mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
2450eca960
GEPs, bit casts, and stores reaching it but no other instructions. These often show up during the iterative processing of the inliner, SROA, and DCE. Once we hit this point, we can completely remove the alloca. These were actually showing up in the final, fully optimized code in a bunch of inliner tests I've been working on, and notably they show up after LLVM finishes optimizing away all function calls involved in hash_combine(a, b). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154285 91177308-0d34-0410-b5e6-96231b3b80d8
686 lines
26 KiB
C++
686 lines
26 KiB
C++
//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visit functions for load, store and alloca.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombine.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumDeadStore, "Number of dead stores eliminated");
|
|
|
|
// Try to kill dead allocas by walking through its uses until we see some use
|
|
// that could escape. This is a conservative analysis which tries to handle
|
|
// GEPs, bitcasts, stores, and no-op intrinsics. These tend to be the things
|
|
// left after inlining and SROA finish chewing on an alloca.
|
|
static Instruction *removeDeadAlloca(InstCombiner &IC, AllocaInst &AI) {
|
|
SmallVector<Instruction *, 4> Worklist, DeadStores;
|
|
Worklist.push_back(&AI);
|
|
do {
|
|
Instruction *PI = Worklist.pop_back_val();
|
|
for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end();
|
|
UI != UE; ++UI) {
|
|
Instruction *I = cast<Instruction>(*UI);
|
|
switch (I->getOpcode()) {
|
|
default:
|
|
// Give up the moment we see something we can't handle.
|
|
return 0;
|
|
|
|
case Instruction::GetElementPtr:
|
|
case Instruction::BitCast:
|
|
Worklist.push_back(I);
|
|
continue;
|
|
|
|
case Instruction::Call:
|
|
// We can handle a limited subset of calls to no-op intrinsics.
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::dbg_declare:
|
|
case Intrinsic::dbg_value:
|
|
case Intrinsic::invariant_start:
|
|
case Intrinsic::invariant_end:
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
continue;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
// Reject everything else.
|
|
return 0;
|
|
|
|
case Instruction::Store: {
|
|
// Stores into the alloca are only live if the alloca is live.
|
|
StoreInst *SI = cast<StoreInst>(I);
|
|
// We can eliminate atomic stores, but not volatile.
|
|
if (SI->isVolatile())
|
|
return 0;
|
|
// The store is only trivially safe if the poniter is the destination
|
|
// as opposed to the value. We're conservative here and don't check for
|
|
// the case where we store the address of a dead alloca into a dead
|
|
// alloca.
|
|
if (SI->getPointerOperand() != PI)
|
|
return 0;
|
|
DeadStores.push_back(I);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
} while (!Worklist.empty());
|
|
|
|
// The alloca is dead. Kill off all the stores to it, and then replace it
|
|
// with undef.
|
|
while (!DeadStores.empty())
|
|
IC.EraseInstFromFunction(*DeadStores.pop_back_val());
|
|
return IC.ReplaceInstUsesWith(AI, UndefValue::get(AI.getType()));
|
|
}
|
|
|
|
Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
|
|
// Ensure that the alloca array size argument has type intptr_t, so that
|
|
// any casting is exposed early.
|
|
if (TD) {
|
|
Type *IntPtrTy = TD->getIntPtrType(AI.getContext());
|
|
if (AI.getArraySize()->getType() != IntPtrTy) {
|
|
Value *V = Builder->CreateIntCast(AI.getArraySize(),
|
|
IntPtrTy, false);
|
|
AI.setOperand(0, V);
|
|
return &AI;
|
|
}
|
|
}
|
|
|
|
// Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
|
|
if (AI.isArrayAllocation()) { // Check C != 1
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
|
|
Type *NewTy =
|
|
ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
|
|
assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
|
|
AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
|
|
New->setAlignment(AI.getAlignment());
|
|
|
|
// Scan to the end of the allocation instructions, to skip over a block of
|
|
// allocas if possible...also skip interleaved debug info
|
|
//
|
|
BasicBlock::iterator It = New;
|
|
while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
|
|
|
|
// Now that I is pointing to the first non-allocation-inst in the block,
|
|
// insert our getelementptr instruction...
|
|
//
|
|
Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext()));
|
|
Value *Idx[2];
|
|
Idx[0] = NullIdx;
|
|
Idx[1] = NullIdx;
|
|
Instruction *GEP =
|
|
GetElementPtrInst::CreateInBounds(New, Idx, New->getName()+".sub");
|
|
InsertNewInstBefore(GEP, *It);
|
|
|
|
// Now make everything use the getelementptr instead of the original
|
|
// allocation.
|
|
return ReplaceInstUsesWith(AI, GEP);
|
|
} else if (isa<UndefValue>(AI.getArraySize())) {
|
|
return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
|
|
}
|
|
}
|
|
|
|
if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
|
|
// If alloca'ing a zero byte object, replace the alloca with a null pointer.
|
|
// Note that we only do this for alloca's, because malloc should allocate
|
|
// and return a unique pointer, even for a zero byte allocation.
|
|
if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
|
|
return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
|
|
|
|
// If the alignment is 0 (unspecified), assign it the preferred alignment.
|
|
if (AI.getAlignment() == 0)
|
|
AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
|
|
}
|
|
|
|
// Try to aggressively remove allocas which are only used for GEPs, lifetime
|
|
// markers, and stores. This happens when SROA iteratively promotes stores
|
|
// out of the alloca, and we need to cleanup after it.
|
|
return removeDeadAlloca(*this, AI);
|
|
}
|
|
|
|
|
|
/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
|
|
static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
|
|
const TargetData *TD) {
|
|
User *CI = cast<User>(LI.getOperand(0));
|
|
Value *CastOp = CI->getOperand(0);
|
|
|
|
PointerType *DestTy = cast<PointerType>(CI->getType());
|
|
Type *DestPTy = DestTy->getElementType();
|
|
if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
|
|
|
|
// If the address spaces don't match, don't eliminate the cast.
|
|
if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
|
|
return 0;
|
|
|
|
Type *SrcPTy = SrcTy->getElementType();
|
|
|
|
if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
|
|
DestPTy->isVectorTy()) {
|
|
// If the source is an array, the code below will not succeed. Check to
|
|
// see if a trivial 'gep P, 0, 0' will help matters. Only do this for
|
|
// constants.
|
|
if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
|
|
if (Constant *CSrc = dyn_cast<Constant>(CastOp))
|
|
if (ASrcTy->getNumElements() != 0) {
|
|
Value *Idxs[2];
|
|
Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext()));
|
|
Idxs[1] = Idxs[0];
|
|
CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
|
|
SrcTy = cast<PointerType>(CastOp->getType());
|
|
SrcPTy = SrcTy->getElementType();
|
|
}
|
|
|
|
if (IC.getTargetData() &&
|
|
(SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
|
|
SrcPTy->isVectorTy()) &&
|
|
// Do not allow turning this into a load of an integer, which is then
|
|
// casted to a pointer, this pessimizes pointer analysis a lot.
|
|
(SrcPTy->isPointerTy() == LI.getType()->isPointerTy()) &&
|
|
IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
|
|
IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
|
|
|
|
// Okay, we are casting from one integer or pointer type to another of
|
|
// the same size. Instead of casting the pointer before the load, cast
|
|
// the result of the loaded value.
|
|
LoadInst *NewLoad =
|
|
IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
|
|
NewLoad->setAlignment(LI.getAlignment());
|
|
NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
|
|
// Now cast the result of the load.
|
|
return new BitCastInst(NewLoad, LI.getType());
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
|
|
Value *Op = LI.getOperand(0);
|
|
|
|
// Attempt to improve the alignment.
|
|
if (TD) {
|
|
unsigned KnownAlign =
|
|
getOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()),TD);
|
|
unsigned LoadAlign = LI.getAlignment();
|
|
unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
|
|
TD->getABITypeAlignment(LI.getType());
|
|
|
|
if (KnownAlign > EffectiveLoadAlign)
|
|
LI.setAlignment(KnownAlign);
|
|
else if (LoadAlign == 0)
|
|
LI.setAlignment(EffectiveLoadAlign);
|
|
}
|
|
|
|
// load (cast X) --> cast (load X) iff safe.
|
|
if (isa<CastInst>(Op))
|
|
if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
|
|
return Res;
|
|
|
|
// None of the following transforms are legal for volatile/atomic loads.
|
|
// FIXME: Some of it is okay for atomic loads; needs refactoring.
|
|
if (!LI.isSimple()) return 0;
|
|
|
|
// Do really simple store-to-load forwarding and load CSE, to catch cases
|
|
// where there are several consecutive memory accesses to the same location,
|
|
// separated by a few arithmetic operations.
|
|
BasicBlock::iterator BBI = &LI;
|
|
if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
|
|
return ReplaceInstUsesWith(LI, AvailableVal);
|
|
|
|
// load(gep null, ...) -> unreachable
|
|
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
|
|
const Value *GEPI0 = GEPI->getOperand(0);
|
|
// TODO: Consider a target hook for valid address spaces for this xform.
|
|
if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
|
|
// Insert a new store to null instruction before the load to indicate
|
|
// that this code is not reachable. We do this instead of inserting
|
|
// an unreachable instruction directly because we cannot modify the
|
|
// CFG.
|
|
new StoreInst(UndefValue::get(LI.getType()),
|
|
Constant::getNullValue(Op->getType()), &LI);
|
|
return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
|
|
}
|
|
}
|
|
|
|
// load null/undef -> unreachable
|
|
// TODO: Consider a target hook for valid address spaces for this xform.
|
|
if (isa<UndefValue>(Op) ||
|
|
(isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
|
|
// Insert a new store to null instruction before the load to indicate that
|
|
// this code is not reachable. We do this instead of inserting an
|
|
// unreachable instruction directly because we cannot modify the CFG.
|
|
new StoreInst(UndefValue::get(LI.getType()),
|
|
Constant::getNullValue(Op->getType()), &LI);
|
|
return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
|
|
}
|
|
|
|
// Instcombine load (constantexpr_cast global) -> cast (load global)
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
|
|
if (CE->isCast())
|
|
if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
|
|
return Res;
|
|
|
|
if (Op->hasOneUse()) {
|
|
// Change select and PHI nodes to select values instead of addresses: this
|
|
// helps alias analysis out a lot, allows many others simplifications, and
|
|
// exposes redundancy in the code.
|
|
//
|
|
// Note that we cannot do the transformation unless we know that the
|
|
// introduced loads cannot trap! Something like this is valid as long as
|
|
// the condition is always false: load (select bool %C, int* null, int* %G),
|
|
// but it would not be valid if we transformed it to load from null
|
|
// unconditionally.
|
|
//
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
|
|
// load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
|
|
unsigned Align = LI.getAlignment();
|
|
if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) &&
|
|
isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) {
|
|
LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
|
|
SI->getOperand(1)->getName()+".val");
|
|
LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
|
|
SI->getOperand(2)->getName()+".val");
|
|
V1->setAlignment(Align);
|
|
V2->setAlignment(Align);
|
|
return SelectInst::Create(SI->getCondition(), V1, V2);
|
|
}
|
|
|
|
// load (select (cond, null, P)) -> load P
|
|
if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
|
|
if (C->isNullValue()) {
|
|
LI.setOperand(0, SI->getOperand(2));
|
|
return &LI;
|
|
}
|
|
|
|
// load (select (cond, P, null)) -> load P
|
|
if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
|
|
if (C->isNullValue()) {
|
|
LI.setOperand(0, SI->getOperand(1));
|
|
return &LI;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
|
|
/// when possible. This makes it generally easy to do alias analysis and/or
|
|
/// SROA/mem2reg of the memory object.
|
|
static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
|
|
User *CI = cast<User>(SI.getOperand(1));
|
|
Value *CastOp = CI->getOperand(0);
|
|
|
|
Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
|
|
PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
|
|
if (SrcTy == 0) return 0;
|
|
|
|
Type *SrcPTy = SrcTy->getElementType();
|
|
|
|
if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
|
|
return 0;
|
|
|
|
/// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
|
|
/// to its first element. This allows us to handle things like:
|
|
/// store i32 xxx, (bitcast {foo*, float}* %P to i32*)
|
|
/// on 32-bit hosts.
|
|
SmallVector<Value*, 4> NewGEPIndices;
|
|
|
|
// If the source is an array, the code below will not succeed. Check to
|
|
// see if a trivial 'gep P, 0, 0' will help matters. Only do this for
|
|
// constants.
|
|
if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
|
|
// Index through pointer.
|
|
Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
|
|
NewGEPIndices.push_back(Zero);
|
|
|
|
while (1) {
|
|
if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
|
|
if (!STy->getNumElements()) /* Struct can be empty {} */
|
|
break;
|
|
NewGEPIndices.push_back(Zero);
|
|
SrcPTy = STy->getElementType(0);
|
|
} else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
|
|
NewGEPIndices.push_back(Zero);
|
|
SrcPTy = ATy->getElementType();
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
|
|
}
|
|
|
|
if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
|
|
return 0;
|
|
|
|
// If the pointers point into different address spaces or if they point to
|
|
// values with different sizes, we can't do the transformation.
|
|
if (!IC.getTargetData() ||
|
|
SrcTy->getAddressSpace() !=
|
|
cast<PointerType>(CI->getType())->getAddressSpace() ||
|
|
IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
|
|
IC.getTargetData()->getTypeSizeInBits(DestPTy))
|
|
return 0;
|
|
|
|
// Okay, we are casting from one integer or pointer type to another of
|
|
// the same size. Instead of casting the pointer before
|
|
// the store, cast the value to be stored.
|
|
Value *NewCast;
|
|
Value *SIOp0 = SI.getOperand(0);
|
|
Instruction::CastOps opcode = Instruction::BitCast;
|
|
Type* CastSrcTy = SIOp0->getType();
|
|
Type* CastDstTy = SrcPTy;
|
|
if (CastDstTy->isPointerTy()) {
|
|
if (CastSrcTy->isIntegerTy())
|
|
opcode = Instruction::IntToPtr;
|
|
} else if (CastDstTy->isIntegerTy()) {
|
|
if (SIOp0->getType()->isPointerTy())
|
|
opcode = Instruction::PtrToInt;
|
|
}
|
|
|
|
// SIOp0 is a pointer to aggregate and this is a store to the first field,
|
|
// emit a GEP to index into its first field.
|
|
if (!NewGEPIndices.empty())
|
|
CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
|
|
|
|
NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
|
|
SIOp0->getName()+".c");
|
|
SI.setOperand(0, NewCast);
|
|
SI.setOperand(1, CastOp);
|
|
return &SI;
|
|
}
|
|
|
|
/// equivalentAddressValues - Test if A and B will obviously have the same
|
|
/// value. This includes recognizing that %t0 and %t1 will have the same
|
|
/// value in code like this:
|
|
/// %t0 = getelementptr \@a, 0, 3
|
|
/// store i32 0, i32* %t0
|
|
/// %t1 = getelementptr \@a, 0, 3
|
|
/// %t2 = load i32* %t1
|
|
///
|
|
static bool equivalentAddressValues(Value *A, Value *B) {
|
|
// Test if the values are trivially equivalent.
|
|
if (A == B) return true;
|
|
|
|
// Test if the values come form identical arithmetic instructions.
|
|
// This uses isIdenticalToWhenDefined instead of isIdenticalTo because
|
|
// its only used to compare two uses within the same basic block, which
|
|
// means that they'll always either have the same value or one of them
|
|
// will have an undefined value.
|
|
if (isa<BinaryOperator>(A) ||
|
|
isa<CastInst>(A) ||
|
|
isa<PHINode>(A) ||
|
|
isa<GetElementPtrInst>(A))
|
|
if (Instruction *BI = dyn_cast<Instruction>(B))
|
|
if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
|
|
return true;
|
|
|
|
// Otherwise they may not be equivalent.
|
|
return false;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
|
|
Value *Val = SI.getOperand(0);
|
|
Value *Ptr = SI.getOperand(1);
|
|
|
|
// Attempt to improve the alignment.
|
|
if (TD) {
|
|
unsigned KnownAlign =
|
|
getOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()),
|
|
TD);
|
|
unsigned StoreAlign = SI.getAlignment();
|
|
unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
|
|
TD->getABITypeAlignment(Val->getType());
|
|
|
|
if (KnownAlign > EffectiveStoreAlign)
|
|
SI.setAlignment(KnownAlign);
|
|
else if (StoreAlign == 0)
|
|
SI.setAlignment(EffectiveStoreAlign);
|
|
}
|
|
|
|
// Don't hack volatile/atomic stores.
|
|
// FIXME: Some bits are legal for atomic stores; needs refactoring.
|
|
if (!SI.isSimple()) return 0;
|
|
|
|
// If the RHS is an alloca with a single use, zapify the store, making the
|
|
// alloca dead.
|
|
if (Ptr->hasOneUse()) {
|
|
if (isa<AllocaInst>(Ptr))
|
|
return EraseInstFromFunction(SI);
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
|
|
if (isa<AllocaInst>(GEP->getOperand(0))) {
|
|
if (GEP->getOperand(0)->hasOneUse())
|
|
return EraseInstFromFunction(SI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Do really simple DSE, to catch cases where there are several consecutive
|
|
// stores to the same location, separated by a few arithmetic operations. This
|
|
// situation often occurs with bitfield accesses.
|
|
BasicBlock::iterator BBI = &SI;
|
|
for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
|
|
--ScanInsts) {
|
|
--BBI;
|
|
// Don't count debug info directives, lest they affect codegen,
|
|
// and we skip pointer-to-pointer bitcasts, which are NOPs.
|
|
if (isa<DbgInfoIntrinsic>(BBI) ||
|
|
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
|
|
ScanInsts++;
|
|
continue;
|
|
}
|
|
|
|
if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
|
|
// Prev store isn't volatile, and stores to the same location?
|
|
if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
|
|
SI.getOperand(1))) {
|
|
++NumDeadStore;
|
|
++BBI;
|
|
EraseInstFromFunction(*PrevSI);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// If this is a load, we have to stop. However, if the loaded value is from
|
|
// the pointer we're loading and is producing the pointer we're storing,
|
|
// then *this* store is dead (X = load P; store X -> P).
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
|
|
if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
|
|
LI->isSimple())
|
|
return EraseInstFromFunction(SI);
|
|
|
|
// Otherwise, this is a load from some other location. Stores before it
|
|
// may not be dead.
|
|
break;
|
|
}
|
|
|
|
// Don't skip over loads or things that can modify memory.
|
|
if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
|
|
break;
|
|
}
|
|
|
|
// store X, null -> turns into 'unreachable' in SimplifyCFG
|
|
if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
|
|
if (!isa<UndefValue>(Val)) {
|
|
SI.setOperand(0, UndefValue::get(Val->getType()));
|
|
if (Instruction *U = dyn_cast<Instruction>(Val))
|
|
Worklist.Add(U); // Dropped a use.
|
|
}
|
|
return 0; // Do not modify these!
|
|
}
|
|
|
|
// store undef, Ptr -> noop
|
|
if (isa<UndefValue>(Val))
|
|
return EraseInstFromFunction(SI);
|
|
|
|
// If the pointer destination is a cast, see if we can fold the cast into the
|
|
// source instead.
|
|
if (isa<CastInst>(Ptr))
|
|
if (Instruction *Res = InstCombineStoreToCast(*this, SI))
|
|
return Res;
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
|
|
if (CE->isCast())
|
|
if (Instruction *Res = InstCombineStoreToCast(*this, SI))
|
|
return Res;
|
|
|
|
|
|
// If this store is the last instruction in the basic block (possibly
|
|
// excepting debug info instructions), and if the block ends with an
|
|
// unconditional branch, try to move it to the successor block.
|
|
BBI = &SI;
|
|
do {
|
|
++BBI;
|
|
} while (isa<DbgInfoIntrinsic>(BBI) ||
|
|
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
|
|
if (BI->isUnconditional())
|
|
if (SimplifyStoreAtEndOfBlock(SI))
|
|
return 0; // xform done!
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// SimplifyStoreAtEndOfBlock - Turn things like:
|
|
/// if () { *P = v1; } else { *P = v2 }
|
|
/// into a phi node with a store in the successor.
|
|
///
|
|
/// Simplify things like:
|
|
/// *P = v1; if () { *P = v2; }
|
|
/// into a phi node with a store in the successor.
|
|
///
|
|
bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
|
|
BasicBlock *StoreBB = SI.getParent();
|
|
|
|
// Check to see if the successor block has exactly two incoming edges. If
|
|
// so, see if the other predecessor contains a store to the same location.
|
|
// if so, insert a PHI node (if needed) and move the stores down.
|
|
BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
|
|
|
|
// Determine whether Dest has exactly two predecessors and, if so, compute
|
|
// the other predecessor.
|
|
pred_iterator PI = pred_begin(DestBB);
|
|
BasicBlock *P = *PI;
|
|
BasicBlock *OtherBB = 0;
|
|
|
|
if (P != StoreBB)
|
|
OtherBB = P;
|
|
|
|
if (++PI == pred_end(DestBB))
|
|
return false;
|
|
|
|
P = *PI;
|
|
if (P != StoreBB) {
|
|
if (OtherBB)
|
|
return false;
|
|
OtherBB = P;
|
|
}
|
|
if (++PI != pred_end(DestBB))
|
|
return false;
|
|
|
|
// Bail out if all the relevant blocks aren't distinct (this can happen,
|
|
// for example, if SI is in an infinite loop)
|
|
if (StoreBB == DestBB || OtherBB == DestBB)
|
|
return false;
|
|
|
|
// Verify that the other block ends in a branch and is not otherwise empty.
|
|
BasicBlock::iterator BBI = OtherBB->getTerminator();
|
|
BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
|
|
if (!OtherBr || BBI == OtherBB->begin())
|
|
return false;
|
|
|
|
// If the other block ends in an unconditional branch, check for the 'if then
|
|
// else' case. there is an instruction before the branch.
|
|
StoreInst *OtherStore = 0;
|
|
if (OtherBr->isUnconditional()) {
|
|
--BBI;
|
|
// Skip over debugging info.
|
|
while (isa<DbgInfoIntrinsic>(BBI) ||
|
|
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
|
|
if (BBI==OtherBB->begin())
|
|
return false;
|
|
--BBI;
|
|
}
|
|
// If this isn't a store, isn't a store to the same location, or is not the
|
|
// right kind of store, bail out.
|
|
OtherStore = dyn_cast<StoreInst>(BBI);
|
|
if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
|
|
!SI.isSameOperationAs(OtherStore))
|
|
return false;
|
|
} else {
|
|
// Otherwise, the other block ended with a conditional branch. If one of the
|
|
// destinations is StoreBB, then we have the if/then case.
|
|
if (OtherBr->getSuccessor(0) != StoreBB &&
|
|
OtherBr->getSuccessor(1) != StoreBB)
|
|
return false;
|
|
|
|
// Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
|
|
// if/then triangle. See if there is a store to the same ptr as SI that
|
|
// lives in OtherBB.
|
|
for (;; --BBI) {
|
|
// Check to see if we find the matching store.
|
|
if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
|
|
if (OtherStore->getOperand(1) != SI.getOperand(1) ||
|
|
!SI.isSameOperationAs(OtherStore))
|
|
return false;
|
|
break;
|
|
}
|
|
// If we find something that may be using or overwriting the stored
|
|
// value, or if we run out of instructions, we can't do the xform.
|
|
if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
|
|
BBI == OtherBB->begin())
|
|
return false;
|
|
}
|
|
|
|
// In order to eliminate the store in OtherBr, we have to
|
|
// make sure nothing reads or overwrites the stored value in
|
|
// StoreBB.
|
|
for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
|
|
// FIXME: This should really be AA driven.
|
|
if (I->mayReadFromMemory() || I->mayWriteToMemory())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Insert a PHI node now if we need it.
|
|
Value *MergedVal = OtherStore->getOperand(0);
|
|
if (MergedVal != SI.getOperand(0)) {
|
|
PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
|
|
PN->addIncoming(SI.getOperand(0), SI.getParent());
|
|
PN->addIncoming(OtherStore->getOperand(0), OtherBB);
|
|
MergedVal = InsertNewInstBefore(PN, DestBB->front());
|
|
}
|
|
|
|
// Advance to a place where it is safe to insert the new store and
|
|
// insert it.
|
|
BBI = DestBB->getFirstInsertionPt();
|
|
StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
|
|
SI.isVolatile(),
|
|
SI.getAlignment(),
|
|
SI.getOrdering(),
|
|
SI.getSynchScope());
|
|
InsertNewInstBefore(NewSI, *BBI);
|
|
NewSI->setDebugLoc(OtherStore->getDebugLoc());
|
|
|
|
// Nuke the old stores.
|
|
EraseInstFromFunction(SI);
|
|
EraseInstFromFunction(*OtherStore);
|
|
return true;
|
|
}
|