llvm-6502/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
Bill Wendling 98a366d547 Instead of passing in an unsigned value for the optimization level, use an enum,
which better identifies what the optimization is doing. And is more flexible for
future uses.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70440 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-29 23:29:43 +00:00

636 lines
21 KiB
C++

//===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a fast scheduler.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-RA-sched"
#include "ScheduleDAGSDNodes.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
STATISTIC(NumUnfolds, "Number of nodes unfolded");
STATISTIC(NumDups, "Number of duplicated nodes");
STATISTIC(NumPRCopies, "Number of physical copies");
static RegisterScheduler
fastDAGScheduler("fast", "Fast suboptimal list scheduling",
createFastDAGScheduler);
namespace {
/// FastPriorityQueue - A degenerate priority queue that considers
/// all nodes to have the same priority.
///
struct VISIBILITY_HIDDEN FastPriorityQueue {
SmallVector<SUnit *, 16> Queue;
bool empty() const { return Queue.empty(); }
void push(SUnit *U) {
Queue.push_back(U);
}
SUnit *pop() {
if (empty()) return NULL;
SUnit *V = Queue.back();
Queue.pop_back();
return V;
}
};
//===----------------------------------------------------------------------===//
/// ScheduleDAGFast - The actual "fast" list scheduler implementation.
///
class VISIBILITY_HIDDEN ScheduleDAGFast : public ScheduleDAGSDNodes {
private:
/// AvailableQueue - The priority queue to use for the available SUnits.
FastPriorityQueue AvailableQueue;
/// LiveRegDefs - A set of physical registers and their definition
/// that are "live". These nodes must be scheduled before any other nodes that
/// modifies the registers can be scheduled.
unsigned NumLiveRegs;
std::vector<SUnit*> LiveRegDefs;
std::vector<unsigned> LiveRegCycles;
public:
ScheduleDAGFast(MachineFunction &mf)
: ScheduleDAGSDNodes(mf) {}
void Schedule();
/// AddPred - adds a predecessor edge to SUnit SU.
/// This returns true if this is a new predecessor.
void AddPred(SUnit *SU, const SDep &D) {
SU->addPred(D);
}
/// RemovePred - removes a predecessor edge from SUnit SU.
/// This returns true if an edge was removed.
void RemovePred(SUnit *SU, const SDep &D) {
SU->removePred(D);
}
private:
void ReleasePred(SUnit *SU, SDep *PredEdge);
void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
void ScheduleNodeBottomUp(SUnit*, unsigned);
SUnit *CopyAndMoveSuccessors(SUnit*);
void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
const TargetRegisterClass*,
const TargetRegisterClass*,
SmallVector<SUnit*, 2>&);
bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
void ListScheduleBottomUp();
/// ForceUnitLatencies - The fast scheduler doesn't care about real latencies.
bool ForceUnitLatencies() const { return true; }
};
} // end anonymous namespace
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGFast::Schedule() {
DOUT << "********** List Scheduling **********\n";
NumLiveRegs = 0;
LiveRegDefs.resize(TRI->getNumRegs(), NULL);
LiveRegCycles.resize(TRI->getNumRegs(), 0);
// Build the scheduling graph.
BuildSchedGraph();
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
// Execute the actual scheduling loop.
ListScheduleBottomUp();
}
//===----------------------------------------------------------------------===//
// Bottom-Up Scheduling
//===----------------------------------------------------------------------===//
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
SUnit *PredSU = PredEdge->getSUnit();
--PredSU->NumSuccsLeft;
#ifndef NDEBUG
if (PredSU->NumSuccsLeft < 0) {
cerr << "*** Scheduling failed! ***\n";
PredSU->dump(this);
cerr << " has been released too many times!\n";
assert(0);
}
#endif
// If all the node's successors are scheduled, this node is ready
// to be scheduled. Ignore the special EntrySU node.
if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
PredSU->isAvailable = true;
AvailableQueue.push(PredSU);
}
}
void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
// Bottom up: release predecessors
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
ReleasePred(SU, &*I);
if (I->isAssignedRegDep()) {
// This is a physical register dependency and it's impossible or
// expensive to copy the register. Make sure nothing that can
// clobber the register is scheduled between the predecessor and
// this node.
if (!LiveRegDefs[I->getReg()]) {
++NumLiveRegs;
LiveRegDefs[I->getReg()] = I->getSUnit();
LiveRegCycles[I->getReg()] = CurCycle;
}
}
}
}
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
DOUT << "*** Scheduling [" << CurCycle << "]: ";
DEBUG(SU->dump(this));
assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
SU->setHeightToAtLeast(CurCycle);
Sequence.push_back(SU);
ReleasePredecessors(SU, CurCycle);
// Release all the implicit physical register defs that are live.
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isAssignedRegDep()) {
if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
assert(LiveRegDefs[I->getReg()] == SU &&
"Physical register dependency violated?");
--NumLiveRegs;
LiveRegDefs[I->getReg()] = NULL;
LiveRegCycles[I->getReg()] = 0;
}
}
}
SU->isScheduled = true;
}
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
/// successors to the newly created node.
SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
if (SU->getNode()->getFlaggedNode())
return NULL;
SDNode *N = SU->getNode();
if (!N)
return NULL;
SUnit *NewSU;
bool TryUnfold = false;
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
MVT VT = N->getValueType(i);
if (VT == MVT::Flag)
return NULL;
else if (VT == MVT::Other)
TryUnfold = true;
}
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
const SDValue &Op = N->getOperand(i);
MVT VT = Op.getNode()->getValueType(Op.getResNo());
if (VT == MVT::Flag)
return NULL;
}
if (TryUnfold) {
SmallVector<SDNode*, 2> NewNodes;
if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
return NULL;
DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
assert(NewNodes.size() == 2 && "Expected a load folding node!");
N = NewNodes[1];
SDNode *LoadNode = NewNodes[0];
unsigned NumVals = N->getNumValues();
unsigned OldNumVals = SU->getNode()->getNumValues();
for (unsigned i = 0; i != NumVals; ++i)
DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
SDValue(LoadNode, 1));
SUnit *NewSU = NewSUnit(N);
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NewSU->NodeNum);
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
NewSU->isTwoAddress = true;
break;
}
}
if (TID.isCommutable())
NewSU->isCommutable = true;
// LoadNode may already exist. This can happen when there is another
// load from the same location and producing the same type of value
// but it has different alignment or volatileness.
bool isNewLoad = true;
SUnit *LoadSU;
if (LoadNode->getNodeId() != -1) {
LoadSU = &SUnits[LoadNode->getNodeId()];
isNewLoad = false;
} else {
LoadSU = NewSUnit(LoadNode);
LoadNode->setNodeId(LoadSU->NodeNum);
}
SDep ChainPred;
SmallVector<SDep, 4> ChainSuccs;
SmallVector<SDep, 4> LoadPreds;
SmallVector<SDep, 4> NodePreds;
SmallVector<SDep, 4> NodeSuccs;
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl())
ChainPred = *I;
else if (I->getSUnit()->getNode() &&
I->getSUnit()->getNode()->isOperandOf(LoadNode))
LoadPreds.push_back(*I);
else
NodePreds.push_back(*I);
}
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isCtrl())
ChainSuccs.push_back(*I);
else
NodeSuccs.push_back(*I);
}
if (ChainPred.getSUnit()) {
RemovePred(SU, ChainPred);
if (isNewLoad)
AddPred(LoadSU, ChainPred);
}
for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
const SDep &Pred = LoadPreds[i];
RemovePred(SU, Pred);
if (isNewLoad) {
AddPred(LoadSU, Pred);
}
}
for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
const SDep &Pred = NodePreds[i];
RemovePred(SU, Pred);
AddPred(NewSU, Pred);
}
for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
SDep D = NodeSuccs[i];
SUnit *SuccDep = D.getSUnit();
D.setSUnit(SU);
RemovePred(SuccDep, D);
D.setSUnit(NewSU);
AddPred(SuccDep, D);
}
for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
SDep D = ChainSuccs[i];
SUnit *SuccDep = D.getSUnit();
D.setSUnit(SU);
RemovePred(SuccDep, D);
if (isNewLoad) {
D.setSUnit(LoadSU);
AddPred(SuccDep, D);
}
}
if (isNewLoad) {
AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
}
++NumUnfolds;
if (NewSU->NumSuccsLeft == 0) {
NewSU->isAvailable = true;
return NewSU;
}
SU = NewSU;
}
DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
NewSU = Clone(SU);
// New SUnit has the exact same predecessors.
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I)
if (!I->isArtificial())
AddPred(NewSU, *I);
// Only copy scheduled successors. Cut them from old node's successor
// list and move them over.
SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isArtificial())
continue;
SUnit *SuccSU = I->getSUnit();
if (SuccSU->isScheduled) {
SDep D = *I;
D.setSUnit(NewSU);
AddPred(SuccSU, D);
D.setSUnit(SU);
DelDeps.push_back(std::make_pair(SuccSU, D));
}
}
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
RemovePred(DelDeps[i].first, DelDeps[i].second);
++NumDups;
return NewSU;
}
/// InsertCopiesAndMoveSuccs - Insert register copies and move all
/// scheduled successors of the given SUnit to the last copy.
void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
const TargetRegisterClass *DestRC,
const TargetRegisterClass *SrcRC,
SmallVector<SUnit*, 2> &Copies) {
SUnit *CopyFromSU = NewSUnit(static_cast<SDNode *>(NULL));
CopyFromSU->CopySrcRC = SrcRC;
CopyFromSU->CopyDstRC = DestRC;
SUnit *CopyToSU = NewSUnit(static_cast<SDNode *>(NULL));
CopyToSU->CopySrcRC = DestRC;
CopyToSU->CopyDstRC = SrcRC;
// Only copy scheduled successors. Cut them from old node's successor
// list and move them over.
SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isArtificial())
continue;
SUnit *SuccSU = I->getSUnit();
if (SuccSU->isScheduled) {
SDep D = *I;
D.setSUnit(CopyToSU);
AddPred(SuccSU, D);
DelDeps.push_back(std::make_pair(SuccSU, *I));
}
}
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
RemovePred(DelDeps[i].first, DelDeps[i].second);
}
AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
Copies.push_back(CopyFromSU);
Copies.push_back(CopyToSU);
++NumPRCopies;
}
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
const TargetInstrInfo *TII) {
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
unsigned NumRes = TID.getNumDefs();
for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
if (Reg == *ImpDef)
break;
++NumRes;
}
return N->getValueType(NumRes);
}
/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
/// scheduling of the given node to satisfy live physical register dependencies.
/// If the specific node is the last one that's available to schedule, do
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
SmallVector<unsigned, 4> &LRegs){
if (NumLiveRegs == 0)
return false;
SmallSet<unsigned, 4> RegAdded;
// If this node would clobber any "live" register, then it's not ready.
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isAssignedRegDep()) {
unsigned Reg = I->getReg();
if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->getSUnit()) {
if (RegAdded.insert(Reg))
LRegs.push_back(Reg);
}
for (const unsigned *Alias = TRI->getAliasSet(Reg);
*Alias; ++Alias)
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->getSUnit()) {
if (RegAdded.insert(*Alias))
LRegs.push_back(*Alias);
}
}
}
for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
if (!Node->isMachineOpcode())
continue;
const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
if (!TID.ImplicitDefs)
continue;
for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
if (LiveRegDefs[*Reg] && LiveRegDefs[*Reg] != SU) {
if (RegAdded.insert(*Reg))
LRegs.push_back(*Reg);
}
for (const unsigned *Alias = TRI->getAliasSet(*Reg);
*Alias; ++Alias)
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
if (RegAdded.insert(*Alias))
LRegs.push_back(*Alias);
}
}
}
return !LRegs.empty();
}
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
/// schedulers.
void ScheduleDAGFast::ListScheduleBottomUp() {
unsigned CurCycle = 0;
// Release any predecessors of the special Exit node.
ReleasePredecessors(&ExitSU, CurCycle);
// Add root to Available queue.
if (!SUnits.empty()) {
SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
RootSU->isAvailable = true;
AvailableQueue.push(RootSU);
}
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
SmallVector<SUnit*, 4> NotReady;
DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
Sequence.reserve(SUnits.size());
while (!AvailableQueue.empty()) {
bool Delayed = false;
LRegsMap.clear();
SUnit *CurSU = AvailableQueue.pop();
while (CurSU) {
SmallVector<unsigned, 4> LRegs;
if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
break;
Delayed = true;
LRegsMap.insert(std::make_pair(CurSU, LRegs));
CurSU->isPending = true; // This SU is not in AvailableQueue right now.
NotReady.push_back(CurSU);
CurSU = AvailableQueue.pop();
}
// All candidates are delayed due to live physical reg dependencies.
// Try code duplication or inserting cross class copies
// to resolve it.
if (Delayed && !CurSU) {
if (!CurSU) {
// Try duplicating the nodes that produces these
// "expensive to copy" values to break the dependency. In case even
// that doesn't work, insert cross class copies.
SUnit *TrySU = NotReady[0];
SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
assert(LRegs.size() == 1 && "Can't handle this yet!");
unsigned Reg = LRegs[0];
SUnit *LRDef = LiveRegDefs[Reg];
MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
const TargetRegisterClass *RC =
TRI->getPhysicalRegisterRegClass(Reg, VT);
const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
// If cross copy register class is null, then it must be possible copy
// the value directly. Do not try duplicate the def.
SUnit *NewDef = 0;
if (DestRC)
NewDef = CopyAndMoveSuccessors(LRDef);
else
DestRC = RC;
if (!NewDef) {
// Issue copies, these can be expensive cross register class copies.
SmallVector<SUnit*, 2> Copies;
InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
DOUT << "Adding an edge from SU # " << TrySU->NodeNum
<< " to SU #" << Copies.front()->NodeNum << "\n";
AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false, /*isArtificial=*/true));
NewDef = Copies.back();
}
DOUT << "Adding an edge from SU # " << NewDef->NodeNum
<< " to SU #" << TrySU->NodeNum << "\n";
LiveRegDefs[Reg] = NewDef;
AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false, /*isArtificial=*/true));
TrySU->isAvailable = false;
CurSU = NewDef;
}
if (!CurSU) {
assert(false && "Unable to resolve live physical register dependencies!");
abort();
}
}
// Add the nodes that aren't ready back onto the available list.
for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
NotReady[i]->isPending = false;
// May no longer be available due to backtracking.
if (NotReady[i]->isAvailable)
AvailableQueue.push(NotReady[i]);
}
NotReady.clear();
if (CurSU)
ScheduleNodeBottomUp(CurSU, CurCycle);
++CurCycle;
}
// Reverse the order if it is bottom up.
std::reverse(Sequence.begin(), Sequence.end());
#ifndef NDEBUG
// Verify that all SUnits were scheduled.
bool AnyNotSched = false;
unsigned DeadNodes = 0;
unsigned Noops = 0;
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
if (!SUnits[i].isScheduled) {
if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
++DeadNodes;
continue;
}
if (!AnyNotSched)
cerr << "*** List scheduling failed! ***\n";
SUnits[i].dump(this);
cerr << "has not been scheduled!\n";
AnyNotSched = true;
}
if (SUnits[i].NumSuccsLeft != 0) {
if (!AnyNotSched)
cerr << "*** List scheduling failed! ***\n";
SUnits[i].dump(this);
cerr << "has successors left!\n";
AnyNotSched = true;
}
}
for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
if (!Sequence[i])
++Noops;
assert(!AnyNotSched);
assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
"The number of nodes scheduled doesn't match the expected number!");
#endif
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
llvm::ScheduleDAGSDNodes *
llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
return new ScheduleDAGFast(*IS->MF);
}