llvm-6502/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
Bill Wendling 98a366d547 Instead of passing in an unsigned value for the optimization level, use an enum,
which better identifies what the optimization is doing. And is more flexible for
future uses.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70440 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-29 23:29:43 +00:00

6101 lines
238 KiB
C++

//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
// both before and after the DAG is legalized.
//
// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
// primarily intended to handle simplification opportunities that are implicit
// in the LLVM IR and exposed by the various codegen lowering phases.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dagcombine"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <set>
using namespace llvm;
STATISTIC(NodesCombined , "Number of dag nodes combined");
STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
namespace {
static cl::opt<bool>
CombinerAA("combiner-alias-analysis", cl::Hidden,
cl::desc("Turn on alias analysis during testing"));
static cl::opt<bool>
CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
cl::desc("Include global information in alias analysis"));
//------------------------------ DAGCombiner ---------------------------------//
class VISIBILITY_HIDDEN DAGCombiner {
SelectionDAG &DAG;
const TargetLowering &TLI;
CombineLevel Level;
CodeGenOpt::Level OptLevel;
bool LegalOperations;
bool LegalTypes;
// Worklist of all of the nodes that need to be simplified.
std::vector<SDNode*> WorkList;
// AA - Used for DAG load/store alias analysis.
AliasAnalysis &AA;
/// AddUsersToWorkList - When an instruction is simplified, add all users of
/// the instruction to the work lists because they might get more simplified
/// now.
///
void AddUsersToWorkList(SDNode *N) {
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
UI != UE; ++UI)
AddToWorkList(*UI);
}
/// visit - call the node-specific routine that knows how to fold each
/// particular type of node.
SDValue visit(SDNode *N);
public:
/// AddToWorkList - Add to the work list making sure it's instance is at the
/// the back (next to be processed.)
void AddToWorkList(SDNode *N) {
removeFromWorkList(N);
WorkList.push_back(N);
}
/// removeFromWorkList - remove all instances of N from the worklist.
///
void removeFromWorkList(SDNode *N) {
WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
WorkList.end());
}
SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo = true);
SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
return CombineTo(N, &Res, 1, AddTo);
}
SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
bool AddTo = true) {
SDValue To[] = { Res0, Res1 };
return CombineTo(N, To, 2, AddTo);
}
void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
private:
/// SimplifyDemandedBits - Check the specified integer node value to see if
/// it can be simplified or if things it uses can be simplified by bit
/// propagation. If so, return true.
bool SimplifyDemandedBits(SDValue Op) {
APInt Demanded = APInt::getAllOnesValue(Op.getValueSizeInBits());
return SimplifyDemandedBits(Op, Demanded);
}
bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
bool CombineToPreIndexedLoadStore(SDNode *N);
bool CombineToPostIndexedLoadStore(SDNode *N);
/// combine - call the node-specific routine that knows how to fold each
/// particular type of node. If that doesn't do anything, try the
/// target-specific DAG combines.
SDValue combine(SDNode *N);
// Visitation implementation - Implement dag node combining for different
// node types. The semantics are as follows:
// Return Value:
// SDValue.getNode() == 0 - No change was made
// SDValue.getNode() == N - N was replaced, is dead and has been handled.
// otherwise - N should be replaced by the returned Operand.
//
SDValue visitTokenFactor(SDNode *N);
SDValue visitMERGE_VALUES(SDNode *N);
SDValue visitADD(SDNode *N);
SDValue visitSUB(SDNode *N);
SDValue visitADDC(SDNode *N);
SDValue visitADDE(SDNode *N);
SDValue visitMUL(SDNode *N);
SDValue visitSDIV(SDNode *N);
SDValue visitUDIV(SDNode *N);
SDValue visitSREM(SDNode *N);
SDValue visitUREM(SDNode *N);
SDValue visitMULHU(SDNode *N);
SDValue visitMULHS(SDNode *N);
SDValue visitSMUL_LOHI(SDNode *N);
SDValue visitUMUL_LOHI(SDNode *N);
SDValue visitSDIVREM(SDNode *N);
SDValue visitUDIVREM(SDNode *N);
SDValue visitAND(SDNode *N);
SDValue visitOR(SDNode *N);
SDValue visitXOR(SDNode *N);
SDValue SimplifyVBinOp(SDNode *N);
SDValue visitSHL(SDNode *N);
SDValue visitSRA(SDNode *N);
SDValue visitSRL(SDNode *N);
SDValue visitCTLZ(SDNode *N);
SDValue visitCTTZ(SDNode *N);
SDValue visitCTPOP(SDNode *N);
SDValue visitSELECT(SDNode *N);
SDValue visitSELECT_CC(SDNode *N);
SDValue visitSETCC(SDNode *N);
SDValue visitSIGN_EXTEND(SDNode *N);
SDValue visitZERO_EXTEND(SDNode *N);
SDValue visitANY_EXTEND(SDNode *N);
SDValue visitSIGN_EXTEND_INREG(SDNode *N);
SDValue visitTRUNCATE(SDNode *N);
SDValue visitBIT_CONVERT(SDNode *N);
SDValue visitBUILD_PAIR(SDNode *N);
SDValue visitFADD(SDNode *N);
SDValue visitFSUB(SDNode *N);
SDValue visitFMUL(SDNode *N);
SDValue visitFDIV(SDNode *N);
SDValue visitFREM(SDNode *N);
SDValue visitFCOPYSIGN(SDNode *N);
SDValue visitSINT_TO_FP(SDNode *N);
SDValue visitUINT_TO_FP(SDNode *N);
SDValue visitFP_TO_SINT(SDNode *N);
SDValue visitFP_TO_UINT(SDNode *N);
SDValue visitFP_ROUND(SDNode *N);
SDValue visitFP_ROUND_INREG(SDNode *N);
SDValue visitFP_EXTEND(SDNode *N);
SDValue visitFNEG(SDNode *N);
SDValue visitFABS(SDNode *N);
SDValue visitBRCOND(SDNode *N);
SDValue visitBR_CC(SDNode *N);
SDValue visitLOAD(SDNode *N);
SDValue visitSTORE(SDNode *N);
SDValue visitINSERT_VECTOR_ELT(SDNode *N);
SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
SDValue visitBUILD_VECTOR(SDNode *N);
SDValue visitCONCAT_VECTORS(SDNode *N);
SDValue visitVECTOR_SHUFFLE(SDNode *N);
SDValue XformToShuffleWithZero(SDNode *N);
SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
SDValue N3, ISD::CondCode CC,
bool NotExtCompare = false);
SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
DebugLoc DL, bool foldBooleans = true);
SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
unsigned HiOp);
SDValue CombineConsecutiveLoads(SDNode *N, MVT VT);
SDValue ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT);
SDValue BuildSDIV(SDNode *N);
SDValue BuildUDIV(SDNode *N);
SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
SDValue ReduceLoadWidth(SDNode *N);
SDValue GetDemandedBits(SDValue V, const APInt &Mask);
/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
/// looking for aliasing nodes and adding them to the Aliases vector.
void GatherAllAliases(SDNode *N, SDValue OriginalChain,
SmallVector<SDValue, 8> &Aliases);
/// isAlias - Return true if there is any possibility that the two addresses
/// overlap.
bool isAlias(SDValue Ptr1, int64_t Size1,
const Value *SrcValue1, int SrcValueOffset1,
SDValue Ptr2, int64_t Size2,
const Value *SrcValue2, int SrcValueOffset2) const;
/// FindAliasInfo - Extracts the relevant alias information from the memory
/// node. Returns true if the operand was a load.
bool FindAliasInfo(SDNode *N,
SDValue &Ptr, int64_t &Size,
const Value *&SrcValue, int &SrcValueOffset) const;
/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
/// looking for a better chain (aliasing node.)
SDValue FindBetterChain(SDNode *N, SDValue Chain);
/// getShiftAmountTy - Returns a type large enough to hold any valid
/// shift amount - before type legalization these can be huge.
MVT getShiftAmountTy() {
return LegalTypes ? TLI.getShiftAmountTy() : TLI.getPointerTy();
}
public:
DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
: DAG(D),
TLI(D.getTargetLoweringInfo()),
Level(Unrestricted),
OptLevel(OL),
LegalOperations(false),
LegalTypes(false),
AA(A) {}
/// Run - runs the dag combiner on all nodes in the work list
void Run(CombineLevel AtLevel);
};
}
namespace {
/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
/// nodes from the worklist.
class VISIBILITY_HIDDEN WorkListRemover :
public SelectionDAG::DAGUpdateListener {
DAGCombiner &DC;
public:
explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
virtual void NodeDeleted(SDNode *N, SDNode *E) {
DC.removeFromWorkList(N);
}
virtual void NodeUpdated(SDNode *N) {
// Ignore updates.
}
};
}
//===----------------------------------------------------------------------===//
// TargetLowering::DAGCombinerInfo implementation
//===----------------------------------------------------------------------===//
void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
((DAGCombiner*)DC)->AddToWorkList(N);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDValue Res, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
}
void TargetLowering::DAGCombinerInfo::
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
}
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
/// isNegatibleForFree - Return 1 if we can compute the negated form of the
/// specified expression for the same cost as the expression itself, or 2 if we
/// can compute the negated form more cheaply than the expression itself.
static char isNegatibleForFree(SDValue Op, bool LegalOperations,
unsigned Depth = 0) {
// No compile time optimizations on this type.
if (Op.getValueType() == MVT::ppcf128)
return 0;
// fneg is removable even if it has multiple uses.
if (Op.getOpcode() == ISD::FNEG) return 2;
// Don't allow anything with multiple uses.
if (!Op.hasOneUse()) return 0;
// Don't recurse exponentially.
if (Depth > 6) return 0;
switch (Op.getOpcode()) {
default: return false;
case ISD::ConstantFP:
// Don't invert constant FP values after legalize. The negated constant
// isn't necessarily legal.
return LegalOperations ? 0 : 1;
case ISD::FADD:
// FIXME: determine better conditions for this xform.
if (!UnsafeFPMath) return 0;
// fold (fsub (fadd A, B)) -> (fsub (fneg A), B)
if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
return V;
// fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1);
case ISD::FSUB:
// We can't turn -(A-B) into B-A when we honor signed zeros.
if (!UnsafeFPMath) return 0;
// fold (fneg (fsub A, B)) -> (fsub B, A)
return 1;
case ISD::FMUL:
case ISD::FDIV:
if (HonorSignDependentRoundingFPMath()) return 0;
// fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
return V;
return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1);
case ISD::FP_EXTEND:
case ISD::FP_ROUND:
case ISD::FSIN:
return isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1);
}
}
/// GetNegatedExpression - If isNegatibleForFree returns true, this function
/// returns the newly negated expression.
static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
bool LegalOperations, unsigned Depth = 0) {
// fneg is removable even if it has multiple uses.
if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
// Don't allow anything with multiple uses.
assert(Op.hasOneUse() && "Unknown reuse!");
assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
switch (Op.getOpcode()) {
default: assert(0 && "Unknown code");
case ISD::ConstantFP: {
APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
V.changeSign();
return DAG.getConstantFP(V, Op.getValueType());
}
case ISD::FADD:
// FIXME: determine better conditions for this xform.
assert(UnsafeFPMath);
// fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1),
Op.getOperand(1));
// fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
GetNegatedExpression(Op.getOperand(1), DAG,
LegalOperations, Depth+1),
Op.getOperand(0));
case ISD::FSUB:
// We can't turn -(A-B) into B-A when we honor signed zeros.
assert(UnsafeFPMath);
// fold (fneg (fsub 0, B)) -> B
if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
if (N0CFP->getValueAPF().isZero())
return Op.getOperand(1);
// fold (fneg (fsub A, B)) -> (fsub B, A)
return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
Op.getOperand(1), Op.getOperand(0));
case ISD::FMUL:
case ISD::FDIV:
assert(!HonorSignDependentRoundingFPMath());
// fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1),
Op.getOperand(1));
// fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
Op.getOperand(0),
GetNegatedExpression(Op.getOperand(1), DAG,
LegalOperations, Depth+1));
case ISD::FP_EXTEND:
case ISD::FSIN:
return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1));
case ISD::FP_ROUND:
return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
GetNegatedExpression(Op.getOperand(0), DAG,
LegalOperations, Depth+1),
Op.getOperand(1));
}
}
// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
// that selects between the values 1 and 0, making it equivalent to a setcc.
// Also, set the incoming LHS, RHS, and CC references to the appropriate
// nodes based on the type of node we are checking. This simplifies life a
// bit for the callers.
static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
SDValue &CC) {
if (N.getOpcode() == ISD::SETCC) {
LHS = N.getOperand(0);
RHS = N.getOperand(1);
CC = N.getOperand(2);
return true;
}
if (N.getOpcode() == ISD::SELECT_CC &&
N.getOperand(2).getOpcode() == ISD::Constant &&
N.getOperand(3).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
LHS = N.getOperand(0);
RHS = N.getOperand(1);
CC = N.getOperand(4);
return true;
}
return false;
}
// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
// one use. If this is true, it allows the users to invert the operation for
// free when it is profitable to do so.
static bool isOneUseSetCC(SDValue N) {
SDValue N0, N1, N2;
if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
return true;
return false;
}
SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
SDValue N0, SDValue N1) {
MVT VT = N0.getValueType();
if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
if (isa<ConstantSDNode>(N1)) {
// reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
SDValue OpNode =
DAG.FoldConstantArithmetic(Opc, VT,
cast<ConstantSDNode>(N0.getOperand(1)),
cast<ConstantSDNode>(N1));
return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
} else if (N0.hasOneUse()) {
// reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
N0.getOperand(0), N1);
AddToWorkList(OpNode.getNode());
return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
}
}
if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
if (isa<ConstantSDNode>(N0)) {
// reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
SDValue OpNode =
DAG.FoldConstantArithmetic(Opc, VT,
cast<ConstantSDNode>(N1.getOperand(1)),
cast<ConstantSDNode>(N0));
return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
} else if (N1.hasOneUse()) {
// reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
N1.getOperand(0), N0);
AddToWorkList(OpNode.getNode());
return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
}
}
return SDValue();
}
SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo) {
assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
++NodesCombined;
DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
DOUT << "\nWith: "; DEBUG(To[0].getNode()->dump(&DAG));
DOUT << " and " << NumTo-1 << " other values\n";
DEBUG(for (unsigned i = 0, e = NumTo; i != e; ++i)
assert(N->getValueType(i) == To[i].getValueType() &&
"Cannot combine value to value of different type!"));
WorkListRemover DeadNodes(*this);
DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
if (AddTo) {
// Push the new nodes and any users onto the worklist
for (unsigned i = 0, e = NumTo; i != e; ++i) {
if (To[i].getNode()) {
AddToWorkList(To[i].getNode());
AddUsersToWorkList(To[i].getNode());
}
}
}
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node.
if (N->use_empty()) {
// Nodes can be reintroduced into the worklist. Make sure we do not
// process a node that has been replaced.
removeFromWorkList(N);
// Finally, since the node is now dead, remove it from the graph.
DAG.DeleteNode(N);
}
return SDValue(N, 0);
}
void
DAGCombiner::CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &
TLO) {
// Replace all uses. If any nodes become isomorphic to other nodes and
// are deleted, make sure to remove them from our worklist.
WorkListRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
// Push the new node and any (possibly new) users onto the worklist.
AddToWorkList(TLO.New.getNode());
AddUsersToWorkList(TLO.New.getNode());
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node.
if (TLO.Old.getNode()->use_empty()) {
removeFromWorkList(TLO.Old.getNode());
// If the operands of this node are only used by the node, they will now
// be dead. Make sure to visit them first to delete dead nodes early.
for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
DAG.DeleteNode(TLO.Old.getNode());
}
}
/// SimplifyDemandedBits - Check the specified integer node value to see if
/// it can be simplified or if things it uses can be simplified by bit
/// propagation. If so, return true.
bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
TargetLowering::TargetLoweringOpt TLO(DAG);
APInt KnownZero, KnownOne;
if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
return false;
// Revisit the node.
AddToWorkList(Op.getNode());
// Replace the old value with the new one.
++NodesCombined;
DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.getNode()->dump(&DAG));
DOUT << "\nWith: "; DEBUG(TLO.New.getNode()->dump(&DAG));
DOUT << '\n';
CommitTargetLoweringOpt(TLO);
return true;
}
//===----------------------------------------------------------------------===//
// Main DAG Combiner implementation
//===----------------------------------------------------------------------===//
void DAGCombiner::Run(CombineLevel AtLevel) {
// set the instance variables, so that the various visit routines may use it.
Level = AtLevel;
LegalOperations = Level >= NoIllegalOperations;
LegalTypes = Level >= NoIllegalTypes;
// Add all the dag nodes to the worklist.
WorkList.reserve(DAG.allnodes_size());
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I)
WorkList.push_back(I);
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted, and tracking any
// changes of the root.
HandleSDNode Dummy(DAG.getRoot());
// The root of the dag may dangle to deleted nodes until the dag combiner is
// done. Set it to null to avoid confusion.
DAG.setRoot(SDValue());
// while the worklist isn't empty, inspect the node on the end of it and
// try and combine it.
while (!WorkList.empty()) {
SDNode *N = WorkList.back();
WorkList.pop_back();
// If N has no uses, it is dead. Make sure to revisit all N's operands once
// N is deleted from the DAG, since they too may now be dead or may have a
// reduced number of uses, allowing other xforms.
if (N->use_empty() && N != &Dummy) {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
AddToWorkList(N->getOperand(i).getNode());
DAG.DeleteNode(N);
continue;
}
SDValue RV = combine(N);
if (RV.getNode() == 0)
continue;
++NodesCombined;
// If we get back the same node we passed in, rather than a new node or
// zero, we know that the node must have defined multiple values and
// CombineTo was used. Since CombineTo takes care of the worklist
// mechanics for us, we have no work to do in this case.
if (RV.getNode() == N)
continue;
assert(N->getOpcode() != ISD::DELETED_NODE &&
RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned new node!");
DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
DOUT << "\nWith: "; DEBUG(RV.getNode()->dump(&DAG));
DOUT << '\n';
WorkListRemover DeadNodes(*this);
if (N->getNumValues() == RV.getNode()->getNumValues())
DAG.ReplaceAllUsesWith(N, RV.getNode(), &DeadNodes);
else {
assert(N->getValueType(0) == RV.getValueType() &&
N->getNumValues() == 1 && "Type mismatch");
SDValue OpV = RV;
DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
}
// Push the new node and any users onto the worklist
AddToWorkList(RV.getNode());
AddUsersToWorkList(RV.getNode());
// Add any uses of the old node to the worklist in case this node is the
// last one that uses them. They may become dead after this node is
// deleted.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
AddToWorkList(N->getOperand(i).getNode());
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node.
if (N->use_empty()) {
// Nodes can be reintroduced into the worklist. Make sure we do not
// process a node that has been replaced.
removeFromWorkList(N);
// Finally, since the node is now dead, remove it from the graph.
DAG.DeleteNode(N);
}
}
// If the root changed (e.g. it was a dead load, update the root).
DAG.setRoot(Dummy.getValue());
}
SDValue DAGCombiner::visit(SDNode *N) {
switch(N->getOpcode()) {
default: break;
case ISD::TokenFactor: return visitTokenFactor(N);
case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
case ISD::ADD: return visitADD(N);
case ISD::SUB: return visitSUB(N);
case ISD::ADDC: return visitADDC(N);
case ISD::ADDE: return visitADDE(N);
case ISD::MUL: return visitMUL(N);
case ISD::SDIV: return visitSDIV(N);
case ISD::UDIV: return visitUDIV(N);
case ISD::SREM: return visitSREM(N);
case ISD::UREM: return visitUREM(N);
case ISD::MULHU: return visitMULHU(N);
case ISD::MULHS: return visitMULHS(N);
case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
case ISD::SDIVREM: return visitSDIVREM(N);
case ISD::UDIVREM: return visitUDIVREM(N);
case ISD::AND: return visitAND(N);
case ISD::OR: return visitOR(N);
case ISD::XOR: return visitXOR(N);
case ISD::SHL: return visitSHL(N);
case ISD::SRA: return visitSRA(N);
case ISD::SRL: return visitSRL(N);
case ISD::CTLZ: return visitCTLZ(N);
case ISD::CTTZ: return visitCTTZ(N);
case ISD::CTPOP: return visitCTPOP(N);
case ISD::SELECT: return visitSELECT(N);
case ISD::SELECT_CC: return visitSELECT_CC(N);
case ISD::SETCC: return visitSETCC(N);
case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
case ISD::TRUNCATE: return visitTRUNCATE(N);
case ISD::BIT_CONVERT: return visitBIT_CONVERT(N);
case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
case ISD::FADD: return visitFADD(N);
case ISD::FSUB: return visitFSUB(N);
case ISD::FMUL: return visitFMUL(N);
case ISD::FDIV: return visitFDIV(N);
case ISD::FREM: return visitFREM(N);
case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
case ISD::FP_ROUND: return visitFP_ROUND(N);
case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
case ISD::FP_EXTEND: return visitFP_EXTEND(N);
case ISD::FNEG: return visitFNEG(N);
case ISD::FABS: return visitFABS(N);
case ISD::BRCOND: return visitBRCOND(N);
case ISD::BR_CC: return visitBR_CC(N);
case ISD::LOAD: return visitLOAD(N);
case ISD::STORE: return visitSTORE(N);
case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
}
return SDValue();
}
SDValue DAGCombiner::combine(SDNode *N) {
SDValue RV = visit(N);
// If nothing happened, try a target-specific DAG combine.
if (RV.getNode() == 0) {
assert(N->getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned NULL!");
if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
// Expose the DAG combiner to the target combiner impls.
TargetLowering::DAGCombinerInfo
DagCombineInfo(DAG, Level == Unrestricted, false, this);
RV = TLI.PerformDAGCombine(N, DagCombineInfo);
}
}
// If N is a commutative binary node, try commuting it to enable more
// sdisel CSE.
if (RV.getNode() == 0 &&
SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
N->getNumValues() == 1) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Constant operands are canonicalized to RHS.
if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
SDValue Ops[] = { N1, N0 };
SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
Ops, 2);
if (CSENode)
return SDValue(CSENode, 0);
}
}
return RV;
}
/// getInputChainForNode - Given a node, return its input chain if it has one,
/// otherwise return a null sd operand.
static SDValue getInputChainForNode(SDNode *N) {
if (unsigned NumOps = N->getNumOperands()) {
if (N->getOperand(0).getValueType() == MVT::Other)
return N->getOperand(0);
else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
return N->getOperand(NumOps-1);
for (unsigned i = 1; i < NumOps-1; ++i)
if (N->getOperand(i).getValueType() == MVT::Other)
return N->getOperand(i);
}
return SDValue();
}
SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
// If N has two operands, where one has an input chain equal to the other,
// the 'other' chain is redundant.
if (N->getNumOperands() == 2) {
if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
return N->getOperand(0);
if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
return N->getOperand(1);
}
SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
SmallPtrSet<SDNode*, 16> SeenOps;
bool Changed = false; // If we should replace this token factor.
// Start out with this token factor.
TFs.push_back(N);
// Iterate through token factors. The TFs grows when new token factors are
// encountered.
for (unsigned i = 0; i < TFs.size(); ++i) {
SDNode *TF = TFs[i];
// Check each of the operands.
for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
SDValue Op = TF->getOperand(i);
switch (Op.getOpcode()) {
case ISD::EntryToken:
// Entry tokens don't need to be added to the list. They are
// rededundant.
Changed = true;
break;
case ISD::TokenFactor:
if ((CombinerAA || Op.hasOneUse()) &&
std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
// Queue up for processing.
TFs.push_back(Op.getNode());
// Clean up in case the token factor is removed.
AddToWorkList(Op.getNode());
Changed = true;
break;
}
// Fall thru
default:
// Only add if it isn't already in the list.
if (SeenOps.insert(Op.getNode()))
Ops.push_back(Op);
else
Changed = true;
break;
}
}
}
SDValue Result;
// If we've change things around then replace token factor.
if (Changed) {
if (Ops.empty()) {
// The entry token is the only possible outcome.
Result = DAG.getEntryNode();
} else {
// New and improved token factor.
Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
MVT::Other, &Ops[0], Ops.size());
}
// Don't add users to work list.
return CombineTo(N, Result, false);
}
return Result;
}
/// MERGE_VALUES can always be eliminated.
SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
WorkListRemover DeadNodes(*this);
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i),
&DeadNodes);
removeFromWorkList(N);
DAG.DeleteNode(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
static
SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
SelectionDAG &DAG) {
MVT VT = N0.getValueType();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
isa<ConstantSDNode>(N00.getOperand(1))) {
// fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
N00.getOperand(0), N01),
DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
N00.getOperand(1), N01));
return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
}
return SDValue();
}
SDValue DAGCombiner::visitADD(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector()) {
SDValue FoldedVOp = SimplifyVBinOp(N);
if (FoldedVOp.getNode()) return FoldedVOp;
}
// fold (add x, undef) -> undef
if (N0.getOpcode() == ISD::UNDEF)
return N0;
if (N1.getOpcode() == ISD::UNDEF)
return N1;
// fold (add c1, c2) -> c1+c2
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
// fold (add x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// fold (add Sym, c) -> Sym+c
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
GA->getOpcode() == ISD::GlobalAddress)
return DAG.getGlobalAddress(GA->getGlobal(), VT,
GA->getOffset() +
(uint64_t)N1C->getSExtValue());
// fold ((c1-A)+c2) -> (c1+c2)-A
if (N1C && N0.getOpcode() == ISD::SUB)
if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
DAG.getConstant(N1C->getAPIntValue()+
N0C->getAPIntValue(), VT),
N0.getOperand(1));
// reassociate add
SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
if (RADD.getNode() != 0)
return RADD;
// fold ((0-A) + B) -> B-A
if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
// fold (A + (0-B)) -> A-B
if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
// fold (A+(B-A)) -> B
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
return N1.getOperand(0);
// fold ((B-A)+A) -> B
if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
return N0.getOperand(0);
// fold (A+(B-(A+C))) to (B-C)
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
N0 == N1.getOperand(1).getOperand(0))
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
N1.getOperand(1).getOperand(1));
// fold (A+(B-(C+A))) to (B-C)
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
N0 == N1.getOperand(1).getOperand(1))
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
N1.getOperand(1).getOperand(0));
// fold (A+((B-A)+or-C)) to (B+or-C)
if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
N1.getOperand(0).getOpcode() == ISD::SUB &&
N0 == N1.getOperand(0).getOperand(1))
return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
N1.getOperand(0).getOperand(0), N1.getOperand(1));
// fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
SDValue N10 = N1.getOperand(0);
SDValue N11 = N1.getOperand(1);
if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
}
if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (a+b) -> (a|b) iff a and b share no bits.
if (VT.isInteger() && !VT.isVector()) {
APInt LHSZero, LHSOne;
APInt RHSZero, RHSOne;
APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
if (LHSZero.getBoolValue()) {
DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
// If all possibly-set bits on the LHS are clear on the RHS, return an OR.
// If all possibly-set bits on the RHS are clear on the LHS, return an OR.
if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
(LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
}
}
// fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
if (Result.getNode()) return Result;
}
if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
if (Result.getNode()) return Result;
}
return SDValue();
}
SDValue DAGCombiner::visitADDC(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT VT = N0.getValueType();
// If the flag result is dead, turn this into an ADD.
if (N->hasNUsesOfValue(0, 1))
return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0),
DAG.getNode(ISD::CARRY_FALSE,
N->getDebugLoc(), MVT::Flag));
// canonicalize constant to RHS.
if (N0C && !N1C)
return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
// fold (addc x, 0) -> x + no carry out
if (N1C && N1C->isNullValue())
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
N->getDebugLoc(), MVT::Flag));
// fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
APInt LHSZero, LHSOne;
APInt RHSZero, RHSOne;
APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
if (LHSZero.getBoolValue()) {
DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
// If all possibly-set bits on the LHS are clear on the RHS, return an OR.
// If all possibly-set bits on the RHS are clear on the LHS, return an OR.
if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
(LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
DAG.getNode(ISD::CARRY_FALSE,
N->getDebugLoc(), MVT::Flag));
}
return SDValue();
}
SDValue DAGCombiner::visitADDE(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
N1, N0, CarryIn);
// fold (adde x, y, false) -> (addc x, y)
if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
return SDValue();
}
SDValue DAGCombiner::visitSUB(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
MVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector()) {
SDValue FoldedVOp = SimplifyVBinOp(N);
if (FoldedVOp.getNode()) return FoldedVOp;
}
// fold (sub x, x) -> 0
if (N0 == N1)
return DAG.getConstant(0, N->getValueType(0));
// fold (sub c1, c2) -> c1-c2
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
// fold (sub x, c) -> (add x, -c)
if (N1C)
return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
DAG.getConstant(-N1C->getAPIntValue(), VT));
// fold (A+B)-A -> B
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
return N0.getOperand(1);
// fold (A+B)-B -> A
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
return N0.getOperand(0);
// fold ((A+(B+or-C))-B) -> A+or-C
if (N0.getOpcode() == ISD::ADD &&
(N0.getOperand(1).getOpcode() == ISD::SUB ||
N0.getOperand(1).getOpcode() == ISD::ADD) &&
N0.getOperand(1).getOperand(0) == N1)
return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
N0.getOperand(0), N0.getOperand(1).getOperand(1));
// fold ((A+(C+B))-B) -> A+C
if (N0.getOpcode() == ISD::ADD &&
N0.getOperand(1).getOpcode() == ISD::ADD &&
N0.getOperand(1).getOperand(1) == N1)
return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
N0.getOperand(0), N0.getOperand(1).getOperand(0));
// fold ((A-(B-C))-C) -> A-B
if (N0.getOpcode() == ISD::SUB &&
N0.getOperand(1).getOpcode() == ISD::SUB &&
N0.getOperand(1).getOperand(1) == N1)
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
N0.getOperand(0), N0.getOperand(1).getOperand(0));
// If either operand of a sub is undef, the result is undef
if (N0.getOpcode() == ISD::UNDEF)
return N0;
if (N1.getOpcode() == ISD::UNDEF)
return N1;
// If the relocation model supports it, consider symbol offsets.
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
// fold (sub Sym, c) -> Sym-c
if (N1C && GA->getOpcode() == ISD::GlobalAddress)
return DAG.getGlobalAddress(GA->getGlobal(), VT,
GA->getOffset() -
(uint64_t)N1C->getSExtValue());
// fold (sub Sym+c1, Sym+c2) -> c1-c2
if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
if (GA->getGlobal() == GB->getGlobal())
return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
VT);
}
return SDValue();
}
SDValue DAGCombiner::visitMUL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector()) {
SDValue FoldedVOp = SimplifyVBinOp(N);
if (FoldedVOp.getNode()) return FoldedVOp;
}
// fold (mul x, undef) -> 0
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, VT);
// fold (mul c1, c2) -> c1*c2
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
// fold (mul x, 0) -> 0
if (N1C && N1C->isNullValue())
return N1;
// fold (mul x, -1) -> 0-x
if (N1C && N1C->isAllOnesValue())
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
DAG.getConstant(0, VT), N0);
// fold (mul x, (1 << c)) -> x << c
if (N1C && N1C->getAPIntValue().isPowerOf2())
return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
DAG.getConstant(N1C->getAPIntValue().logBase2(),
getShiftAmountTy()));
// fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
// FIXME: If the input is something that is easily negated (e.g. a
// single-use add), we should put the negate there.
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
DAG.getConstant(0, VT),
DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
DAG.getConstant(Log2Val, getShiftAmountTy())));
}
// (mul (shl X, c1), c2) -> (mul X, c2 << c1)
if (N1C && N0.getOpcode() == ISD::SHL &&
isa<ConstantSDNode>(N0.getOperand(1))) {
SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
N1, N0.getOperand(1));
AddToWorkList(C3.getNode());
return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
N0.getOperand(0), C3);
}
// Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
// use.
{
SDValue Sh(0,0), Y(0,0);
// Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
N0.getNode()->hasOneUse()) {
Sh = N0; Y = N1;
} else if (N1.getOpcode() == ISD::SHL &&
isa<ConstantSDNode>(N1.getOperand(1)) &&
N1.getNode()->hasOneUse()) {
Sh = N1; Y = N0;
}
if (Sh.getNode()) {
SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
Sh.getOperand(0), Y);
return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
Mul, Sh.getOperand(1));
}
}
// fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
isa<ConstantSDNode>(N0.getOperand(1)))
return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
N0.getOperand(0), N1),
DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
N0.getOperand(1), N1));
// reassociate mul
SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
if (RMUL.getNode() != 0)
return RMUL;
return SDValue();
}
SDValue DAGCombiner::visitSDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
MVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector()) {
SDValue FoldedVOp = SimplifyVBinOp(N);
if (FoldedVOp.getNode()) return FoldedVOp;
}
// fold (sdiv c1, c2) -> c1/c2
if (N0C && N1C && !N1C->isNullValue())
return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
// fold (sdiv X, 1) -> X
if (N1C && N1C->getSExtValue() == 1LL)
return N0;
// fold (sdiv X, -1) -> 0-X
if (N1C && N1C->isAllOnesValue())
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
DAG.getConstant(0, VT), N0);
// If we know the sign bits of both operands are zero, strength reduce to a
// udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
if (!VT.isVector()) {
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
N0, N1);
}
// fold (sdiv X, pow2) -> simple ops after legalize
if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap() &&
(isPowerOf2_64(N1C->getSExtValue()) ||
isPowerOf2_64(-N1C->getSExtValue()))) {
// If dividing by powers of two is cheap, then don't perform the following
// fold.
if (TLI.isPow2DivCheap())
return SDValue();
int64_t pow2 = N1C->getSExtValue();
int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
unsigned lg2 = Log2_64(abs2);
// Splat the sign bit into the register
SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
DAG.getConstant(VT.getSizeInBits()-1,
getShiftAmountTy()));
AddToWorkList(SGN.getNode());
// Add (N0 < 0) ? abs2 - 1 : 0;
SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
DAG.getConstant(VT.getSizeInBits() - lg2,
getShiftAmountTy()));
SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
AddToWorkList(SRL.getNode());
AddToWorkList(ADD.getNode()); // Divide by pow2
SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
DAG.getConstant(lg2, getShiftAmountTy()));
// If we're dividing by a positive value, we're done. Otherwise, we must
// negate the result.
if (pow2 > 0)
return SRA;
AddToWorkList(SRA.getNode());
return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
DAG.getConstant(0, VT), SRA);
}
// if integer divide is expensive and we satisfy the requirements, emit an
// alternate sequence.
if (N1C && (N1C->getSExtValue() < -1 || N1C->getSExtValue() > 1) &&
!TLI.isIntDivCheap()) {
SDValue Op = BuildSDIV(N);
if (Op.getNode()) return Op;
}
// undef / X -> 0
if (N0.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, VT);
// X / undef -> undef
if (N1.getOpcode() == ISD::UNDEF)
return N1;
return SDValue();
}
SDValue DAGCombiner::visitUDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
MVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector()) {
SDValue FoldedVOp = SimplifyVBinOp(N);
if (FoldedVOp.getNode()) return FoldedVOp;
}
// fold (udiv c1, c2) -> c1/c2
if (N0C && N1C && !N1C->isNullValue())
return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
// fold (udiv x, (1 << c)) -> x >>u c
if (N1C && N1C->getAPIntValue().isPowerOf2())
return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
DAG.getConstant(N1C->getAPIntValue().logBase2(),
getShiftAmountTy()));
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
if (N1.getOpcode() == ISD::SHL) {
if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
if (SHC->getAPIntValue().isPowerOf2()) {
MVT ADDVT = N1.getOperand(1).getValueType();
SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
N1.getOperand(1),
DAG.getConstant(SHC->getAPIntValue()
.logBase2(),
ADDVT));
AddToWorkList(Add.getNode());
return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
}
}
}
// fold (udiv x, c) -> alternate
if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
SDValue Op = BuildUDIV(N);
if (Op.getNode()) return Op;
}
// undef / X -> 0
if (N0.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, VT);
// X / undef -> undef
if (N1.getOpcode() == ISD::UNDEF)
return N1;
return SDValue();
}
SDValue DAGCombiner::visitSREM(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT VT = N->getValueType(0);
// fold (srem c1, c2) -> c1%c2
if (N0C && N1C && !N1C->isNullValue())
return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
// If we know the sign bits of both operands are zero, strength reduce to a
// urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
if (!VT.isVector()) {
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
}
// If X/C can be simplified by the division-by-constant logic, lower
// X%C to the equivalent of X-X/C*C.
if (N1C && !N1C->isNullValue()) {
SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
AddToWorkList(Div.getNode());
SDValue OptimizedDiv = combine(Div.getNode());
if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
OptimizedDiv, N1);
SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
AddToWorkList(Mul.getNode());
return Sub;
}
}
// undef % X -> 0
if (N0.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, VT);
// X % undef -> undef
if (N1.getOpcode() == ISD::UNDEF)
return N1;
return SDValue();
}
SDValue DAGCombiner::visitUREM(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT VT = N->getValueType(0);
// fold (urem c1, c2) -> c1%c2
if (N0C && N1C && !N1C->isNullValue())
return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
// fold (urem x, pow2) -> (and x, pow2-1)
if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
DAG.getConstant(N1C->getAPIntValue()-1,VT));
// fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
if (N1.getOpcode() == ISD::SHL) {
if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
if (SHC->getAPIntValue().isPowerOf2()) {
SDValue Add =
DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
VT));
AddToWorkList(Add.getNode());
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
}
}
}
// If X/C can be simplified by the division-by-constant logic, lower
// X%C to the equivalent of X-X/C*C.
if (N1C && !N1C->isNullValue()) {
SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
AddToWorkList(Div.getNode());
SDValue OptimizedDiv = combine(Div.getNode());
if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
OptimizedDiv, N1);
SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
AddToWorkList(Mul.getNode());
return Sub;
}
}
// undef % X -> 0
if (N0.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, VT);
// X % undef -> undef
if (N1.getOpcode() == ISD::UNDEF)
return N1;
return SDValue();
}
SDValue DAGCombiner::visitMULHS(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT VT = N->getValueType(0);
// fold (mulhs x, 0) -> 0
if (N1C && N1C->isNullValue())
return N1;
// fold (mulhs x, 1) -> (sra x, size(x)-1)
if (N1C && N1C->getAPIntValue() == 1)
return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
getShiftAmountTy()));
// fold (mulhs x, undef) -> 0
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, VT);
return SDValue();
}
SDValue DAGCombiner::visitMULHU(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT VT = N->getValueType(0);
// fold (mulhu x, 0) -> 0
if (N1C && N1C->isNullValue())
return N1;
// fold (mulhu x, 1) -> 0
if (N1C && N1C->getAPIntValue() == 1)
return DAG.getConstant(0, N0.getValueType());
// fold (mulhu x, undef) -> 0
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, VT);
return SDValue();
}
/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
/// compute two values. LoOp and HiOp give the opcodes for the two computations
/// that are being performed. Return true if a simplification was made.
///
SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
unsigned HiOp) {
// If the high half is not needed, just compute the low half.
bool HiExists = N->hasAnyUseOfValue(1);
if (!HiExists &&
(!LegalOperations ||
TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
N->op_begin(), N->getNumOperands());
return CombineTo(N, Res, Res);
}
// If the low half is not needed, just compute the high half.
bool LoExists = N->hasAnyUseOfValue(0);
if (!LoExists &&
(!LegalOperations ||
TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
N->op_begin(), N->getNumOperands());
return CombineTo(N, Res, Res);
}
// If both halves are used, return as it is.
if (LoExists && HiExists)
return SDValue();
// If the two computed results can be simplified separately, separate them.
if (LoExists) {
SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
N->op_begin(), N->getNumOperands());
AddToWorkList(Lo.getNode());
SDValue LoOpt = combine(Lo.getNode());
if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
(!LegalOperations ||
TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
return CombineTo(N, LoOpt, LoOpt);
}
if (HiExists) {
SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
N->op_begin(), N->getNumOperands());
AddToWorkList(Hi.getNode());
SDValue HiOpt = combine(Hi.getNode());
if (HiOpt.getNode() && HiOpt != Hi &&
(!LegalOperations ||
TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
return CombineTo(N, HiOpt, HiOpt);
}
return SDValue();
}
SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
if (Res.getNode()) return Res;
return SDValue();
}
SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
if (Res.getNode()) return Res;
return SDValue();
}
SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
if (Res.getNode()) return Res;
return SDValue();
}
SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
if (Res.getNode()) return Res;
return SDValue();
}
/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
/// two operands of the same opcode, try to simplify it.
SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
MVT VT = N0.getValueType();
assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
// For each of OP in AND/OR/XOR:
// fold (OP (zext x), (zext y)) -> (zext (OP x, y))
// fold (OP (sext x), (sext y)) -> (sext (OP x, y))
// fold (OP (aext x), (aext y)) -> (aext (OP x, y))
// fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
N0.getOpcode() == ISD::SIGN_EXTEND ||
(N0.getOpcode() == ISD::TRUNCATE &&
!TLI.isTruncateFree(N0.getOperand(0).getValueType(), VT))) &&
N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
N0.getOperand(0).getValueType(),
N0.getOperand(0), N1.getOperand(0));
AddToWorkList(ORNode.getNode());
return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
}
// For each of OP in SHL/SRL/SRA/AND...
// fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
// fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
// fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
N0.getOperand(1) == N1.getOperand(1)) {
SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
N0.getOperand(0).getValueType(),
N0.getOperand(0), N1.getOperand(0));
AddToWorkList(ORNode.getNode());
return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
ORNode, N0.getOperand(1));
}
return SDValue();
}
SDValue DAGCombiner::visitAND(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue LL, LR, RL, RR, CC0, CC1;
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT VT = N1.getValueType();
unsigned BitWidth = VT.getSizeInBits();
// fold vector ops
if (VT.isVector()) {
SDValue FoldedVOp = SimplifyVBinOp(N);
if (FoldedVOp.getNode()) return FoldedVOp;
}
// fold (and x, undef) -> 0
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, VT);
// fold (and c1, c2) -> c1&c2
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
// fold (and x, -1) -> x
if (N1C && N1C->isAllOnesValue())
return N0;
// if (and x, c) is known to be zero, return 0
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
APInt::getAllOnesValue(BitWidth)))
return DAG.getConstant(0, VT);
// reassociate and
SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
if (RAND.getNode() != 0)
return RAND;
// fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
if (N1C && N0.getOpcode() == ISD::OR)
if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
return N1;
// fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
SDValue N0Op0 = N0.getOperand(0);
APInt Mask = ~N1C->getAPIntValue();
Mask.trunc(N0Op0.getValueSizeInBits());
if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
N0.getValueType(), N0Op0);
// Replace uses of the AND with uses of the Zero extend node.
CombineTo(N, Zext);
// We actually want to replace all uses of the any_extend with the
// zero_extend, to avoid duplicating things. This will later cause this
// AND to be folded.
CombineTo(N0.getNode(), Zext);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
LL.getValueType().isInteger()) {
// fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
LR.getValueType(), LL, RL);
AddToWorkList(ORNode.getNode());
return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
}
// fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
LR.getValueType(), LL, RL);
AddToWorkList(ANDNode.getNode());
return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
}
// fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
LR.getValueType(), LL, RL);
AddToWorkList(ORNode.getNode());
return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
}
}
// canonicalize equivalent to ll == rl
if (LL == RR && LR == RL) {
Op1 = ISD::getSetCCSwappedOperands(Op1);
std::swap(RL, RR);
}
if (LL == RL && LR == RR) {
bool isInteger = LL.getValueType().isInteger();
ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
if (Result != ISD::SETCC_INVALID &&
(!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
LL, LR, Result);
}
}
// Simplify: (and (op x...), (op y...)) -> (op (and x, y))
if (N0.getOpcode() == N1.getOpcode()) {
SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
if (Tmp.getNode()) return Tmp;
}
// fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
// fold (and (sra)) -> (and (srl)) when possible.
if (!VT.isVector() &&
SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (zext_inreg (extload x)) -> (zextload x)
if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
MVT EVT = LN0->getMemoryVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
unsigned BitWidth = N1.getValueSizeInBits();
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
BitWidth - EVT.getSizeInBits())) &&
((!LegalOperations && !LN0->isVolatile()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
LN0->getChain(), LN0->getBasePtr(),
LN0->getSrcValue(),
LN0->getSrcValueOffset(), EVT,
LN0->isVolatile(), LN0->getAlignment());
AddToWorkList(N);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
MVT EVT = LN0->getMemoryVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
unsigned BitWidth = N1.getValueSizeInBits();
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
BitWidth - EVT.getSizeInBits())) &&
((!LegalOperations && !LN0->isVolatile()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
LN0->getSrcValueOffset(), EVT,
LN0->isVolatile(), LN0->getAlignment());
AddToWorkList(N);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (and (load x), 255) -> (zextload x, i8)
// fold (and (extload x, i16), 255) -> (zextload x, i8)
if (N1C && N0.getOpcode() == ISD::LOAD) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
if (LN0->getExtensionType() != ISD::SEXTLOAD &&
LN0->isUnindexed() && N0.hasOneUse() &&
// Do not change the width of a volatile load.
!LN0->isVolatile()) {
MVT EVT = MVT::Other;
uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue()))
EVT = MVT::getIntegerVT(ActiveBits);
MVT LoadedVT = LN0->getMemoryVT();
// Do not generate loads of non-round integer types since these can
// be expensive (and would be wrong if the type is not byte sized).
if (EVT != MVT::Other && LoadedVT.bitsGT(EVT) && EVT.isRound() &&
(!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
MVT PtrType = N0.getOperand(1).getValueType();
// For big endian targets, we need to add an offset to the pointer to
// load the correct bytes. For little endian systems, we merely need to
// read fewer bytes from the same pointer.
unsigned LVTStoreBytes = LoadedVT.getStoreSizeInBits()/8;
unsigned EVTStoreBytes = EVT.getStoreSizeInBits()/8;
unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
unsigned Alignment = LN0->getAlignment();
SDValue NewPtr = LN0->getBasePtr();
if (TLI.isBigEndian()) {
NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
NewPtr, DAG.getConstant(PtrOff, PtrType));
Alignment = MinAlign(Alignment, PtrOff);
}
AddToWorkList(NewPtr.getNode());
SDValue Load =
DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT, LN0->getChain(),
NewPtr, LN0->getSrcValue(), LN0->getSrcValueOffset(),
EVT, LN0->isVolatile(), Alignment);
AddToWorkList(N);
CombineTo(N0.getNode(), Load, Load.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
}
return SDValue();
}
SDValue DAGCombiner::visitOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue LL, LR, RL, RR, CC0, CC1;
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT VT = N1.getValueType();
// fold vector ops
if (VT.isVector()) {
SDValue FoldedVOp = SimplifyVBinOp(N);
if (FoldedVOp.getNode()) return FoldedVOp;
}
// fold (or x, undef) -> -1
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
return DAG.getConstant(~0ULL, VT);
// fold (or c1, c2) -> c1|c2
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
// fold (or x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// fold (or x, -1) -> -1
if (N1C && N1C->isAllOnesValue())
return N1;
// fold (or x, c) -> c iff (x & ~c) == 0
if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
return N1;
// reassociate or
SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
if (ROR.getNode() != 0)
return ROR;
// Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
isa<ConstantSDNode>(N0.getOperand(1))) {
ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
N0.getOperand(0), N1),
DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
}
// fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
LL.getValueType().isInteger()) {
// fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
// fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
if (cast<ConstantSDNode>(LR)->isNullValue() &&
(Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
LR.getValueType(), LL, RL);
AddToWorkList(ORNode.getNode());
return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
}
// fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
// fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
(Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
LR.getValueType(), LL, RL);
AddToWorkList(ANDNode.getNode());
return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
}
}
// canonicalize equivalent to ll == rl
if (LL == RR && LR == RL) {
Op1 = ISD::getSetCCSwappedOperands(Op1);
std::swap(RL, RR);
}
if (LL == RL && LR == RR) {
bool isInteger = LL.getValueType().isInteger();
ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
if (Result != ISD::SETCC_INVALID &&
(!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
LL, LR, Result);
}
}
// Simplify: (or (op x...), (op y...)) -> (op (or x, y))
if (N0.getOpcode() == N1.getOpcode()) {
SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
if (Tmp.getNode()) return Tmp;
}
// (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
if (N0.getOpcode() == ISD::AND &&
N1.getOpcode() == ISD::AND &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
N1.getOperand(1).getOpcode() == ISD::Constant &&
// Don't increase # computations.
(N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
// We can only do this xform if we know that bits from X that are set in C2
// but not in C1 are already zero. Likewise for Y.
const APInt &LHSMask =
cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
const APInt &RHSMask =
cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
N0.getOperand(0), N1.getOperand(0));
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
DAG.getConstant(LHSMask | RHSMask, VT));
}
}
// See if this is some rotate idiom.
if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
return SDValue(Rot, 0);
return SDValue();
}
/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
if (Op.getOpcode() == ISD::AND) {
if (isa<ConstantSDNode>(Op.getOperand(1))) {
Mask = Op.getOperand(1);
Op = Op.getOperand(0);
} else {
return false;
}
}
if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
Shift = Op;
return true;
}
return false;
}
// MatchRotate - Handle an 'or' of two operands. If this is one of the many
// idioms for rotate, and if the target supports rotation instructions, generate
// a rot[lr].
SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
// Must be a legal type. Expanded 'n promoted things won't work with rotates.
MVT VT = LHS.getValueType();
if (!TLI.isTypeLegal(VT)) return 0;
// The target must have at least one rotate flavor.
bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
if (!HasROTL && !HasROTR) return 0;
// Match "(X shl/srl V1) & V2" where V2 may not be present.
SDValue LHSShift; // The shift.
SDValue LHSMask; // AND value if any.
if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
return 0; // Not part of a rotate.
SDValue RHSShift; // The shift.
SDValue RHSMask; // AND value if any.
if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
return 0; // Not part of a rotate.
if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
return 0; // Not shifting the same value.
if (LHSShift.getOpcode() == RHSShift.getOpcode())
return 0; // Shifts must disagree.
// Canonicalize shl to left side in a shl/srl pair.
if (RHSShift.getOpcode() == ISD::SHL) {
std::swap(LHS, RHS);
std::swap(LHSShift, RHSShift);
std::swap(LHSMask , RHSMask );
}
unsigned OpSizeInBits = VT.getSizeInBits();
SDValue LHSShiftArg = LHSShift.getOperand(0);
SDValue LHSShiftAmt = LHSShift.getOperand(1);
SDValue RHSShiftAmt = RHSShift.getOperand(1);
// fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
// fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
if (LHSShiftAmt.getOpcode() == ISD::Constant &&
RHSShiftAmt.getOpcode() == ISD::Constant) {
uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
if ((LShVal + RShVal) != OpSizeInBits)
return 0;
SDValue Rot;
if (HasROTL)
Rot = DAG.getNode(ISD::ROTL, DL, VT, LHSShiftArg, LHSShiftAmt);
else
Rot = DAG.getNode(ISD::ROTR, DL, VT, LHSShiftArg, RHSShiftAmt);
// If there is an AND of either shifted operand, apply it to the result.
if (LHSMask.getNode() || RHSMask.getNode()) {
APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
if (LHSMask.getNode()) {
APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
}
if (RHSMask.getNode()) {
APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
}
Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
}
return Rot.getNode();
}
// If there is a mask here, and we have a variable shift, we can't be sure
// that we're masking out the right stuff.
if (LHSMask.getNode() || RHSMask.getNode())
return 0;
// fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
// fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
if (RHSShiftAmt.getOpcode() == ISD::SUB &&
LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
if (ConstantSDNode *SUBC =
dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
if (SUBC->getAPIntValue() == OpSizeInBits) {
if (HasROTL)
return DAG.getNode(ISD::ROTL, DL, VT,
LHSShiftArg, LHSShiftAmt).getNode();
else
return DAG.getNode(ISD::ROTR, DL, VT,
LHSShiftArg, RHSShiftAmt).getNode();
}
}
}
// fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
// fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
if (LHSShiftAmt.getOpcode() == ISD::SUB &&
RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
if (ConstantSDNode *SUBC =
dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
if (SUBC->getAPIntValue() == OpSizeInBits) {
if (HasROTR)
return DAG.getNode(ISD::ROTR, DL, VT,
LHSShiftArg, RHSShiftAmt).getNode();
else
return DAG.getNode(ISD::ROTL, DL, VT,
LHSShiftArg, LHSShiftAmt).getNode();
}
}
}
// Look for sign/zext/any-extended or truncate cases:
if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
|| LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
|| LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
|| LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
(RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
|| RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
|| RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
|| RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
if (RExtOp0.getOpcode() == ISD::SUB &&
RExtOp0.getOperand(1) == LExtOp0) {
// fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
// (rotl x, y)
// fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
// (rotr x, (sub 32, y))
if (ConstantSDNode *SUBC =
dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
if (SUBC->getAPIntValue() == OpSizeInBits) {
return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
LHSShiftArg,
HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
}
}
} else if (LExtOp0.getOpcode() == ISD::SUB &&
RExtOp0 == LExtOp0.getOperand(1)) {
// fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
// (rotr x, y)
// fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
// (rotl x, (sub 32, y))
if (ConstantSDNode *SUBC =
dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
if (SUBC->getAPIntValue() == OpSizeInBits) {
return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
LHSShiftArg,
HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
}
}
}
}
return 0;
}
SDValue DAGCombiner::visitXOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue LHS, RHS, CC;
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector()) {
SDValue FoldedVOp = SimplifyVBinOp(N);
if (FoldedVOp.getNode()) return FoldedVOp;
}
// fold (xor undef, undef) -> 0. This is a common idiom (misuse).
if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
return DAG.getConstant(0, VT);
// fold (xor x, undef) -> undef
if (N0.getOpcode() == ISD::UNDEF)
return N0;
if (N1.getOpcode() == ISD::UNDEF)
return N1;
// fold (xor c1, c2) -> c1^c2
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
// fold (xor x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// reassociate xor
SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
if (RXOR.getNode() != 0)
return RXOR;
// fold !(x cc y) -> (x !cc y)
if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
bool isInt = LHS.getValueType().isInteger();
ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
isInt);
if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) {
switch (N0.getOpcode()) {
default:
assert(0 && "Unhandled SetCC Equivalent!");
abort();
case ISD::SETCC:
return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
case ISD::SELECT_CC:
return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
N0.getOperand(3), NotCC);
}
}
}
// fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
N0.getNode()->hasOneUse() &&
isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
SDValue V = N0.getOperand(0);
V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
DAG.getConstant(1, V.getValueType()));
AddToWorkList(V.getNode());
return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
}
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
(N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
}
}
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
if (N1C && N1C->isAllOnesValue() &&
(N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
}
}
// fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
if (N1C && N0.getOpcode() == ISD::XOR) {
ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (N00C)
return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
DAG.getConstant(N1C->getAPIntValue() ^
N00C->getAPIntValue(), VT));
if (N01C)
return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
DAG.getConstant(N1C->getAPIntValue() ^
N01C->getAPIntValue(), VT));
}
// fold (xor x, x) -> 0
if (N0 == N1) {
if (!VT.isVector()) {
return DAG.getConstant(0, VT);
} else if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)){
// Produce a vector of zeros.
SDValue El = DAG.getConstant(0, VT.getVectorElementType());
std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
&Ops[0], Ops.size());
}
}
// Simplify: xor (op x...), (op y...) -> (op (xor x, y))
if (N0.getOpcode() == N1.getOpcode()) {
SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
if (Tmp.getNode()) return Tmp;
}
// Simplify the expression using non-local knowledge.
if (!VT.isVector() &&
SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
/// visitShiftByConstant - Handle transforms common to the three shifts, when
/// the shift amount is a constant.
SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
SDNode *LHS = N->getOperand(0).getNode();
if (!LHS->hasOneUse()) return SDValue();
// We want to pull some binops through shifts, so that we have (and (shift))
// instead of (shift (and)), likewise for add, or, xor, etc. This sort of
// thing happens with address calculations, so it's important to canonicalize
// it.
bool HighBitSet = false; // Can we transform this if the high bit is set?
switch (LHS->getOpcode()) {
default: return SDValue();
case ISD::OR:
case ISD::XOR:
HighBitSet = false; // We can only transform sra if the high bit is clear.
break;
case ISD::AND:
HighBitSet = true; // We can only transform sra if the high bit is set.
break;
case ISD::ADD:
if (N->getOpcode() != ISD::SHL)
return SDValue(); // only shl(add) not sr[al](add).
HighBitSet = false; // We can only transform sra if the high bit is clear.
break;
}
// We require the RHS of the binop to be a constant as well.
ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
if (!BinOpCst) return SDValue();
// FIXME: disable this unless the input to the binop is a shift by a constant.
// If it is not a shift, it pessimizes some common cases like:
//
// void foo(int *X, int i) { X[i & 1235] = 1; }
// int bar(int *X, int i) { return X[i & 255]; }
SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
BinOpLHSVal->getOpcode() != ISD::SRA &&
BinOpLHSVal->getOpcode() != ISD::SRL) ||
!isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
return SDValue();
MVT VT = N->getValueType(0);
// If this is a signed shift right, and the high bit is modified by the
// logical operation, do not perform the transformation. The highBitSet
// boolean indicates the value of the high bit of the constant which would
// cause it to be modified for this operation.
if (N->getOpcode() == ISD::SRA) {
bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
if (BinOpRHSSignSet != HighBitSet)
return SDValue();
}
// Fold the constants, shifting the binop RHS by the shift amount.
SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
N->getValueType(0),
LHS->getOperand(1), N->getOperand(1));
// Create the new shift.
SDValue NewShift = DAG.getNode(N->getOpcode(), LHS->getOperand(0).getDebugLoc(),
VT, LHS->getOperand(0), N->getOperand(1));
// Create the new binop.
return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
}
SDValue DAGCombiner::visitSHL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getSizeInBits();
// fold (shl c1, c2) -> c1<<c2
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
// fold (shl 0, x) -> 0
if (N0C && N0C->isNullValue())
return N0;
// fold (shl x, c >= size(x)) -> undef
if (N1C && N1C->getZExtValue() >= OpSizeInBits)
return DAG.getUNDEF(VT);
// fold (shl x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// if (shl x, c) is known to be zero, return 0
if (DAG.MaskedValueIsZero(SDValue(N, 0),
APInt::getAllOnesValue(VT.getSizeInBits())))
return DAG.getConstant(0, VT);
// fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND &&
N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
SDValue N101 = N1.getOperand(0).getOperand(1);
if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
MVT TruncVT = N1.getValueType();
SDValue N100 = N1.getOperand(0).getOperand(0);
APInt TruncC = N101C->getAPIntValue();
TruncC.trunc(TruncVT.getSizeInBits());
return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
DAG.getNode(ISD::TRUNCATE,
N->getDebugLoc(),
TruncVT, N100),
DAG.getConstant(TruncC, TruncVT)));
}
}
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
if (N1C && N0.getOpcode() == ISD::SHL &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
uint64_t c2 = N1C->getZExtValue();
if (c1 + c2 > OpSizeInBits)
return DAG.getConstant(0, VT);
return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
DAG.getConstant(c1 + c2, N1.getValueType()));
}
// fold (shl (srl x, c1), c2) -> (shl (and x, (shl -1, c1)), (sub c2, c1)) or
// (srl (and x, (shl -1, c1)), (sub c1, c2))
if (N1C && N0.getOpcode() == ISD::SRL &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
uint64_t c2 = N1C->getZExtValue();
SDValue Mask = DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, N0.getOperand(0),
DAG.getConstant(~0ULL << c1, VT));
if (c2 > c1)
return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, Mask,
DAG.getConstant(c2-c1, N1.getValueType()));
else
return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Mask,
DAG.getConstant(c1-c2, N1.getValueType()));
}
// fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
DAG.getConstant(~0ULL << N1C->getZExtValue(), VT));
return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
}
SDValue DAGCombiner::visitSRA(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT VT = N0.getValueType();
// fold (sra c1, c2) -> (sra c1, c2)
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
// fold (sra 0, x) -> 0
if (N0C && N0C->isNullValue())
return N0;
// fold (sra -1, x) -> -1
if (N0C && N0C->isAllOnesValue())
return N0;
// fold (sra x, (setge c, size(x))) -> undef
if (N1C && N1C->getZExtValue() >= VT.getSizeInBits())
return DAG.getUNDEF(VT);
// fold (sra x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
// sext_inreg.
if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
unsigned LowBits = VT.getSizeInBits() - (unsigned)N1C->getZExtValue();
MVT EVT = MVT::getIntegerVT(LowBits);
if ((!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT)))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
N0.getOperand(0), DAG.getValueType(EVT));
}
// fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
if (N1C && N0.getOpcode() == ISD::SRA) {
if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
if (Sum >= VT.getSizeInBits()) Sum = VT.getSizeInBits()-1;
return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
DAG.getConstant(Sum, N1C->getValueType(0)));
}
}
// fold (sra (shl X, m), (sub result_size, n))
// -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
// result_size - n != m.
// If truncate is free for the target sext(shl) is likely to result in better
// code.
if (N0.getOpcode() == ISD::SHL) {
// Get the two constanst of the shifts, CN0 = m, CN = n.
const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (N01C && N1C) {
// Determine what the truncate's result bitsize and type would be.
unsigned VTValSize = VT.getSizeInBits();
MVT TruncVT =
MVT::getIntegerVT(VTValSize - N1C->getZExtValue());
// Determine the residual right-shift amount.
unsigned ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
// If the shift is not a no-op (in which case this should be just a sign
// extend already), the truncated to type is legal, sign_extend is legal
// on that type, and the the truncate to that type is both legal and free,
// perform the transform.
if (ShiftAmt &&
TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
TLI.isTruncateFree(VT, TruncVT)) {
SDValue Amt = DAG.getConstant(ShiftAmt, getShiftAmountTy());
SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
N0.getOperand(0), Amt);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
Shift);
return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
N->getValueType(0), Trunc);
}
}
}
// fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND &&
N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
SDValue N101 = N1.getOperand(0).getOperand(1);
if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
MVT TruncVT = N1.getValueType();
SDValue N100 = N1.getOperand(0).getOperand(0);
APInt TruncC = N101C->getAPIntValue();
TruncC.trunc(TruncVT.getSizeInBits());
return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
DAG.getNode(ISD::AND, N->getDebugLoc(),
TruncVT,
DAG.getNode(ISD::TRUNCATE,
N->getDebugLoc(),
TruncVT, N100),
DAG.getConstant(TruncC, TruncVT)));
}
}
// Simplify, based on bits shifted out of the LHS.
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// If the sign bit is known to be zero, switch this to a SRL.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
}
SDValue DAGCombiner::visitSRL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
MVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getSizeInBits();
// fold (srl c1, c2) -> c1 >>u c2
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
// fold (srl 0, x) -> 0
if (N0C && N0C->isNullValue())
return N0;
// fold (srl x, c >= size(x)) -> undef
if (N1C && N1C->getZExtValue() >= OpSizeInBits)
return DAG.getUNDEF(VT);
// fold (srl x, 0) -> x
if (N1C && N1C->isNullValue())
return N0;
// if (srl x, c) is known to be zero, return 0
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
APInt::getAllOnesValue(OpSizeInBits)))
return DAG.getConstant(0, VT);
// fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
if (N1C && N0.getOpcode() == ISD::SRL &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
uint64_t c2 = N1C->getZExtValue();
if (c1 + c2 > OpSizeInBits)
return DAG.getConstant(0, VT);
return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
DAG.getConstant(c1 + c2, N1.getValueType()));
}
// fold (srl (anyextend x), c) -> (anyextend (srl x, c))
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
// Shifting in all undef bits?
MVT SmallVT = N0.getOperand(0).getValueType();
if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
return DAG.getUNDEF(VT);
SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
N0.getOperand(0), N1);
AddToWorkList(SmallShift.getNode());
return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
}
// fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
// bit, which is unmodified by sra.
if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
if (N0.getOpcode() == ISD::SRA)
return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
}
// fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
if (N1C && N0.getOpcode() == ISD::CTLZ &&
N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
APInt KnownZero, KnownOne;
APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
// If any of the input bits are KnownOne, then the input couldn't be all
// zeros, thus the result of the srl will always be zero.
if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
// If all of the bits input the to ctlz node are known to be zero, then
// the result of the ctlz is "32" and the result of the shift is one.
APInt UnknownBits = ~KnownZero & Mask;
if (UnknownBits == 0) return DAG.getConstant(1, VT);
// Otherwise, check to see if there is exactly one bit input to the ctlz.
if ((UnknownBits & (UnknownBits - 1)) == 0) {
// Okay, we know that only that the single bit specified by UnknownBits
// could be set on input to the CTLZ node. If this bit is set, the SRL
// will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
// to an SRL/XOR pair, which is likely to simplify more.
unsigned ShAmt = UnknownBits.countTrailingZeros();
SDValue Op = N0.getOperand(0);
if (ShAmt) {
Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
DAG.getConstant(ShAmt, getShiftAmountTy()));
AddToWorkList(Op.getNode());
}
return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
Op, DAG.getConstant(1, VT));
}
}
// fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND &&
N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
SDValue N101 = N1.getOperand(0).getOperand(1);
if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
MVT TruncVT = N1.getValueType();
SDValue N100 = N1.getOperand(0).getOperand(0);
APInt TruncC = N101C->getAPIntValue();
TruncC.trunc(TruncVT.getSizeInBits());
return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
DAG.getNode(ISD::AND, N->getDebugLoc(),
TruncVT,
DAG.getNode(ISD::TRUNCATE,
N->getDebugLoc(),
TruncVT, N100),
DAG.getConstant(TruncC, TruncVT)));
}
}
// fold operands of srl based on knowledge that the low bits are not
// demanded.
if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
}
SDValue DAGCombiner::visitCTLZ(SDNode *N) {
SDValue N0 = N->getOperand(0);
MVT VT = N->getValueType(0);
// fold (ctlz c1) -> c2
if (isa<ConstantSDNode>(N0))
return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitCTTZ(SDNode *N) {
SDValue N0 = N->getOperand(0);
MVT VT = N->getValueType(0);
// fold (cttz c1) -> c2
if (isa<ConstantSDNode>(N0))
return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitCTPOP(SDNode *N) {
SDValue N0 = N->getOperand(0);
MVT VT = N->getValueType(0);
// fold (ctpop c1) -> c2
if (isa<ConstantSDNode>(N0))
return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitSELECT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
MVT VT = N->getValueType(0);
MVT VT0 = N0.getValueType();
// fold (select C, X, X) -> X
if (N1 == N2)
return N1;
// fold (select true, X, Y) -> X
if (N0C && !N0C->isNullValue())
return N1;
// fold (select false, X, Y) -> Y
if (N0C && N0C->isNullValue())
return N2;
// fold (select C, 1, X) -> (or C, X)
if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
// fold (select C, 0, 1) -> (xor C, 1)
if (VT.isInteger() &&
(VT0 == MVT::i1 ||
(VT0.isInteger() &&
TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent)) &&
N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
SDValue XORNode;
if (VT == VT0)
return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
N0, DAG.getConstant(1, VT0));
XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
N0, DAG.getConstant(1, VT0));
AddToWorkList(XORNode.getNode());
if (VT.bitsGT(VT0))
return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
}
// fold (select C, 0, X) -> (and (not C), X)
if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
AddToWorkList(NOTNode.getNode());
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
}
// fold (select C, X, 1) -> (or (not C), X)
if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
AddToWorkList(NOTNode.getNode());
return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
}
// fold (select C, X, 0) -> (and C, X)
if (VT == MVT::i1 && N2C && N2C->isNullValue())
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
// fold (select X, X, Y) -> (or X, Y)
// fold (select X, 1, Y) -> (or X, Y)
if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
// fold (select X, Y, X) -> (and X, Y)
// fold (select X, Y, 0) -> (and X, Y)
if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
// If we can fold this based on the true/false value, do so.
if (SimplifySelectOps(N, N1, N2))
return SDValue(N, 0); // Don't revisit N.
// fold selects based on a setcc into other things, such as min/max/abs
if (N0.getOpcode() == ISD::SETCC) {
// FIXME:
// Check against MVT::Other for SELECT_CC, which is a workaround for targets
// having to say they don't support SELECT_CC on every type the DAG knows
// about, since there is no way to mark an opcode illegal at all value types
if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other))
return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
N0.getOperand(0), N0.getOperand(1),
N1, N2, N0.getOperand(2));
return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
}
return SDValue();
}
SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
SDValue N3 = N->getOperand(3);
SDValue N4 = N->getOperand(4);
ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
// fold select_cc lhs, rhs, x, x, cc -> x
if (N2 == N3)
return N2;
// Determine if the condition we're dealing with is constant
SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
N0, N1, CC, N->getDebugLoc(), false);
if (SCC.getNode()) AddToWorkList(SCC.getNode());
if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
if (!SCCC->isNullValue())
return N2; // cond always true -> true val
else
return N3; // cond always false -> false val
}
// Fold to a simpler select_cc
if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
SCC.getOperand(0), SCC.getOperand(1), N2, N3,
SCC.getOperand(2));
// If we can fold this based on the true/false value, do so.
if (SimplifySelectOps(N, N2, N3))
return SDValue(N, 0); // Don't revisit N.
// fold select_cc into other things, such as min/max/abs
return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
}
SDValue DAGCombiner::visitSETCC(SDNode *N) {
return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
cast<CondCodeSDNode>(N->getOperand(2))->get(),
N->getDebugLoc());
}
// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
// transformation. Returns true if extension are possible and the above
// mentioned transformation is profitable.
static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
unsigned ExtOpc,
SmallVector<SDNode*, 4> &ExtendNodes,
const TargetLowering &TLI) {
bool HasCopyToRegUses = false;
bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
UE = N0.getNode()->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
if (User == N)
continue;
if (UI.getUse().getResNo() != N0.getResNo())
continue;
// FIXME: Only extend SETCC N, N and SETCC N, c for now.
if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
// Sign bits will be lost after a zext.
return false;
bool Add = false;
for (unsigned i = 0; i != 2; ++i) {
SDValue UseOp = User->getOperand(i);
if (UseOp == N0)
continue;
if (!isa<ConstantSDNode>(UseOp))
return false;
Add = true;
}
if (Add)
ExtendNodes.push_back(User);
continue;
}
// If truncates aren't free and there are users we can't
// extend, it isn't worthwhile.
if (!isTruncFree)
return false;
// Remember if this value is live-out.
if (User->getOpcode() == ISD::CopyToReg)
HasCopyToRegUses = true;
}
if (HasCopyToRegUses) {
bool BothLiveOut = false;
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
UI != UE; ++UI) {
SDUse &Use = UI.getUse();
if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
BothLiveOut = true;
break;
}
}
if (BothLiveOut)
// Both unextended and extended values are live out. There had better be
// good a reason for the transformation.
return ExtendNodes.size();
}
return true;
}
SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
MVT VT = N->getValueType(0);
// fold (sext c1) -> c1
if (isa<ConstantSDNode>(N0))
return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
// fold (sext (sext x)) -> (sext x)
// fold (sext (aext x)) -> (sext x)
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
N0.getOperand(0));
if (N0.getOpcode() == ISD::TRUNCATE) {
// fold (sext (truncate (load x))) -> (sext (smaller load x))
// fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
if (NarrowLoad.getNode()) {
if (NarrowLoad.getNode() != N0.getNode())
CombineTo(N0.getNode(), NarrowLoad);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// See if the value being truncated is already sign extended. If so, just
// eliminate the trunc/sext pair.
SDValue Op = N0.getOperand(0);
unsigned OpBits = Op.getValueType().getSizeInBits();
unsigned MidBits = N0.getValueType().getSizeInBits();
unsigned DestBits = VT.getSizeInBits();
unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
if (OpBits == DestBits) {
// Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
// bits, it is already ready.
if (NumSignBits > DestBits-MidBits)
return Op;
} else if (OpBits < DestBits) {
// Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
// bits, just sext from i32.
if (NumSignBits > OpBits-MidBits)
return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
} else {
// Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
// bits, just truncate to i32.
if (NumSignBits > OpBits-MidBits)
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
}
// fold (sext (truncate x)) -> (sextinreg x).
if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
N0.getValueType())) {
if (Op.getValueType().bitsLT(VT))
Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
else if (Op.getValueType().bitsGT(VT))
Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
DAG.getValueType(N0.getValueType()));
}
}
// fold (sext (load x)) -> (sext (truncate (sextload x)))
if (ISD::isNON_EXTLoad(N0.getNode()) &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
if (DoXform) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
LN0->getSrcValueOffset(),
N0.getValueType(),
LN0->isVolatile(), LN0->getAlignment());
CombineTo(N, ExtLoad);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
N0.getValueType(), ExtLoad);
CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
// Extend SetCC uses if necessary.
for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
SDNode *SetCC = SetCCs[i];
SmallVector<SDValue, 4> Ops;
for (unsigned j = 0; j != 2; ++j) {
SDValue SOp = SetCC->getOperand(j);
if (SOp == Trunc)
Ops.push_back(ExtLoad);
else
Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND,
N->getDebugLoc(), VT, SOp));
}
Ops.push_back(SetCC->getOperand(2));
CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
SetCC->getValueType(0),
&Ops[0], Ops.size()));
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (sext (sextload x)) -> (sext (truncate (sextload x)))
// fold (sext ( extload x)) -> (sext (truncate (sextload x)))
if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
MVT EVT = LN0->getMemoryVT();
if ((!LegalOperations && !LN0->isVolatile()) ||
TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT)) {
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
LN0->getSrcValueOffset(), EVT,
LN0->isVolatile(), LN0->getAlignment());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
N0.getValueType(), ExtLoad),
ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
if (N0.getOpcode() == ISD::SETCC) {
SDValue SCC =
SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
if (SCC.getNode()) return SCC;
}
// fold (sext x) -> (zext x) if the sign bit is known zero.
if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
MVT VT = N->getValueType(0);
// fold (zext c1) -> c1
if (isa<ConstantSDNode>(N0))
return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
// fold (zext (zext x)) -> (zext x)
// fold (zext (aext x)) -> (zext x)
if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
N0.getOperand(0));
// fold (zext (truncate (load x))) -> (zext (smaller load x))
// fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
if (N0.getOpcode() == ISD::TRUNCATE) {
SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
if (NarrowLoad.getNode()) {
if (NarrowLoad.getNode() != N0.getNode())
CombineTo(N0.getNode(), NarrowLoad);
return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, NarrowLoad);
}
}
// fold (zext (truncate x)) -> (and x, mask)
if (N0.getOpcode() == ISD::TRUNCATE &&
(!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
SDValue Op = N0.getOperand(0);
if (Op.getValueType().bitsLT(VT)) {
Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
} else if (Op.getValueType().bitsGT(VT)) {
Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
}
return DAG.getZeroExtendInReg(Op, N->getDebugLoc(), N0.getValueType());
}
// Fold (zext (and (trunc x), cst)) -> (and x, cst),
// if either of the casts is not free.
if (N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
(!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
N0.getValueType()) ||
!TLI.isZExtFree(N0.getValueType(), VT))) {
SDValue X = N0.getOperand(0).getOperand(0);
if (X.getValueType().bitsLT(VT)) {
X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
} else if (X.getValueType().bitsGT(VT)) {
X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
}
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask.zext(VT.getSizeInBits());
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
X, DAG.getConstant(Mask, VT));
}
// fold (zext (load x)) -> (zext (truncate (zextload x)))
if (ISD::isNON_EXTLoad(N0.getNode()) &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
if (DoXform) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
LN0->getSrcValueOffset(),
N0.getValueType(),
LN0->isVolatile(), LN0->getAlignment());
CombineTo(N, ExtLoad);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
N0.getValueType(), ExtLoad);
CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
// Extend SetCC uses if necessary.
for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
SDNode *SetCC = SetCCs[i];
SmallVector<SDValue, 4> Ops;
for (unsigned j = 0; j != 2; ++j) {
SDValue SOp = SetCC->getOperand(j);
if (SOp == Trunc)
Ops.push_back(ExtLoad);
else
Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND,
N->getDebugLoc(), VT, SOp));
}
Ops.push_back(SetCC->getOperand(2));
CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
SetCC->getValueType(0),
&Ops[0], Ops.size()));
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (zext (zextload x)) -> (zext (truncate (zextload x)))
// fold (zext ( extload x)) -> (zext (truncate (zextload x)))
if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
MVT EVT = LN0->getMemoryVT();
if ((!LegalOperations && !LN0->isVolatile()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT)) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
LN0->getSrcValueOffset(), EVT,
LN0->isVolatile(), LN0->getAlignment());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
ExtLoad),
ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
if (N0.getOpcode() == ISD::SETCC) {
SDValue SCC =
SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
DAG.getConstant(1, VT), DAG.getConstant(0, VT),
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
if (SCC.getNode()) return SCC;
}
return SDValue();
}
SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
MVT VT = N->getValueType(0);
// fold (aext c1) -> c1
if (isa<ConstantSDNode>(N0))
return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
// fold (aext (aext x)) -> (aext x)
// fold (aext (zext x)) -> (zext x)
// fold (aext (sext x)) -> (sext x)
if (N0.getOpcode() == ISD::ANY_EXTEND ||
N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND)
return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
// fold (aext (truncate (load x))) -> (aext (smaller load x))
// fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
if (N0.getOpcode() == ISD::TRUNCATE) {
SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
if (NarrowLoad.getNode()) {
if (NarrowLoad.getNode() != N0.getNode())
CombineTo(N0.getNode(), NarrowLoad);
return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, NarrowLoad);
}
}
// fold (aext (truncate x))
if (N0.getOpcode() == ISD::TRUNCATE) {
SDValue TruncOp = N0.getOperand(0);
if (TruncOp.getValueType() == VT)
return TruncOp; // x iff x size == zext size.
if (TruncOp.getValueType().bitsGT(VT))
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
}
// Fold (aext (and (trunc x), cst)) -> (and x, cst)
// if the trunc is not free.
if (N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
N0.getOperand(1).getOpcode() == ISD::Constant &&
!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
N0.getValueType())) {
SDValue X = N0.getOperand(0).getOperand(0);
if (X.getValueType().bitsLT(VT)) {
X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
} else if (X.getValueType().bitsGT(VT)) {
X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
}
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask.zext(VT.getSizeInBits());
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
X, DAG.getConstant(Mask, VT));
}
// fold (aext (load x)) -> (aext (truncate (extload x)))
if (ISD::isNON_EXTLoad(N0.getNode()) &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
bool DoXform = true;
SmallVector<SDNode*, 4> SetCCs;
if (!N0.hasOneUse())
DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
if (DoXform) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
LN0->getSrcValueOffset(),
N0.getValueType(),
LN0->isVolatile(), LN0->getAlignment());
CombineTo(N, ExtLoad);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
N0.getValueType(), ExtLoad);
CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
// Extend SetCC uses if necessary.
for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
SDNode *SetCC = SetCCs[i];
SmallVector<SDValue, 4> Ops;
for (unsigned j = 0; j != 2; ++j) {
SDValue SOp = SetCC->getOperand(j);
if (SOp == Trunc)
Ops.push_back(ExtLoad);
else
Ops.push_back(DAG.getNode(ISD::ANY_EXTEND,
N->getDebugLoc(), VT, SOp));
}
Ops.push_back(SetCC->getOperand(2));
CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
SetCC->getValueType(0),
&Ops[0], Ops.size()));
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (aext (zextload x)) -> (aext (truncate (zextload x)))
// fold (aext (sextload x)) -> (aext (truncate (sextload x)))
// fold (aext ( extload x)) -> (aext (truncate (extload x)))
if (N0.getOpcode() == ISD::LOAD &&
!ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
MVT EVT = LN0->getMemoryVT();
SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
VT, LN0->getChain(), LN0->getBasePtr(),
LN0->getSrcValue(),
LN0->getSrcValueOffset(), EVT,
LN0->isVolatile(), LN0->getAlignment());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
N0.getValueType(), ExtLoad),
ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
if (N0.getOpcode() == ISD::SETCC) {
SDValue SCC =
SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
DAG.getConstant(1, VT), DAG.getConstant(0, VT),
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
if (SCC.getNode())
return SCC;
}
return SDValue();
}
/// GetDemandedBits - See if the specified operand can be simplified with the
/// knowledge that only the bits specified by Mask are used. If so, return the
/// simpler operand, otherwise return a null SDValue.
SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
switch (V.getOpcode()) {
default: break;
case ISD::OR:
case ISD::XOR:
// If the LHS or RHS don't contribute bits to the or, drop them.
if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
return V.getOperand(1);
if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
return V.getOperand(0);
break;
case ISD::SRL:
// Only look at single-use SRLs.
if (!V.getNode()->hasOneUse())
break;
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
// See if we can recursively simplify the LHS.
unsigned Amt = RHSC->getZExtValue();
// Watch out for shift count overflow though.
if (Amt >= Mask.getBitWidth()) break;
APInt NewMask = Mask << Amt;
SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
if (SimplifyLHS.getNode())
return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
SimplifyLHS, V.getOperand(1));
}
}
return SDValue();
}
/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
/// bits and then truncated to a narrower type and where N is a multiple
/// of number of bits of the narrower type, transform it to a narrower load
/// from address + N / num of bits of new type. If the result is to be
/// extended, also fold the extension to form a extending load.
SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
unsigned Opc = N->getOpcode();
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
SDValue N0 = N->getOperand(0);
MVT VT = N->getValueType(0);
MVT EVT = VT;
// This transformation isn't valid for vector loads.
if (VT.isVector())
return SDValue();
// Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
// extended to VT.
if (Opc == ISD::SIGN_EXTEND_INREG) {
ExtType = ISD::SEXTLOAD;
EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
if (LegalOperations && !TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))
return SDValue();
}
unsigned EVTBits = EVT.getSizeInBits();
unsigned ShAmt = 0;
if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
ShAmt = N01->getZExtValue();
// Is the shift amount a multiple of size of VT?
if ((ShAmt & (EVTBits-1)) == 0) {
N0 = N0.getOperand(0);
if (N0.getValueType().getSizeInBits() <= EVTBits)
return SDValue();
}
}
}
// Do not generate loads of non-round integer types since these can
// be expensive (and would be wrong if the type is not byte sized).
if (isa<LoadSDNode>(N0) && N0.hasOneUse() && EVT.isRound() &&
cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() > EVTBits &&
// Do not change the width of a volatile load.
!cast<LoadSDNode>(N0)->isVolatile()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
MVT PtrType = N0.getOperand(1).getValueType();
// For big endian targets, we need to adjust the offset to the pointer to
// load the correct bytes.
if (TLI.isBigEndian()) {
unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
unsigned EVTStoreBits = EVT.getStoreSizeInBits();
ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
}
uint64_t PtrOff = ShAmt / 8;
unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
PtrType, LN0->getBasePtr(),
DAG.getConstant(PtrOff, PtrType));
AddToWorkList(NewPtr.getNode());
SDValue Load = (ExtType == ISD::NON_EXTLOAD)
? DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff,
LN0->isVolatile(), NewAlign)
: DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(), NewPtr,
LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff,
EVT, LN0->isVolatile(), NewAlign);
// Replace the old load's chain with the new load's chain.
WorkListRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
&DeadNodes);
// Return the new loaded value.
return Load;
}
return SDValue();
}
SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
MVT VT = N->getValueType(0);
MVT EVT = cast<VTSDNode>(N1)->getVT();
unsigned VTBits = VT.getSizeInBits();
unsigned EVTBits = EVT.getSizeInBits();
// fold (sext_in_reg c1) -> c1
if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
// If the input is already sign extended, just drop the extension.
if (DAG.ComputeNumSignBits(N0) >= VT.getSizeInBits()-EVTBits+1)
return N0;
// fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
N0.getOperand(0), N1);
}
// fold (sext_in_reg (sext x)) -> (sext x)
// fold (sext_in_reg (aext x)) -> (sext x)
// if x is small enough.
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
SDValue N00 = N0.getOperand(0);
if (N00.getValueType().getSizeInBits() < EVTBits)
return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
}
// fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
// fold operands of sext_in_reg based on knowledge that the top bits are not
// demanded.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (sext_in_reg (load x)) -> (smaller sextload x)
// fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
SDValue NarrowLoad = ReduceLoadWidth(N);
if (NarrowLoad.getNode())
return NarrowLoad;
// fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
// fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
// We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
if (N0.getOpcode() == ISD::SRL) {
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
if (ShAmt->getZExtValue()+EVTBits <= VT.getSizeInBits()) {
// We can turn this into an SRA iff the input to the SRL is already sign
// extended enough.
unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
if (VT.getSizeInBits()-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
N0.getOperand(0), N0.getOperand(1));
}
}
// fold (sext_inreg (extload x)) -> (sextload x)
if (ISD::isEXTLoad(N0.getNode()) &&
ISD::isUNINDEXEDLoad(N0.getNode()) &&
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
LN0->getSrcValueOffset(), EVT,
LN0->isVolatile(), LN0->getAlignment());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
// fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
N0.hasOneUse() &&
EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
LN0->getSrcValueOffset(), EVT,
LN0->isVolatile(), LN0->getAlignment());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
return SDValue();
}
SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
SDValue N0 = N->getOperand(0);
MVT VT = N->getValueType(0);
// noop truncate
if (N0.getValueType() == N->getValueType(0))
return N0;
// fold (truncate c1) -> c1
if (isa<ConstantSDNode>(N0))
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
// fold (truncate (truncate x)) -> (truncate x)
if (N0.getOpcode() == ISD::TRUNCATE)
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
// fold (truncate (ext x)) -> (ext x) or (truncate x) or x
if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
N0.getOpcode() == ISD::ANY_EXTEND) {
if (N0.getOperand(0).getValueType().bitsLT(VT))
// if the source is smaller than the dest, we still need an extend
return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
N0.getOperand(0));
else if (N0.getOperand(0).getValueType().bitsGT(VT))
// if the source is larger than the dest, than we just need the truncate
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
else
// if the source and dest are the same type, we can drop both the extend
// and the truncate
return N0.getOperand(0);
}
// See if we can simplify the input to this truncate through knowledge that
// only the low bits are being used. For example "trunc (or (shl x, 8), y)"
// -> trunc y
SDValue Shorter =
GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
VT.getSizeInBits()));
if (Shorter.getNode())
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
// fold (truncate (load x)) -> (smaller load x)
// fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
return ReduceLoadWidth(N);
}
static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
SDValue Elt = N->getOperand(i);
if (Elt.getOpcode() != ISD::MERGE_VALUES)
return Elt.getNode();
return Elt.getOperand(Elt.getResNo()).getNode();
}
/// CombineConsecutiveLoads - build_pair (load, load) -> load
/// if load locations are consecutive.
SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, MVT VT) {
assert(N->getOpcode() == ISD::BUILD_PAIR);
SDNode *LD1 = getBuildPairElt(N, 0);
if (!ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse())
return SDValue();
MVT LD1VT = LD1->getValueType(0);
SDNode *LD2 = getBuildPairElt(N, 1);
const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
if (ISD::isNON_EXTLoad(LD2) &&
LD2->hasOneUse() &&
// If both are volatile this would reduce the number of volatile loads.
// If one is volatile it might be ok, but play conservative and bail out.
!cast<LoadSDNode>(LD1)->isVolatile() &&
!cast<LoadSDNode>(LD2)->isVolatile() &&
TLI.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1, MFI)) {
LoadSDNode *LD = cast<LoadSDNode>(LD1);
unsigned Align = LD->getAlignment();
unsigned NewAlign = TLI.getTargetData()->
getABITypeAlignment(VT.getTypeForMVT());
if (NewAlign <= Align &&
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
return DAG.getLoad(VT, N->getDebugLoc(), LD->getChain(), LD->getBasePtr(),
LD->getSrcValue(), LD->getSrcValueOffset(),
false, Align);
}
return SDValue();
}
SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) {
SDValue N0 = N->getOperand(0);
MVT VT = N->getValueType(0);
// If the input is a BUILD_VECTOR with all constant elements, fold this now.
// Only do this before legalize, since afterward the target may be depending
// on the bitconvert.
// First check to see if this is all constant.
if (!LegalTypes &&
N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
VT.isVector()) {
bool isSimple = true;
for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
N0.getOperand(i).getOpcode() != ISD::Constant &&
N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
isSimple = false;
break;
}
MVT DestEltVT = N->getValueType(0).getVectorElementType();
assert(!DestEltVT.isVector() &&
"Element type of vector ValueType must not be vector!");
if (isSimple)
return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.getNode(), DestEltVT);
}
// If the input is a constant, let getNode fold it.
if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
SDValue Res = DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, N0);
if (Res.getNode() != N) return Res;
}
// (conv (conv x, t1), t2) -> (conv x, t2)
if (N0.getOpcode() == ISD::BIT_CONVERT)
return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT,
N0.getOperand(0));
// fold (conv (load x)) -> (load (conv*)x)
// If the resultant load doesn't need a higher alignment than the original!
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
// Do not change the width of a volatile load.
!cast<LoadSDNode>(N0)->isVolatile() &&
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
unsigned Align = TLI.getTargetData()->
getABITypeAlignment(VT.getTypeForMVT());
unsigned OrigAlign = LN0->getAlignment();
if (Align <= OrigAlign) {
SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
LN0->getBasePtr(),
LN0->getSrcValue(), LN0->getSrcValueOffset(),
LN0->isVolatile(), OrigAlign);
AddToWorkList(N);
CombineTo(N0.getNode(),
DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
N0.getValueType(), Load),
Load.getValue(1));
return Load;
}
}
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
// This often reduces constant pool loads.
if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
N0.getNode()->hasOneUse() && VT.isInteger() && !VT.isVector()) {
SDValue NewConv = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(), VT,
N0.getOperand(0));
AddToWorkList(NewConv.getNode());
APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
if (N0.getOpcode() == ISD::FNEG)
return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
NewConv, DAG.getConstant(SignBit, VT));
assert(N0.getOpcode() == ISD::FABS);
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
NewConv, DAG.getConstant(~SignBit, VT));
}
// fold (bitconvert (fcopysign cst, x)) ->
// (or (and (bitconvert x), sign), (and cst, (not sign)))
// Note that we don't handle (copysign x, cst) because this can always be
// folded to an fneg or fabs.
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
isa<ConstantFPSDNode>(N0.getOperand(0)) &&
VT.isInteger() && !VT.isVector()) {
unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
MVT IntXVT = MVT::getIntegerVT(OrigXWidth);
if (TLI.isTypeLegal(IntXVT) || !LegalTypes) {
SDValue X = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
IntXVT, N0.getOperand(1));
AddToWorkList(X.getNode());
// If X has a different width than the result/lhs, sext it or truncate it.
unsigned VTWidth = VT.getSizeInBits();
if (OrigXWidth < VTWidth) {
X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
AddToWorkList(X.getNode());
} else if (OrigXWidth > VTWidth) {
// To get the sign bit in the right place, we have to shift it right
// before truncating.
X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
X.getValueType(), X,
DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
AddToWorkList(X.getNode());
X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
AddToWorkList(X.getNode());
}
APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
X, DAG.getConstant(SignBit, VT));
AddToWorkList(X.getNode());
SDValue Cst = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
VT, N0.getOperand(0));
Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
Cst, DAG.getConstant(~SignBit, VT));
AddToWorkList(Cst.getNode());
return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
}
}
// bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
if (N0.getOpcode() == ISD::BUILD_PAIR) {
SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
if (CombineLD.getNode())
return CombineLD;
}
return SDValue();
}
SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
MVT VT = N->getValueType(0);
return CombineConsecutiveLoads(N, VT);
}
/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
/// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
/// destination element value type.
SDValue DAGCombiner::
ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) {
MVT SrcEltVT = BV->getValueType(0).getVectorElementType();
// If this is already the right type, we're done.
if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
unsigned SrcBitSize = SrcEltVT.getSizeInBits();
unsigned DstBitSize = DstEltVT.getSizeInBits();
// If this is a conversion of N elements of one type to N elements of another
// type, convert each element. This handles FP<->INT cases.
if (SrcBitSize == DstBitSize) {
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
SDValue Op = BV->getOperand(i);
// If the vector element type is not legal, the BUILD_VECTOR operands
// are promoted and implicitly truncated. Make that explicit here.
if (Op.getValueType() != SrcEltVT)
Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, BV->getDebugLoc(),
DstEltVT, Op));
AddToWorkList(Ops.back().getNode());
}
MVT VT = MVT::getVectorVT(DstEltVT,
BV->getValueType(0).getVectorNumElements());
return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
&Ops[0], Ops.size());
}
// Otherwise, we're growing or shrinking the elements. To avoid having to
// handle annoying details of growing/shrinking FP values, we convert them to
// int first.
if (SrcEltVT.isFloatingPoint()) {
// Convert the input float vector to a int vector where the elements are the
// same sizes.
assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
MVT IntVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits());
BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).getNode();
SrcEltVT = IntVT;
}
// Now we know the input is an integer vector. If the output is a FP type,
// convert to integer first, then to FP of the right size.
if (DstEltVT.isFloatingPoint()) {
assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
MVT TmpVT = MVT::getIntegerVT(DstEltVT.getSizeInBits());
SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).getNode();
// Next, convert to FP elements of the same size.
return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
}
// Okay, we know the src/dst types are both integers of differing types.
// Handling growing first.
assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
if (SrcBitSize < DstBitSize) {
unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = BV->getNumOperands(); i != e;
i += NumInputsPerOutput) {
bool isLE = TLI.isLittleEndian();
APInt NewBits = APInt(DstBitSize, 0);
bool EltIsUndef = true;
for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
// Shift the previously computed bits over.
NewBits <<= SrcBitSize;
SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
if (Op.getOpcode() == ISD::UNDEF) continue;
EltIsUndef = false;
NewBits |= (APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).
zextOrTrunc(SrcBitSize).zext(DstBitSize));
}
if (EltIsUndef)
Ops.push_back(DAG.getUNDEF(DstEltVT));
else
Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
}
MVT VT = MVT::getVectorVT(DstEltVT, Ops.size());
return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
&Ops[0], Ops.size());
}
// Finally, this must be the case where we are shrinking elements: each input
// turns into multiple outputs.
bool isS2V = ISD::isScalarToVector(BV);
unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
MVT VT = MVT::getVectorVT(DstEltVT, NumOutputsPerInput*BV->getNumOperands());
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
for (unsigned j = 0; j != NumOutputsPerInput; ++j)
Ops.push_back(DAG.getUNDEF(DstEltVT));
continue;
}
APInt OpVal = APInt(cast<ConstantSDNode>(BV->getOperand(i))->
getAPIntValue()).zextOrTrunc(SrcBitSize);
for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
APInt ThisVal = APInt(OpVal).trunc(DstBitSize);
Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal)
// Simply turn this into a SCALAR_TO_VECTOR of the new type.
return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
Ops[0]);
OpVal = OpVal.lshr(DstBitSize);
}
// For big endian targets, swap the order of the pieces of each element.
if (TLI.isBigEndian())
std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
}
return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
&Ops[0], Ops.size());
}
SDValue DAGCombiner::visitFADD(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
MVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector()) {
SDValue FoldedVOp = SimplifyVBinOp(N);
if (FoldedVOp.getNode()) return FoldedVOp;
}
// fold (fadd c1, c2) -> (fadd c1, c2)
if (N0CFP && N1CFP && VT != MVT::ppcf128)
return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
// canonicalize constant to RHS
if (N0CFP && !N1CFP)
return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
// fold (fadd A, 0) -> A
if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
return N0;
// fold (fadd A, (fneg B)) -> (fsub A, B)
if (isNegatibleForFree(N1, LegalOperations) == 2)
return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
GetNegatedExpression(N1, DAG, LegalOperations));
// fold (fadd (fneg A), B) -> (fsub B, A)
if (isNegatibleForFree(N0, LegalOperations) == 2)
return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
GetNegatedExpression(N0, DAG, LegalOperations));
// If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
N0.getOperand(1), N1));
return SDValue();
}
SDValue DAGCombiner::visitFSUB(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
MVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector()) {
SDValue FoldedVOp = SimplifyVBinOp(N);
if (FoldedVOp.getNode()) return FoldedVOp;
}
// fold (fsub c1, c2) -> c1-c2
if (N0CFP && N1CFP && VT != MVT::ppcf128)
return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
// fold (fsub A, 0) -> A
if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
return N0;
// fold (fsub 0, B) -> -B
if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
if (isNegatibleForFree(N1, LegalOperations))
return GetNegatedExpression(N1, DAG, LegalOperations);
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N1);
}
// fold (fsub A, (fneg B)) -> (fadd A, B)
if (isNegatibleForFree(N1, LegalOperations))
return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0,
GetNegatedExpression(N1, DAG, LegalOperations));
return SDValue();
}
SDValue DAGCombiner::visitFMUL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
MVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector()) {
SDValue FoldedVOp = SimplifyVBinOp(N);
if (FoldedVOp.getNode()) return FoldedVOp;
}
// fold (fmul c1, c2) -> c1*c2
if (N0CFP && N1CFP && VT != MVT::ppcf128)
return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
// canonicalize constant to RHS
if (N0CFP && !N1CFP)
return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
// fold (fmul A, 0) -> 0
if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
return N1;
// fold (fmul X, 2.0) -> (fadd X, X)
if (N1CFP && N1CFP->isExactlyValue(+2.0))
return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
// fold (fmul X, (fneg 1.0)) -> (fneg X)
if (N1CFP && N1CFP->isExactlyValue(-1.0))
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
// fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) {
if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) {
// Both can be negated for free, check to see if at least one is cheaper
// negated.
if (LHSNeg == 2 || RHSNeg == 2)
return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
GetNegatedExpression(N0, DAG, LegalOperations),
GetNegatedExpression(N1, DAG, LegalOperations));
}
}
// If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
N0.getOperand(1), N1));
return SDValue();
}
SDValue DAGCombiner::visitFDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
MVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector()) {
SDValue FoldedVOp = SimplifyVBinOp(N);
if (FoldedVOp.getNode()) return FoldedVOp;
}
// fold (fdiv c1, c2) -> c1/c2
if (N0CFP && N1CFP && VT != MVT::ppcf128)
return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
// (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) {
if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) {
// Both can be negated for free, check to see if at least one is cheaper
// negated.
if (LHSNeg == 2 || RHSNeg == 2)
return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
GetNegatedExpression(N0, DAG, LegalOperations),
GetNegatedExpression(N1, DAG, LegalOperations));
}
}
return SDValue();
}
SDValue DAGCombiner::visitFREM(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
MVT VT = N->getValueType(0);
// fold (frem c1, c2) -> fmod(c1,c2)
if (N0CFP && N1CFP && VT != MVT::ppcf128)
return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
return SDValue();
}
SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
MVT VT = N->getValueType(0);
if (N0CFP && N1CFP && VT != MVT::ppcf128) // Constant fold
return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
if (N1CFP) {
const APFloat& V = N1CFP->getValueAPF();
// copysign(x, c1) -> fabs(x) iff ispos(c1)
// copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
if (!V.isNegative()) {
if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
} else {
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
}
}
// copysign(fabs(x), y) -> copysign(x, y)
// copysign(fneg(x), y) -> copysign(x, y)
// copysign(copysign(x,z), y) -> copysign(x, y)
if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
N0.getOpcode() == ISD::FCOPYSIGN)
return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
N0.getOperand(0), N1);
// copysign(x, abs(y)) -> abs(x)
if (N1.getOpcode() == ISD::FABS)
return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
// copysign(x, copysign(y,z)) -> copysign(x, z)
if (N1.getOpcode() == ISD::FCOPYSIGN)
return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
N0, N1.getOperand(1));
// copysign(x, fp_extend(y)) -> copysign(x, y)
// copysign(x, fp_round(y)) -> copysign(x, y)
if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
N0, N1.getOperand(0));
return SDValue();
}
SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
SDValue N0 = N->getOperand(0);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
MVT VT = N->getValueType(0);
MVT OpVT = N0.getValueType();
// fold (sint_to_fp c1) -> c1fp
if (N0C && OpVT != MVT::ppcf128)
return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
// If the input is a legal type, and SINT_TO_FP is not legal on this target,
// but UINT_TO_FP is legal on this target, try to convert.
if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
// If the sign bit is known to be zero, we can change this to UINT_TO_FP.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
}
return SDValue();
}
SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
SDValue N0 = N->getOperand(0);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
MVT VT = N->getValueType(0);
MVT OpVT = N0.getValueType();
// fold (uint_to_fp c1) -> c1fp
if (N0C && OpVT != MVT::ppcf128)
return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
// If the input is a legal type, and UINT_TO_FP is not legal on this target,
// but SINT_TO_FP is legal on this target, try to convert.
if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
// If the sign bit is known to be zero, we can change this to SINT_TO_FP.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
}
return SDValue();
}
SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
SDValue N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
MVT VT = N->getValueType(0);
// fold (fp_to_sint c1fp) -> c1
if (N0CFP)
return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
SDValue N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
MVT VT = N->getValueType(0);
// fold (fp_to_uint c1fp) -> c1
if (N0CFP && VT != MVT::ppcf128)
return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
MVT VT = N->getValueType(0);
// fold (fp_round c1fp) -> c1fp
if (N0CFP && N0.getValueType() != MVT::ppcf128)
return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
// fold (fp_round (fp_extend x)) -> x
if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
return N0.getOperand(0);
// fold (fp_round (fp_round x)) -> (fp_round x)
if (N0.getOpcode() == ISD::FP_ROUND) {
// This is a value preserving truncation if both round's are.
bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
N0.getNode()->getConstantOperandVal(1) == 1;
return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
DAG.getIntPtrConstant(IsTrunc));
}
// fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
N0.getOperand(0), N1);
AddToWorkList(Tmp.getNode());
return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
Tmp, N0.getOperand(1));
}
return SDValue();
}
SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
MVT VT = N->getValueType(0);
MVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
// fold (fp_round_inreg c1fp) -> c1fp
if (N0CFP && (TLI.isTypeLegal(EVT) || !LegalTypes)) {
SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
}
return SDValue();
}
SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
MVT VT = N->getValueType(0);
// If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
if (N->hasOneUse() &&
N->use_begin()->getOpcode() == ISD::FP_ROUND)
return SDValue();
// fold (fp_extend c1fp) -> c1fp
if (N0CFP && VT != MVT::ppcf128)
return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
// Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
// value of X.
if (N0.getOpcode() == ISD::FP_ROUND
&& N0.getNode()->getConstantOperandVal(1) == 1) {
SDValue In = N0.getOperand(0);
if (In.getValueType() == VT) return In;
if (VT.bitsLT(In.getValueType()))
return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
In, N0.getOperand(1));
return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
}
// fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
LN0->getSrcValueOffset(),
N0.getValueType(),
LN0->isVolatile(), LN0->getAlignment());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
return SDValue();
}
SDValue DAGCombiner::visitFNEG(SDNode *N) {
SDValue N0 = N->getOperand(0);
if (isNegatibleForFree(N0, LegalOperations))
return GetNegatedExpression(N0, DAG, LegalOperations);
// Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
// constant pool values.
if (N0.getOpcode() == ISD::BIT_CONVERT && N0.getNode()->hasOneUse() &&
N0.getOperand(0).getValueType().isInteger() &&
!N0.getOperand(0).getValueType().isVector()) {
SDValue Int = N0.getOperand(0);
MVT IntVT = Int.getValueType();
if (IntVT.isInteger() && !IntVT.isVector()) {
Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
AddToWorkList(Int.getNode());
return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
N->getValueType(0), Int);
}
}
return SDValue();
}
SDValue DAGCombiner::visitFABS(SDNode *N) {
SDValue N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
MVT VT = N->getValueType(0);
// fold (fabs c1) -> fabs(c1)
if (N0CFP && VT != MVT::ppcf128)
return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
// fold (fabs (fabs x)) -> (fabs x)
if (N0.getOpcode() == ISD::FABS)
return N->getOperand(0);
// fold (fabs (fneg x)) -> (fabs x)
// fold (fabs (fcopysign x, y)) -> (fabs x)
if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
// Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
// constant pool values.
if (N0.getOpcode() == ISD::BIT_CONVERT && N0.getNode()->hasOneUse() &&
N0.getOperand(0).getValueType().isInteger() &&
!N0.getOperand(0).getValueType().isVector()) {
SDValue Int = N0.getOperand(0);
MVT IntVT = Int.getValueType();
if (IntVT.isInteger() && !IntVT.isVector()) {
Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
AddToWorkList(Int.getNode());
return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
N->getValueType(0), Int);
}
}
return SDValue();
}
SDValue DAGCombiner::visitBRCOND(SDNode *N) {
SDValue Chain = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
// never taken branch, fold to chain
if (N1C && N1C->isNullValue())
return Chain;
// unconditional branch
if (N1C && N1C->getAPIntValue() == 1)
return DAG.getNode(ISD::BR, N->getDebugLoc(), MVT::Other, Chain, N2);
// fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
// on the target.
if (N1.getOpcode() == ISD::SETCC &&
TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
Chain, N1.getOperand(2),
N1.getOperand(0), N1.getOperand(1), N2);
}
if (N1.hasOneUse() && N1.getOpcode() == ISD::SRL) {
// Match this pattern so that we can generate simpler code:
//
// %a = ...
// %b = and i32 %a, 2
// %c = srl i32 %b, 1
// brcond i32 %c ...
//
// into
//
// %a = ...
// %b = and %a, 2
// %c = setcc eq %b, 0
// brcond %c ...
//
// This applies only when the AND constant value has one bit set and the
// SRL constant is equal to the log2 of the AND constant. The back-end is
// smart enough to convert the result into a TEST/JMP sequence.
SDValue Op0 = N1.getOperand(0);
SDValue Op1 = N1.getOperand(1);
if (Op0.getOpcode() == ISD::AND &&
Op0.hasOneUse() &&
Op1.getOpcode() == ISD::Constant) {
SDValue AndOp0 = Op0.getOperand(0);
SDValue AndOp1 = Op0.getOperand(1);
if (AndOp1.getOpcode() == ISD::Constant) {
const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
if (AndConst.isPowerOf2() &&
cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
SDValue SetCC =
DAG.getSetCC(N->getDebugLoc(),
TLI.getSetCCResultType(Op0.getValueType()),
Op0, DAG.getConstant(0, Op0.getValueType()),
ISD::SETNE);
// Replace the uses of SRL with SETCC
DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
removeFromWorkList(N1.getNode());
DAG.DeleteNode(N1.getNode());
return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
MVT::Other, Chain, SetCC, N2);
}
}
}
}
return SDValue();
}
// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
//
SDValue DAGCombiner::visitBR_CC(SDNode *N) {
CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
// Use SimplifySetCC to simplify SETCC's.
SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
false);
if (Simp.getNode()) AddToWorkList(Simp.getNode());
ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.getNode());
// fold br_cc true, dest -> br dest (unconditional branch)
if (SCCC && !SCCC->isNullValue())
return DAG.getNode(ISD::BR, N->getDebugLoc(), MVT::Other,
N->getOperand(0), N->getOperand(4));
// fold br_cc false, dest -> unconditional fall through
if (SCCC && SCCC->isNullValue())
return N->getOperand(0);
// fold to a simpler setcc
if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
N->getOperand(0), Simp.getOperand(2),
Simp.getOperand(0), Simp.getOperand(1),
N->getOperand(4));
return SDValue();
}
/// CombineToPreIndexedLoadStore - Try turning a load / store into a
/// pre-indexed load / store when the base pointer is an add or subtract
/// and it has other uses besides the load / store. After the
/// transformation, the new indexed load / store has effectively folded
/// the add / subtract in and all of its other uses are redirected to the
/// new load / store.
bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
if (!LegalOperations)
return false;
bool isLoad = true;
SDValue Ptr;
MVT VT;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
if (LD->isIndexed())
return false;
VT = LD->getMemoryVT();
if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
!TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
return false;
Ptr = LD->getBasePtr();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
if (ST->isIndexed())
return false;
VT = ST->getMemoryVT();
if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
!TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
return false;
Ptr = ST->getBasePtr();
isLoad = false;
} else {
return false;
}
// If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
// out. There is no reason to make this a preinc/predec.
if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
Ptr.getNode()->hasOneUse())
return false;
// Ask the target to do addressing mode selection.
SDValue BasePtr;
SDValue Offset;
ISD::MemIndexedMode AM = ISD::UNINDEXED;
if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
return false;
// Don't create a indexed load / store with zero offset.
if (isa<ConstantSDNode>(Offset) &&
cast<ConstantSDNode>(Offset)->isNullValue())
return false;
// Try turning it into a pre-indexed load / store except when:
// 1) The new base ptr is a frame index.
// 2) If N is a store and the new base ptr is either the same as or is a
// predecessor of the value being stored.
// 3) Another use of old base ptr is a predecessor of N. If ptr is folded
// that would create a cycle.
// 4) All uses are load / store ops that use it as old base ptr.
// Check #1. Preinc'ing a frame index would require copying the stack pointer
// (plus the implicit offset) to a register to preinc anyway.
if (isa<FrameIndexSDNode>(BasePtr))
return false;
// Check #2.
if (!isLoad) {
SDValue Val = cast<StoreSDNode>(N)->getValue();
if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
return false;
}
// Now check for #3 and #4.
bool RealUse = false;
for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
E = Ptr.getNode()->use_end(); I != E; ++I) {
SDNode *Use = *I;
if (Use == N)
continue;
if (Use->isPredecessorOf(N))
return false;
if (!((Use->getOpcode() == ISD::LOAD &&
cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
(Use->getOpcode() == ISD::STORE &&
cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
RealUse = true;
}
if (!RealUse)
return false;
SDValue Result;
if (isLoad)
Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
BasePtr, Offset, AM);
else
Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
BasePtr, Offset, AM);
++PreIndexedNodes;
++NodesCombined;
DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
DOUT << "\nWith: "; DEBUG(Result.getNode()->dump(&DAG));
DOUT << '\n';
WorkListRemover DeadNodes(*this);
if (isLoad) {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
&DeadNodes);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2),
&DeadNodes);
} else {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1),
&DeadNodes);
}
// Finally, since the node is now dead, remove it from the graph.
DAG.DeleteNode(N);
// Replace the uses of Ptr with uses of the updated base value.
DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
&DeadNodes);
removeFromWorkList(Ptr.getNode());
DAG.DeleteNode(Ptr.getNode());
return true;
}
/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
/// add / sub of the base pointer node into a post-indexed load / store.
/// The transformation folded the add / subtract into the new indexed
/// load / store effectively and all of its uses are redirected to the
/// new load / store.
bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
if (!LegalOperations)
return false;
bool isLoad = true;
SDValue Ptr;
MVT VT;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
if (LD->isIndexed())
return false;
VT = LD->getMemoryVT();
if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
!TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
return false;
Ptr = LD->getBasePtr();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
if (ST->isIndexed())
return false;
VT = ST->getMemoryVT();
if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
!TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
return false;
Ptr = ST->getBasePtr();
isLoad = false;
} else {
return false;
}
if (Ptr.getNode()->hasOneUse())
return false;
for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
E = Ptr.getNode()->use_end(); I != E; ++I) {
SDNode *Op = *I;
if (Op == N ||
(Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
continue;
SDValue BasePtr;
SDValue Offset;
ISD::MemIndexedMode AM = ISD::UNINDEXED;
if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
if (Ptr == Offset)
std::swap(BasePtr, Offset);
if (Ptr != BasePtr)
continue;
// Don't create a indexed load / store with zero offset.
if (isa<ConstantSDNode>(Offset) &&
cast<ConstantSDNode>(Offset)->isNullValue())
continue;
// Try turning it into a post-indexed load / store except when
// 1) All uses are load / store ops that use it as base ptr.
// 2) Op must be independent of N, i.e. Op is neither a predecessor
// nor a successor of N. Otherwise, if Op is folded that would
// create a cycle.
// Check for #1.
bool TryNext = false;
for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
SDNode *Use = *II;
if (Use == Ptr.getNode())
continue;
// If all the uses are load / store addresses, then don't do the
// transformation.
if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
bool RealUse = false;
for (SDNode::use_iterator III = Use->use_begin(),
EEE = Use->use_end(); III != EEE; ++III) {
SDNode *UseUse = *III;
if (!((UseUse->getOpcode() == ISD::LOAD &&
cast<LoadSDNode>(UseUse)->getBasePtr().getNode() == Use) ||
(UseUse->getOpcode() == ISD::STORE &&
cast<StoreSDNode>(UseUse)->getBasePtr().getNode() == Use)))
RealUse = true;
}
if (!RealUse) {
TryNext = true;
break;
}
}
}
if (TryNext)
continue;
// Check for #2
if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
SDValue Result = isLoad
? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
BasePtr, Offset, AM)
: DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
BasePtr, Offset, AM);
++PostIndexedNodes;
++NodesCombined;
DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
DOUT << "\nWith: "; DEBUG(Result.getNode()->dump(&DAG));
DOUT << '\n';
WorkListRemover DeadNodes(*this);
if (isLoad) {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
&DeadNodes);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2),
&DeadNodes);
} else {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1),
&DeadNodes);
}
// Finally, since the node is now dead, remove it from the graph.
DAG.DeleteNode(N);
// Replace the uses of Use with uses of the updated base value.
DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
Result.getValue(isLoad ? 1 : 0),
&DeadNodes);
removeFromWorkList(Op);
DAG.DeleteNode(Op);
return true;
}
}
}
return false;
}
/// InferAlignment - If we can infer some alignment information from this
/// pointer, return it.
static unsigned InferAlignment(SDValue Ptr, SelectionDAG &DAG) {
// If this is a direct reference to a stack slot, use information about the
// stack slot's alignment.
int FrameIdx = 1 << 31;
int64_t FrameOffset = 0;
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
FrameIdx = FI->getIndex();
} else if (Ptr.getOpcode() == ISD::ADD &&
isa<ConstantSDNode>(Ptr.getOperand(1)) &&
isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
FrameOffset = Ptr.getConstantOperandVal(1);
}
if (FrameIdx != (1 << 31)) {
// FIXME: Handle FI+CST.
const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
if (MFI.isFixedObjectIndex(FrameIdx)) {
int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
// The alignment of the frame index can be determined from its offset from
// the incoming frame position. If the frame object is at offset 32 and
// the stack is guaranteed to be 16-byte aligned, then we know that the
// object is 16-byte aligned.
unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment();
unsigned Align = MinAlign(ObjectOffset, StackAlign);
// Finally, the frame object itself may have a known alignment. Factor
// the alignment + offset into a new alignment. For example, if we know
// the FI is 8 byte aligned, but the pointer is 4 off, we really have a
// 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte
// offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
FrameOffset);
return std::max(Align, FIInfoAlign);
}
}
return 0;
}
SDValue DAGCombiner::visitLOAD(SDNode *N) {
LoadSDNode *LD = cast<LoadSDNode>(N);
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
// Try to infer better alignment information than the load already has.
if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
if (unsigned Align = InferAlignment(Ptr, DAG)) {
if (Align > LD->getAlignment())
return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
LD->getValueType(0),
Chain, Ptr, LD->getSrcValue(),
LD->getSrcValueOffset(), LD->getMemoryVT(),
LD->isVolatile(), Align);
}
}
// If load is not volatile and there are no uses of the loaded value (and
// the updated indexed value in case of indexed loads), change uses of the
// chain value into uses of the chain input (i.e. delete the dead load).
if (!LD->isVolatile()) {
if (N->getValueType(1) == MVT::Other) {
// Unindexed loads.
if (N->hasNUsesOfValue(0, 0)) {
// It's not safe to use the two value CombineTo variant here. e.g.
// v1, chain2 = load chain1, loc
// v2, chain3 = load chain2, loc
// v3 = add v2, c
// Now we replace use of chain2 with chain1. This makes the second load
// isomorphic to the one we are deleting, and thus makes this load live.
DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
DOUT << "\nWith chain: "; DEBUG(Chain.getNode()->dump(&DAG));
DOUT << "\n";
WorkListRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain, &DeadNodes);
if (N->use_empty()) {
removeFromWorkList(N);
DAG.DeleteNode(N);
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
} else {
// Indexed loads.
assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
SDValue Undef = DAG.getUNDEF(N->getValueType(0));
DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
DOUT << "\nWith: "; DEBUG(Undef.getNode()->dump(&DAG));
DOUT << " and 2 other values\n";
WorkListRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef, &DeadNodes);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
DAG.getUNDEF(N->getValueType(1)),
&DeadNodes);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain, &DeadNodes);
removeFromWorkList(N);
DAG.DeleteNode(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
}
// If this load is directly stored, replace the load value with the stored
// value.
// TODO: Handle store large -> read small portion.
// TODO: Handle TRUNCSTORE/LOADEXT
if (LD->getExtensionType() == ISD::NON_EXTLOAD &&
!LD->isVolatile()) {
if (ISD::isNON_TRUNCStore(Chain.getNode())) {
StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
if (PrevST->getBasePtr() == Ptr &&
PrevST->getValue().getValueType() == N->getValueType(0))
return CombineTo(N, Chain.getOperand(1), Chain);
}
}
if (CombinerAA) {
// Walk up chain skipping non-aliasing memory nodes.
SDValue BetterChain = FindBetterChain(N, Chain);
// If there is a better chain.
if (Chain != BetterChain) {
SDValue ReplLoad;
// Replace the chain to void dependency.
if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
BetterChain, Ptr,
LD->getSrcValue(), LD->getSrcValueOffset(),
LD->isVolatile(), LD->getAlignment());
} else {
ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
LD->getValueType(0),
BetterChain, Ptr, LD->getSrcValue(),
LD->getSrcValueOffset(),
LD->getMemoryVT(),
LD->isVolatile(),
LD->getAlignment());
}
// Create token factor to keep old chain connected.
SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
MVT::Other, Chain, ReplLoad.getValue(1));
// Replace uses with load result and token factor. Don't add users
// to work list.
return CombineTo(N, ReplLoad.getValue(0), Token, false);
}
}
// Try transforming N to an indexed load.
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
return SDValue(N, 0);
return SDValue();
}
SDValue DAGCombiner::visitSTORE(SDNode *N) {
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Chain = ST->getChain();
SDValue Value = ST->getValue();
SDValue Ptr = ST->getBasePtr();
// Try to infer better alignment information than the store already has.
if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
if (unsigned Align = InferAlignment(Ptr, DAG)) {
if (Align > ST->getAlignment())
return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
Ptr, ST->getSrcValue(),
ST->getSrcValueOffset(), ST->getMemoryVT(),
ST->isVolatile(), Align);
}
}
// If this is a store of a bit convert, store the input value if the
// resultant store does not need a higher alignment than the original.
if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
ST->isUnindexed()) {
unsigned OrigAlign = ST->getAlignment();
MVT SVT = Value.getOperand(0).getValueType();
unsigned Align = TLI.getTargetData()->
getABITypeAlignment(SVT.getTypeForMVT());
if (Align <= OrigAlign &&
((!LegalOperations && !ST->isVolatile()) ||
TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
Ptr, ST->getSrcValue(),
ST->getSrcValueOffset(), ST->isVolatile(), OrigAlign);
}
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
// NOTE: If the original store is volatile, this transform must not increase
// the number of stores. For example, on x86-32 an f64 can be stored in one
// processor operation but an i64 (which is not legal) requires two. So the
// transform should not be done in this case.
if (Value.getOpcode() != ISD::TargetConstantFP) {
SDValue Tmp;
switch (CFP->getValueType(0).getSimpleVT()) {
default: assert(0 && "Unknown FP type");
case MVT::f80: // We don't do this for these yet.
case MVT::f128:
case MVT::ppcf128:
break;
case MVT::f32:
if (((TLI.isTypeLegal(MVT::i32) || !LegalTypes) && !LegalOperations &&
!ST->isVolatile()) ||
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
bitcastToAPInt().getZExtValue(), MVT::i32);
return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
Ptr, ST->getSrcValue(),
ST->getSrcValueOffset(), ST->isVolatile(),
ST->getAlignment());
}
break;
case MVT::f64:
if (((TLI.isTypeLegal(MVT::i64) || !LegalTypes) && !LegalOperations &&
!ST->isVolatile()) ||
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
getZExtValue(), MVT::i64);
return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
Ptr, ST->getSrcValue(),
ST->getSrcValueOffset(), ST->isVolatile(),
ST->getAlignment());
} else if (!ST->isVolatile() &&
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
// Many FP stores are not made apparent until after legalize, e.g. for
// argument passing. Since this is so common, custom legalize the
// 64-bit integer store into two 32-bit stores.
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
if (TLI.isBigEndian()) std::swap(Lo, Hi);
int SVOffset = ST->getSrcValueOffset();
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
Ptr, ST->getSrcValue(),
ST->getSrcValueOffset(),
isVolatile, ST->getAlignment());
Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
DAG.getConstant(4, Ptr.getValueType()));
SVOffset += 4;
Alignment = MinAlign(Alignment, 4U);
SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
Ptr, ST->getSrcValue(),
SVOffset, isVolatile, Alignment);
return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
St0, St1);
}
break;
}
}
}
if (CombinerAA) {
// Walk up chain skipping non-aliasing memory nodes.
SDValue BetterChain = FindBetterChain(N, Chain);
// If there is a better chain.
if (Chain != BetterChain) {
// Replace the chain to avoid dependency.
SDValue ReplStore;
if (ST->isTruncatingStore()) {
ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
ST->getSrcValue(),ST->getSrcValueOffset(),
ST->getMemoryVT(),
ST->isVolatile(), ST->getAlignment());
} else {
ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
ST->getSrcValue(), ST->getSrcValueOffset(),
ST->isVolatile(), ST->getAlignment());
}
// Create token to keep both nodes around.
SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
MVT::Other, Chain, ReplStore);
// Don't add users to work list.
return CombineTo(N, Token, false);
}
}
// Try transforming N to an indexed store.
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
return SDValue(N, 0);
// FIXME: is there such a thing as a truncating indexed store?
if (ST->isTruncatingStore() && ST->isUnindexed() &&
Value.getValueType().isInteger()) {
// See if we can simplify the input to this truncstore with knowledge that
// only the low bits are being used. For example:
// "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
SDValue Shorter =
GetDemandedBits(Value,
APInt::getLowBitsSet(Value.getValueSizeInBits(),
ST->getMemoryVT().getSizeInBits()));
AddToWorkList(Value.getNode());
if (Shorter.getNode())
return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
Ptr, ST->getSrcValue(),
ST->getSrcValueOffset(), ST->getMemoryVT(),
ST->isVolatile(), ST->getAlignment());
// Otherwise, see if we can simplify the operation with
// SimplifyDemandedBits, which only works if the value has a single use.
if (SimplifyDemandedBits(Value,
APInt::getLowBitsSet(
Value.getValueSizeInBits(),
ST->getMemoryVT().getSizeInBits())))
return SDValue(N, 0);
}
// If this is a load followed by a store to the same location, then the store
// is dead/noop.
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
ST->isUnindexed() && !ST->isVolatile() &&
// There can't be any side effects between the load and store, such as
// a call or store.
Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
// The store is dead, remove it.
return Chain;
}
}
// If this is an FP_ROUND or TRUNC followed by a store, fold this into a
// truncating store. We can do this even if this is already a truncstore.
if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
&& Value.getNode()->hasOneUse() && ST->isUnindexed() &&
TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
ST->getMemoryVT())) {
return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
Ptr, ST->getSrcValue(),
ST->getSrcValueOffset(), ST->getMemoryVT(),
ST->isVolatile(), ST->getAlignment());
}
return SDValue();
}
SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
SDValue InVec = N->getOperand(0);
SDValue InVal = N->getOperand(1);
SDValue EltNo = N->getOperand(2);
// If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
// vector with the inserted element.
if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
SmallVector<SDValue, 8> Ops(InVec.getNode()->op_begin(),
InVec.getNode()->op_end());
if (Elt < Ops.size())
Ops[Elt] = InVal;
return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
InVec.getValueType(), &Ops[0], Ops.size());
}
// If the invec is an UNDEF and if EltNo is a constant, create a new
// BUILD_VECTOR with undef elements and the inserted element.
if (!LegalOperations && InVec.getOpcode() == ISD::UNDEF &&
isa<ConstantSDNode>(EltNo)) {
MVT VT = InVec.getValueType();
MVT EVT = VT.getVectorElementType();
unsigned NElts = VT.getVectorNumElements();
SmallVector<SDValue, 8> Ops(NElts, DAG.getUNDEF(EVT));
unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
if (Elt < Ops.size())
Ops[Elt] = InVal;
return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
InVec.getValueType(), &Ops[0], Ops.size());
}
return SDValue();
}
SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
// (vextract (scalar_to_vector val, 0) -> val
SDValue InVec = N->getOperand(0);
if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
// If the operand is wider than the vector element type then it is implicitly
// truncated. Make that explicit here.
MVT EltVT = InVec.getValueType().getVectorElementType();
SDValue InOp = InVec.getOperand(0);
if (InOp.getValueType() != EltVT)
return DAG.getNode(ISD::TRUNCATE, InVec.getDebugLoc(), EltVT, InOp);
return InOp;
}
// Perform only after legalization to ensure build_vector / vector_shuffle
// optimizations have already been done.
if (!LegalOperations) return SDValue();
// (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
// (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
// (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
SDValue EltNo = N->getOperand(1);
if (isa<ConstantSDNode>(EltNo)) {
unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
bool NewLoad = false;
bool BCNumEltsChanged = false;
MVT VT = InVec.getValueType();
MVT EVT = VT.getVectorElementType();
MVT LVT = EVT;
if (InVec.getOpcode() == ISD::BIT_CONVERT) {
MVT BCVT = InVec.getOperand(0).getValueType();
if (!BCVT.isVector() || EVT.bitsGT(BCVT.getVectorElementType()))
return SDValue();
if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
BCNumEltsChanged = true;
InVec = InVec.getOperand(0);
EVT = BCVT.getVectorElementType();
NewLoad = true;
}
LoadSDNode *LN0 = NULL;
const ShuffleVectorSDNode *SVN = NULL;
if (ISD::isNormalLoad(InVec.getNode())) {
LN0 = cast<LoadSDNode>(InVec);
} else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
InVec.getOperand(0).getValueType() == EVT &&
ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
LN0 = cast<LoadSDNode>(InVec.getOperand(0));
} else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
// (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
// =>
// (load $addr+1*size)
// If the bit convert changed the number of elements, it is unsafe
// to examine the mask.
if (BCNumEltsChanged)
return SDValue();
// Select the input vector, guarding against out of range extract vector.
unsigned NumElems = VT.getVectorNumElements();
int Idx = (Elt > NumElems) ? -1 : SVN->getMaskElt(Elt);
InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
if (InVec.getOpcode() == ISD::BIT_CONVERT)
InVec = InVec.getOperand(0);
if (ISD::isNormalLoad(InVec.getNode())) {
LN0 = cast<LoadSDNode>(InVec);
Elt = (Idx < (int)NumElems) ? Idx : Idx - NumElems;
}
}
if (!LN0 || !LN0->hasOneUse() || LN0->isVolatile())
return SDValue();
unsigned Align = LN0->getAlignment();
if (NewLoad) {
// Check the resultant load doesn't need a higher alignment than the
// original load.
unsigned NewAlign =
TLI.getTargetData()->getABITypeAlignment(LVT.getTypeForMVT());
if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
return SDValue();
Align = NewAlign;
}
SDValue NewPtr = LN0->getBasePtr();
if (Elt) {
unsigned PtrOff = LVT.getSizeInBits() * Elt / 8;
MVT PtrType = NewPtr.getValueType();
if (TLI.isBigEndian())
PtrOff = VT.getSizeInBits() / 8 - PtrOff;
NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
DAG.getConstant(PtrOff, PtrType));
}
return DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
LN0->getSrcValue(), LN0->getSrcValueOffset(),
LN0->isVolatile(), Align);
}
return SDValue();
}
SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
unsigned NumInScalars = N->getNumOperands();
MVT VT = N->getValueType(0);
MVT EltType = VT.getVectorElementType();
// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
// operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
// at most two distinct vectors, turn this into a shuffle node.
SDValue VecIn1, VecIn2;
for (unsigned i = 0; i != NumInScalars; ++i) {
// Ignore undef inputs.
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
// If this input is something other than a EXTRACT_VECTOR_ELT with a
// constant index, bail out.
if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
VecIn1 = VecIn2 = SDValue(0, 0);
break;
}
// If the input vector type disagrees with the result of the build_vector,
// we can't make a shuffle.
SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
if (ExtractedFromVec.getValueType() != VT) {
VecIn1 = VecIn2 = SDValue(0, 0);
break;
}
// Otherwise, remember this. We allow up to two distinct input vectors.
if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
continue;
if (VecIn1.getNode() == 0) {
VecIn1 = ExtractedFromVec;
} else if (VecIn2.getNode() == 0) {
VecIn2 = ExtractedFromVec;
} else {
// Too many inputs.
VecIn1 = VecIn2 = SDValue(0, 0);
break;
}
}
// If everything is good, we can make a shuffle operation.
if (VecIn1.getNode()) {
SmallVector<int, 8> Mask;
for (unsigned i = 0; i != NumInScalars; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
Mask.push_back(-1);
continue;
}
// If extracting from the first vector, just use the index directly.
SDValue Extract = N->getOperand(i);
SDValue ExtVal = Extract.getOperand(1);
if (Extract.getOperand(0) == VecIn1) {
unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
if (ExtIndex > VT.getVectorNumElements())
return SDValue();
Mask.push_back(ExtIndex);
continue;
}
// Otherwise, use InIdx + VecSize
unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
Mask.push_back(Idx+NumInScalars);
}
// Add count and size info.
if (!TLI.isTypeLegal(VT) && LegalTypes)
return SDValue();
// Return the new VECTOR_SHUFFLE node.
SDValue Ops[2];
Ops[0] = VecIn1;
Ops[1] = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
return DAG.getVectorShuffle(VT, N->getDebugLoc(), Ops[0], Ops[1], &Mask[0]);
}
return SDValue();
}
SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
// TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
// EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
// inputs come from at most two distinct vectors, turn this into a shuffle
// node.
// If we only have one input vector, we don't need to do any concatenation.
if (N->getNumOperands() == 1)
return N->getOperand(0);
return SDValue();
}
SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
return SDValue();
MVT VT = N->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
assert(N0.getValueType().getVectorNumElements() == NumElts &&
"Vector shuffle must be normalized in DAG");
// FIXME: implement canonicalizations from DAG.getVectorShuffle()
// If it is a splat, check if the argument vector is a build_vector with
// all scalar elements the same.
if (cast<ShuffleVectorSDNode>(N)->isSplat()) {
SDNode *V = N0.getNode();
// If this is a bit convert that changes the element type of the vector but
// not the number of vector elements, look through it. Be careful not to
// look though conversions that change things like v4f32 to v2f64.
if (V->getOpcode() == ISD::BIT_CONVERT) {
SDValue ConvInput = V->getOperand(0);
if (ConvInput.getValueType().isVector() &&
ConvInput.getValueType().getVectorNumElements() == NumElts)
V = ConvInput.getNode();
}
if (V->getOpcode() == ISD::BUILD_VECTOR) {
unsigned NumElems = V->getNumOperands();
unsigned BaseIdx = cast<ShuffleVectorSDNode>(N)->getSplatIndex();
if (NumElems > BaseIdx) {
SDValue Base;
bool AllSame = true;
for (unsigned i = 0; i != NumElems; ++i) {
if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
Base = V->getOperand(i);
break;
}
}
// Splat of <u, u, u, u>, return <u, u, u, u>
if (!Base.getNode())
return N0;
for (unsigned i = 0; i != NumElems; ++i) {
if (V->getOperand(i) != Base) {
AllSame = false;
break;
}
}
// Splat of <x, x, x, x>, return <x, x, x, x>
if (AllSame)
return N0;
}
}
}
return SDValue();
}
/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
/// an AND to a vector_shuffle with the destination vector and a zero vector.
/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
/// vector_shuffle V, Zero, <0, 4, 2, 4>
SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
MVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (N->getOpcode() == ISD::AND) {
if (RHS.getOpcode() == ISD::BIT_CONVERT)
RHS = RHS.getOperand(0);
if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
SmallVector<int, 8> Indices;
unsigned NumElts = RHS.getNumOperands();
for (unsigned i = 0; i != NumElts; ++i) {
SDValue Elt = RHS.getOperand(i);
if (!isa<ConstantSDNode>(Elt))
return SDValue();
else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
Indices.push_back(i);
else if (cast<ConstantSDNode>(Elt)->isNullValue())
Indices.push_back(NumElts);
else
return SDValue();
}
// Let's see if the target supports this vector_shuffle.
MVT RVT = RHS.getValueType();
if (!TLI.isVectorClearMaskLegal(Indices, RVT))
return SDValue();
// Return the new VECTOR_SHUFFLE node.
MVT EVT = RVT.getVectorElementType();
SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
DAG.getConstant(0, EVT));
SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
RVT, &ZeroOps[0], ZeroOps.size());
LHS = DAG.getNode(ISD::BIT_CONVERT, dl, RVT, LHS);
SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Shuf);
}
}
return SDValue();
}
/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
// After legalize, the target may be depending on adds and other
// binary ops to provide legal ways to construct constants or other
// things. Simplifying them may result in a loss of legality.
if (LegalOperations) return SDValue();
MVT VT = N->getValueType(0);
assert(VT.isVector() && "SimplifyVBinOp only works on vectors!");
MVT EltType = VT.getVectorElementType();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue Shuffle = XformToShuffleWithZero(N);
if (Shuffle.getNode()) return Shuffle;
// If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
// this operation.
if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
RHS.getOpcode() == ISD::BUILD_VECTOR) {
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
SDValue LHSOp = LHS.getOperand(i);
SDValue RHSOp = RHS.getOperand(i);
// If these two elements can't be folded, bail out.
if ((LHSOp.getOpcode() != ISD::UNDEF &&
LHSOp.getOpcode() != ISD::Constant &&
LHSOp.getOpcode() != ISD::ConstantFP) ||
(RHSOp.getOpcode() != ISD::UNDEF &&
RHSOp.getOpcode() != ISD::Constant &&
RHSOp.getOpcode() != ISD::ConstantFP))
break;
// Can't fold divide by zero.
if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
N->getOpcode() == ISD::FDIV) {
if ((RHSOp.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
(RHSOp.getOpcode() == ISD::ConstantFP &&
cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
break;
}
Ops.push_back(DAG.getNode(N->getOpcode(), LHS.getDebugLoc(),
EltType, LHSOp, RHSOp));
AddToWorkList(Ops.back().getNode());
assert((Ops.back().getOpcode() == ISD::UNDEF ||
Ops.back().getOpcode() == ISD::Constant ||
Ops.back().getOpcode() == ISD::ConstantFP) &&
"Scalar binop didn't fold!");
}
if (Ops.size() == LHS.getNumOperands()) {
MVT VT = LHS.getValueType();
return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
&Ops[0], Ops.size());
}
}
return SDValue();
}
SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
SDValue N1, SDValue N2){
assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
cast<CondCodeSDNode>(N0.getOperand(2))->get());
// If we got a simplified select_cc node back from SimplifySelectCC, then
// break it down into a new SETCC node, and a new SELECT node, and then return
// the SELECT node, since we were called with a SELECT node.
if (SCC.getNode()) {
// Check to see if we got a select_cc back (to turn into setcc/select).
// Otherwise, just return whatever node we got back, like fabs.
if (SCC.getOpcode() == ISD::SELECT_CC) {
SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
N0.getValueType(),
SCC.getOperand(0), SCC.getOperand(1),
SCC.getOperand(4));
AddToWorkList(SETCC.getNode());
return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
SCC.getOperand(2), SCC.getOperand(3), SETCC);
}
return SCC;
}
return SDValue();
}
/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
/// are the two values being selected between, see if we can simplify the
/// select. Callers of this should assume that TheSelect is deleted if this
/// returns true. As such, they should return the appropriate thing (e.g. the
/// node) back to the top-level of the DAG combiner loop to avoid it being
/// looked at.
bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
SDValue RHS) {
// If this is a select from two identical things, try to pull the operation
// through the select.
if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
// If this is a load and the token chain is identical, replace the select
// of two loads with a load through a select of the address to load from.
// This triggers in things like "select bool X, 10.0, 123.0" after the FP
// constants have been dropped into the constant pool.
if (LHS.getOpcode() == ISD::LOAD &&
// Do not let this transformation reduce the number of volatile loads.
!cast<LoadSDNode>(LHS)->isVolatile() &&
!cast<LoadSDNode>(RHS)->isVolatile() &&
// Token chains must be identical.
LHS.getOperand(0) == RHS.getOperand(0)) {
LoadSDNode *LLD = cast<LoadSDNode>(LHS);
LoadSDNode *RLD = cast<LoadSDNode>(RHS);
// If this is an EXTLOAD, the VT's must match.
if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
// FIXME: this conflates two src values, discarding one. This is not
// the right thing to do, but nothing uses srcvalues now. When they do,
// turn SrcValue into a list of locations.
SDValue Addr;
if (TheSelect->getOpcode() == ISD::SELECT) {
// Check that the condition doesn't reach either load. If so, folding
// this will induce a cycle into the DAG.
if (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
!RLD->isPredecessorOf(TheSelect->getOperand(0).getNode())) {
Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
LLD->getBasePtr().getValueType(),
TheSelect->getOperand(0), LLD->getBasePtr(),
RLD->getBasePtr());
}
} else {
// Check that the condition doesn't reach either load. If so, folding
// this will induce a cycle into the DAG.
if (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
!RLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
!LLD->isPredecessorOf(TheSelect->getOperand(1).getNode()) &&
!RLD->isPredecessorOf(TheSelect->getOperand(1).getNode())) {
Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
LLD->getBasePtr().getValueType(),
TheSelect->getOperand(0),
TheSelect->getOperand(1),
LLD->getBasePtr(), RLD->getBasePtr(),
TheSelect->getOperand(4));
}
}
if (Addr.getNode()) {
SDValue Load;
if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
Load = DAG.getLoad(TheSelect->getValueType(0),
TheSelect->getDebugLoc(),
LLD->getChain(),
Addr,LLD->getSrcValue(),
LLD->getSrcValueOffset(),
LLD->isVolatile(),
LLD->getAlignment());
} else {
Load = DAG.getExtLoad(LLD->getExtensionType(),
TheSelect->getDebugLoc(),
TheSelect->getValueType(0),
LLD->getChain(), Addr, LLD->getSrcValue(),
LLD->getSrcValueOffset(),
LLD->getMemoryVT(),
LLD->isVolatile(),
LLD->getAlignment());
}
// Users of the select now use the result of the load.
CombineTo(TheSelect, Load);
// Users of the old loads now use the new load's chain. We know the
// old-load value is dead now.
CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
return true;
}
}
}
}
return false;
}
/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
/// where 'cond' is the comparison specified by CC.
SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
SDValue N2, SDValue N3,
ISD::CondCode CC, bool NotExtCompare) {
// (x ? y : y) -> y.
if (N2 == N3) return N2;
MVT VT = N2.getValueType();
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
// Determine if the condition we're dealing with is constant
SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
N0, N1, CC, DL, false);
if (SCC.getNode()) AddToWorkList(SCC.getNode());
ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
// fold select_cc true, x, y -> x
if (SCCC && !SCCC->isNullValue())
return N2;
// fold select_cc false, x, y -> y
if (SCCC && SCCC->isNullValue())
return N3;
// Check to see if we can simplify the select into an fabs node
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
// Allow either -0.0 or 0.0
if (CFP->getValueAPF().isZero()) {
// select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
N0 == N2 && N3.getOpcode() == ISD::FNEG &&
N2 == N3.getOperand(0))
return DAG.getNode(ISD::FABS, DL, VT, N0);
// select (setl[te] X, +/-0.0), fneg(X), X -> fabs
if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
N0 == N3 && N2.getOpcode() == ISD::FNEG &&
N2.getOperand(0) == N3)
return DAG.getNode(ISD::FABS, DL, VT, N3);
}
}
// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
// in it. This is a win when the constant is not otherwise available because
// it replaces two constant pool loads with one. We only do this if the FP
// type is known to be legal, because if it isn't, then we are before legalize
// types an we want the other legalization to happen first (e.g. to avoid
// messing with soft float) and if the ConstantFP is not legal, because if
// it is legal, we may not need to store the FP constant in a constant pool.
if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
if (TLI.isTypeLegal(N2.getValueType()) &&
(TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
TargetLowering::Legal) &&
// If both constants have multiple uses, then we won't need to do an
// extra load, they are likely around in registers for other users.
(TV->hasOneUse() || FV->hasOneUse())) {
Constant *Elts[] = {
const_cast<ConstantFP*>(FV->getConstantFPValue()),
const_cast<ConstantFP*>(TV->getConstantFPValue())
};
const Type *FPTy = Elts[0]->getType();
const TargetData &TD = *TLI.getTargetData();
// Create a ConstantArray of the two constants.
Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts, 2);
SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
TD.getPrefTypeAlignment(FPTy));
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
// Get the offsets to the 0 and 1 element of the array so that we can
// select between them.
SDValue Zero = DAG.getIntPtrConstant(0);
unsigned EltSize = (unsigned)TD.getTypePaddedSize(Elts[0]->getType());
SDValue One = DAG.getIntPtrConstant(EltSize);
SDValue Cond = DAG.getSetCC(DL,
TLI.getSetCCResultType(N0.getValueType()),
N0, N1, CC);
SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
Cond, One, Zero);
CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
CstOffset);
return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0, false,
Alignment);
}
}
// Check to see if we can perform the "gzip trick", transforming
// (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
N0.getValueType().isInteger() &&
N2.getValueType().isInteger() &&
(N1C->isNullValue() || // (a < 0) ? b : 0
(N1C->getAPIntValue() == 1 && N0 == N2))) { // (a < 1) ? a : 0
MVT XType = N0.getValueType();
MVT AType = N2.getValueType();
if (XType.bitsGE(AType)) {
// and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
// single-bit constant.
if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
unsigned ShCtV = N2C->getAPIntValue().logBase2();
ShCtV = XType.getSizeInBits()-ShCtV-1;
SDValue ShCt = DAG.getConstant(ShCtV, getShiftAmountTy());
SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
XType, N0, ShCt);
AddToWorkList(Shift.getNode());
if (XType.bitsGT(AType)) {
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
AddToWorkList(Shift.getNode());
}
return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
}
SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
XType, N0,
DAG.getConstant(XType.getSizeInBits()-1,
getShiftAmountTy()));
AddToWorkList(Shift.getNode());
if (XType.bitsGT(AType)) {
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
AddToWorkList(Shift.getNode());
}
return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
}
}
// fold select C, 16, 0 -> shl C, 4
if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent) {
// If the caller doesn't want us to simplify this into a zext of a compare,
// don't do it.
if (NotExtCompare && N2C->getAPIntValue() == 1)
return SDValue();
// Get a SetCC of the condition
// FIXME: Should probably make sure that setcc is legal if we ever have a
// target where it isn't.
SDValue Temp, SCC;
// cast from setcc result type to select result type
if (LegalTypes) {
SCC = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
N0, N1, CC);
if (N2.getValueType().bitsLT(SCC.getValueType()))
Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(), N2.getValueType());
else
Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
N2.getValueType(), SCC);
} else {
SCC = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
N2.getValueType(), SCC);
}
AddToWorkList(SCC.getNode());
AddToWorkList(Temp.getNode());
if (N2C->getAPIntValue() == 1)
return Temp;
// shl setcc result by log2 n2c
return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
DAG.getConstant(N2C->getAPIntValue().logBase2(),
getShiftAmountTy()));
}
// Check to see if this is the equivalent of setcc
// FIXME: Turn all of these into setcc if setcc if setcc is legal
// otherwise, go ahead with the folds.
if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
MVT XType = N0.getValueType();
if (!LegalOperations ||
TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
if (Res.getValueType() != VT)
Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
return Res;
}
// fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
(!LegalOperations ||
TLI.isOperationLegal(ISD::CTLZ, XType))) {
SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
DAG.getConstant(Log2_32(XType.getSizeInBits()),
getShiftAmountTy()));
}
// fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
XType, DAG.getConstant(0, XType), N0);
SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
return DAG.getNode(ISD::SRL, DL, XType,
DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
DAG.getConstant(XType.getSizeInBits()-1,
getShiftAmountTy()));
}
// fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
DAG.getConstant(XType.getSizeInBits()-1,
getShiftAmountTy()));
return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
}
}
// Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
N2.getOperand(0) == N1 && N0.getValueType().isInteger()) {
MVT XType = N0.getValueType();
SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType, N0,
DAG.getConstant(XType.getSizeInBits()-1,
getShiftAmountTy()));
SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(), XType,
N0, Shift);
AddToWorkList(Shift.getNode());
AddToWorkList(Add.getNode());
return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
}
// Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
MVT XType = N0.getValueType();
if (SubC->isNullValue() && XType.isInteger()) {
SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
N0,
DAG.getConstant(XType.getSizeInBits()-1,
getShiftAmountTy()));
SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
XType, N0, Shift);
AddToWorkList(Shift.getNode());
AddToWorkList(Add.getNode());
return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
}
}
}
return SDValue();
}
/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
SDValue DAGCombiner::SimplifySetCC(MVT VT, SDValue N0,
SDValue N1, ISD::CondCode Cond,
DebugLoc DL, bool foldBooleans) {
TargetLowering::DAGCombinerInfo
DagCombineInfo(DAG, Level == Unrestricted, false, this);
return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
}
/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDValue DAGCombiner::BuildSDIV(SDNode *N) {
std::vector<SDNode*> Built;
SDValue S = TLI.BuildSDIV(N, DAG, &Built);
for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
ii != ee; ++ii)
AddToWorkList(*ii);
return S;
}
/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDValue DAGCombiner::BuildUDIV(SDNode *N) {
std::vector<SDNode*> Built;
SDValue S = TLI.BuildUDIV(N, DAG, &Built);
for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
ii != ee; ++ii)
AddToWorkList(*ii);
return S;
}
/// FindBaseOffset - Return true if base is known not to alias with anything
/// but itself. Provides base object and offset as results.
static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset) {
// Assume it is a primitive operation.
Base = Ptr; Offset = 0;
// If it's an adding a simple constant then integrate the offset.
if (Base.getOpcode() == ISD::ADD) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
Base = Base.getOperand(0);
Offset += C->getZExtValue();
}
}
// If it's any of the following then it can't alias with anything but itself.
return isa<FrameIndexSDNode>(Base) ||
isa<ConstantPoolSDNode>(Base) ||
isa<GlobalAddressSDNode>(Base);
}
/// isAlias - Return true if there is any possibility that the two addresses
/// overlap.
bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
const Value *SrcValue1, int SrcValueOffset1,
SDValue Ptr2, int64_t Size2,
const Value *SrcValue2, int SrcValueOffset2) const {
// If they are the same then they must be aliases.
if (Ptr1 == Ptr2) return true;
// Gather base node and offset information.
SDValue Base1, Base2;
int64_t Offset1, Offset2;
bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
// If they have a same base address then...
if (Base1 == Base2)
// Check to see if the addresses overlap.
return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
// If we know both bases then they can't alias.
if (KnownBase1 && KnownBase2) return false;
if (CombinerGlobalAA) {
// Use alias analysis information.
int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
AliasAnalysis::AliasResult AAResult =
AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
if (AAResult == AliasAnalysis::NoAlias)
return false;
}
// Otherwise we have to assume they alias.
return true;
}
/// FindAliasInfo - Extracts the relevant alias information from the memory
/// node. Returns true if the operand was a load.
bool DAGCombiner::FindAliasInfo(SDNode *N,
SDValue &Ptr, int64_t &Size,
const Value *&SrcValue, int &SrcValueOffset) const {
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
Ptr = LD->getBasePtr();
Size = LD->getMemoryVT().getSizeInBits() >> 3;
SrcValue = LD->getSrcValue();
SrcValueOffset = LD->getSrcValueOffset();
return true;
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
Ptr = ST->getBasePtr();
Size = ST->getMemoryVT().getSizeInBits() >> 3;
SrcValue = ST->getSrcValue();
SrcValueOffset = ST->getSrcValueOffset();
} else {
assert(0 && "FindAliasInfo expected a memory operand");
}
return false;
}
/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
/// looking for aliasing nodes and adding them to the Aliases vector.
void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
SmallVector<SDValue, 8> &Aliases) {
SmallVector<SDValue, 8> Chains; // List of chains to visit.
std::set<SDNode *> Visited; // Visited node set.
// Get alias information for node.
SDValue Ptr;
int64_t Size;
const Value *SrcValue;
int SrcValueOffset;
bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
// Starting off.
Chains.push_back(OriginalChain);
// Look at each chain and determine if it is an alias. If so, add it to the
// aliases list. If not, then continue up the chain looking for the next
// candidate.
while (!Chains.empty()) {
SDValue Chain = Chains.back();
Chains.pop_back();
// Don't bother if we've been before.
if (Visited.find(Chain.getNode()) != Visited.end()) continue;
Visited.insert(Chain.getNode());
switch (Chain.getOpcode()) {
case ISD::EntryToken:
// Entry token is ideal chain operand, but handled in FindBetterChain.
break;
case ISD::LOAD:
case ISD::STORE: {
// Get alias information for Chain.
SDValue OpPtr;
int64_t OpSize;
const Value *OpSrcValue;
int OpSrcValueOffset;
bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
OpSrcValue, OpSrcValueOffset);
// If chain is alias then stop here.
if (!(IsLoad && IsOpLoad) &&
isAlias(Ptr, Size, SrcValue, SrcValueOffset,
OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
Aliases.push_back(Chain);
} else {
// Look further up the chain.
Chains.push_back(Chain.getOperand(0));
// Clean up old chain.
AddToWorkList(Chain.getNode());
}
break;
}
case ISD::TokenFactor:
// We have to check each of the operands of the token factor, so we queue
// then up. Adding the operands to the queue (stack) in reverse order
// maintains the original order and increases the likelihood that getNode
// will find a matching token factor (CSE.)
for (unsigned n = Chain.getNumOperands(); n;)
Chains.push_back(Chain.getOperand(--n));
// Eliminate the token factor if we can.
AddToWorkList(Chain.getNode());
break;
default:
// For all other instructions we will just have to take what we can get.
Aliases.push_back(Chain);
break;
}
}
}
/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
/// for a better chain (aliasing node.)
SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor.
// Accumulate all the aliases to this node.
GatherAllAliases(N, OldChain, Aliases);
if (Aliases.size() == 0) {
// If no operands then chain to entry token.
return DAG.getEntryNode();
} else if (Aliases.size() == 1) {
// If a single operand then chain to it. We don't need to revisit it.
return Aliases[0];
}
// Construct a custom tailored token factor.
SDValue NewChain = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
&Aliases[0], Aliases.size());
// Make sure the old chain gets cleaned up.
if (NewChain != OldChain) AddToWorkList(OldChain.getNode());
return NewChain;
}
// SelectionDAG::Combine - This is the entry point for the file.
//
void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
CodeGenOpt::Level OptLevel) {
/// run - This is the main entry point to this class.
///
DAGCombiner(*this, AA, OptLevel).Run(Level);
}