointerAllocaValues[AllocaNo], PN);
return true;
}
/// \brief Recursively traverse the CFG of the function, renaming loads and
/// stores to the allocas which we are promoting.
///
/// IncomingVals indicates what value each Alloca contains on exit from the
/// predecessor block Pred.
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
RenamePassData::ValVector &IncomingVals,
std::vector<RenamePassData> &Worklist) {
NextIteration:
// If we are inserting any phi nodes into this BB, they will already be in the
// block.
if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
// If we have PHI nodes to update, compute the number of edges from Pred to
// BB.
if (PhiToAllocaMap.count(APN)) {
// We want to be able to distinguish between PHI nodes being inserted by
// this invocation of mem2reg from those phi nodes that already existed in
// the IR before mem2reg was run. We determine that APN is being inserted
// because it is missing incoming edges. All other PHI nodes being
// inserted by this pass of mem2reg will have the same number of incoming
// operands so far. Remember this count.
unsigned NewPHINumOperands = APN->getNumOperands();
unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
assert(NumEdges && "Must be at least one edge from Pred to BB!");
// Add entries for all the phis.
BasicBlock::iterator PNI = BB->begin();
do {
unsigned AllocaNo = PhiToAllocaMap[APN];
// Add N incoming values to the PHI node.
for (unsigned i = 0; i != NumEdges; ++i)
APN->addIncoming(IncomingVals[AllocaNo], Pred);
// The currently active variable for this block is now the PHI.
IncomingVals[AllocaNo] = APN;
// Get the next phi node.
++PNI;
APN = dyn_cast<PHINode>(PNI);
if (!APN)
break;
// Verify that it is missing entries. If not, it is not being inserted
// by this mem2reg invocation so we want to ignore it.
} while (APN->getNumOperands() == NewPHINumOperands);
}
}
// Don't revisit blocks.
if (!Visited.insert(BB).second)
return;
for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
Instruction *I = II++; // get the instruction, increment iterator
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
if (!Src)
continue;
DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
if (AI == AllocaLookup.end())
continue;
Value *V = IncomingVals[AI->second];
// Anything using the load now uses the current value.
LI->replaceAllUsesWith(V);
if (AST && LI->getType()->isPointerTy())
AST->deleteValue(LI);
BB->getInstList().erase(LI);
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// Delete this instruction and mark the name as the current holder of the
// value
AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
if (!Dest)
continue;
DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
if (ai == AllocaLookup.end())
continue;
// what value were we writing?
IncomingVals[ai->second] = SI->getOperand(0);
// Record debuginfo for the store before removing it.
if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
BB->getInstList().erase(SI);
}
}
// 'Recurse' to our successors.
succ_iterator I = succ_begin(BB), E = succ_end(BB);
if (I == E)
return;
// Keep track of the successors so we don't visit the same successor twice
SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
// Handle the first successor without using the worklist.
VisitedSuccs.insert(*I);
Pred = BB;
BB = *I;
++I;
for (; I != E; ++I)
if (VisitedSuccs.insert(*I).second)
Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
goto NextIteration;
}
void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
AliasSetTracker *AST, AssumptionCache *AC) {
// If there is nothing to do, bail out...
if (Allocas.empty())
return;
PromoteMem2Reg(Allocas, DT, AST, AC).run();
}