llvm-6502/lib/Bitcode/Reader/BitcodeReader.h
Ahmed Charles f4ccd11075 Replace OwningPtr<T> with std::unique_ptr<T>.
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203083 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-06 05:51:42 +00:00

376 lines
13 KiB
C++

//===- BitcodeReader.h - Internal BitcodeReader impl ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header defines the BitcodeReader class.
//
//===----------------------------------------------------------------------===//
#ifndef BITCODE_READER_H
#define BITCODE_READER_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/Bitcode/BitstreamReader.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/system_error.h"
#include <vector>
namespace llvm {
class MemoryBuffer;
class LLVMContext;
//===----------------------------------------------------------------------===//
// BitcodeReaderValueList Class
//===----------------------------------------------------------------------===//
class BitcodeReaderValueList {
std::vector<WeakVH> ValuePtrs;
/// ResolveConstants - As we resolve forward-referenced constants, we add
/// information about them to this vector. This allows us to resolve them in
/// bulk instead of resolving each reference at a time. See the code in
/// ResolveConstantForwardRefs for more information about this.
///
/// The key of this vector is the placeholder constant, the value is the slot
/// number that holds the resolved value.
typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
ResolveConstantsTy ResolveConstants;
LLVMContext &Context;
public:
BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
~BitcodeReaderValueList() {
assert(ResolveConstants.empty() && "Constants not resolved?");
}
// vector compatibility methods
unsigned size() const { return ValuePtrs.size(); }
void resize(unsigned N) { ValuePtrs.resize(N); }
void push_back(Value *V) {
ValuePtrs.push_back(V);
}
void clear() {
assert(ResolveConstants.empty() && "Constants not resolved?");
ValuePtrs.clear();
}
Value *operator[](unsigned i) const {
assert(i < ValuePtrs.size());
return ValuePtrs[i];
}
Value *back() const { return ValuePtrs.back(); }
void pop_back() { ValuePtrs.pop_back(); }
bool empty() const { return ValuePtrs.empty(); }
void shrinkTo(unsigned N) {
assert(N <= size() && "Invalid shrinkTo request!");
ValuePtrs.resize(N);
}
Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
Value *getValueFwdRef(unsigned Idx, Type *Ty);
void AssignValue(Value *V, unsigned Idx);
/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
/// resolves any forward references.
void ResolveConstantForwardRefs();
};
//===----------------------------------------------------------------------===//
// BitcodeReaderMDValueList Class
//===----------------------------------------------------------------------===//
class BitcodeReaderMDValueList {
std::vector<WeakVH> MDValuePtrs;
LLVMContext &Context;
public:
BitcodeReaderMDValueList(LLVMContext& C) : Context(C) {}
// vector compatibility methods
unsigned size() const { return MDValuePtrs.size(); }
void resize(unsigned N) { MDValuePtrs.resize(N); }
void push_back(Value *V) { MDValuePtrs.push_back(V); }
void clear() { MDValuePtrs.clear(); }
Value *back() const { return MDValuePtrs.back(); }
void pop_back() { MDValuePtrs.pop_back(); }
bool empty() const { return MDValuePtrs.empty(); }
Value *operator[](unsigned i) const {
assert(i < MDValuePtrs.size());
return MDValuePtrs[i];
}
void shrinkTo(unsigned N) {
assert(N <= size() && "Invalid shrinkTo request!");
MDValuePtrs.resize(N);
}
Value *getValueFwdRef(unsigned Idx);
void AssignValue(Value *V, unsigned Idx);
};
class BitcodeReader : public GVMaterializer {
LLVMContext &Context;
Module *TheModule;
MemoryBuffer *Buffer;
bool BufferOwned;
std::unique_ptr<BitstreamReader> StreamFile;
BitstreamCursor Stream;
DataStreamer *LazyStreamer;
uint64_t NextUnreadBit;
bool SeenValueSymbolTable;
std::vector<Type*> TypeList;
BitcodeReaderValueList ValueList;
BitcodeReaderMDValueList MDValueList;
SmallVector<Instruction *, 64> InstructionList;
SmallVector<SmallVector<uint64_t, 64>, 64> UseListRecords;
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
SmallVector<Instruction*, 64> InstsWithTBAATag;
/// MAttributes - The set of attributes by index. Index zero in the
/// file is for null, and is thus not represented here. As such all indices
/// are off by one.
std::vector<AttributeSet> MAttributes;
/// \brief The set of attribute groups.
std::map<unsigned, AttributeSet> MAttributeGroups;
/// FunctionBBs - While parsing a function body, this is a list of the basic
/// blocks for the function.
std::vector<BasicBlock*> FunctionBBs;
// When reading the module header, this list is populated with functions that
// have bodies later in the file.
std::vector<Function*> FunctionsWithBodies;
// When intrinsic functions are encountered which require upgrading they are
// stored here with their replacement function.
typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap;
UpgradedIntrinsicMap UpgradedIntrinsics;
// Map the bitcode's custom MDKind ID to the Module's MDKind ID.
DenseMap<unsigned, unsigned> MDKindMap;
// Several operations happen after the module header has been read, but
// before function bodies are processed. This keeps track of whether
// we've done this yet.
bool SeenFirstFunctionBody;
/// DeferredFunctionInfo - When function bodies are initially scanned, this
/// map contains info about where to find deferred function body in the
/// stream.
DenseMap<Function*, uint64_t> DeferredFunctionInfo;
/// BlockAddrFwdRefs - These are blockaddr references to basic blocks. These
/// are resolved lazily when functions are loaded.
typedef std::pair<unsigned, GlobalVariable*> BlockAddrRefTy;
DenseMap<Function*, std::vector<BlockAddrRefTy> > BlockAddrFwdRefs;
/// UseRelativeIDs - Indicates that we are using a new encoding for
/// instruction operands where most operands in the current
/// FUNCTION_BLOCK are encoded relative to the instruction number,
/// for a more compact encoding. Some instruction operands are not
/// relative to the instruction ID: basic block numbers, and types.
/// Once the old style function blocks have been phased out, we would
/// not need this flag.
bool UseRelativeIDs;
static const error_category &BitcodeErrorCategory();
public:
enum ErrorType {
BitcodeStreamInvalidSize,
ConflictingMETADATA_KINDRecords,
CouldNotFindFunctionInStream,
ExpectedConstant,
InsufficientFunctionProtos,
InvalidBitcodeSignature,
InvalidBitcodeWrapperHeader,
InvalidConstantReference,
InvalidID, // A read identifier is not found in the table it should be in.
InvalidInstructionWithNoBB,
InvalidRecord, // A read record doesn't have the expected size or structure
InvalidTypeForValue, // Type read OK, but is invalid for its use
InvalidTYPETable,
InvalidType, // We were unable to read a type
MalformedBlock, // We are unable to advance in the stream.
MalformedGlobalInitializerSet,
InvalidMultipleBlocks, // We found multiple blocks of a kind that should
// have only one
NeverResolvedValueFoundInFunction,
InvalidValue // Invalid version, inst number, attr number, etc
};
error_code Error(ErrorType E) {
return error_code(E, BitcodeErrorCategory());
}
explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C)
: Context(C), TheModule(0), Buffer(buffer), BufferOwned(false),
LazyStreamer(0), NextUnreadBit(0), SeenValueSymbolTable(false),
ValueList(C), MDValueList(C),
SeenFirstFunctionBody(false), UseRelativeIDs(false) {
}
explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C)
: Context(C), TheModule(0), Buffer(0), BufferOwned(false),
LazyStreamer(streamer), NextUnreadBit(0), SeenValueSymbolTable(false),
ValueList(C), MDValueList(C),
SeenFirstFunctionBody(false), UseRelativeIDs(false) {
}
~BitcodeReader() {
FreeState();
}
void materializeForwardReferencedFunctions();
void FreeState();
/// setBufferOwned - If this is true, the reader will destroy the MemoryBuffer
/// when the reader is destroyed.
void setBufferOwned(bool Owned) { BufferOwned = Owned; }
bool isMaterializable(const GlobalValue *GV) const override;
bool isDematerializable(const GlobalValue *GV) const override;
error_code Materialize(GlobalValue *GV) override;
error_code MaterializeModule(Module *M) override;
void Dematerialize(GlobalValue *GV) override;
/// @brief Main interface to parsing a bitcode buffer.
/// @returns true if an error occurred.
error_code ParseBitcodeInto(Module *M);
/// @brief Cheap mechanism to just extract module triple
/// @returns true if an error occurred.
error_code ParseTriple(std::string &Triple);
static uint64_t decodeSignRotatedValue(uint64_t V);
private:
Type *getTypeByID(unsigned ID);
Value *getFnValueByID(unsigned ID, Type *Ty) {
if (Ty && Ty->isMetadataTy())
return MDValueList.getValueFwdRef(ID);
return ValueList.getValueFwdRef(ID, Ty);
}
BasicBlock *getBasicBlock(unsigned ID) const {
if (ID >= FunctionBBs.size()) return 0; // Invalid ID
return FunctionBBs[ID];
}
AttributeSet getAttributes(unsigned i) const {
if (i-1 < MAttributes.size())
return MAttributes[i-1];
return AttributeSet();
}
/// getValueTypePair - Read a value/type pair out of the specified record from
/// slot 'Slot'. Increment Slot past the number of slots used in the record.
/// Return true on failure.
bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
unsigned InstNum, Value *&ResVal) {
if (Slot == Record.size()) return true;
unsigned ValNo = (unsigned)Record[Slot++];
// Adjust the ValNo, if it was encoded relative to the InstNum.
if (UseRelativeIDs)
ValNo = InstNum - ValNo;
if (ValNo < InstNum) {
// If this is not a forward reference, just return the value we already
// have.
ResVal = getFnValueByID(ValNo, 0);
return ResVal == 0;
} else if (Slot == Record.size()) {
return true;
}
unsigned TypeNo = (unsigned)Record[Slot++];
ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
return ResVal == 0;
}
/// popValue - Read a value out of the specified record from slot 'Slot'.
/// Increment Slot past the number of slots used by the value in the record.
/// Return true if there is an error.
bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
unsigned InstNum, Type *Ty, Value *&ResVal) {
if (getValue(Record, Slot, InstNum, Ty, ResVal))
return true;
// All values currently take a single record slot.
++Slot;
return false;
}
/// getValue -- Like popValue, but does not increment the Slot number.
bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
unsigned InstNum, Type *Ty, Value *&ResVal) {
ResVal = getValue(Record, Slot, InstNum, Ty);
return ResVal == 0;
}
/// getValue -- Version of getValue that returns ResVal directly,
/// or 0 if there is an error.
Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
unsigned InstNum, Type *Ty) {
if (Slot == Record.size()) return 0;
unsigned ValNo = (unsigned)Record[Slot];
// Adjust the ValNo, if it was encoded relative to the InstNum.
if (UseRelativeIDs)
ValNo = InstNum - ValNo;
return getFnValueByID(ValNo, Ty);
}
/// getValueSigned -- Like getValue, but decodes signed VBRs.
Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
unsigned InstNum, Type *Ty) {
if (Slot == Record.size()) return 0;
unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
// Adjust the ValNo, if it was encoded relative to the InstNum.
if (UseRelativeIDs)
ValNo = InstNum - ValNo;
return getFnValueByID(ValNo, Ty);
}
error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
error_code ParseModule(bool Resume);
error_code ParseAttributeBlock();
error_code ParseAttributeGroupBlock();
error_code ParseTypeTable();
error_code ParseTypeTableBody();
error_code ParseValueSymbolTable();
error_code ParseConstants();
error_code RememberAndSkipFunctionBody();
error_code ParseFunctionBody(Function *F);
error_code GlobalCleanup();
error_code ResolveGlobalAndAliasInits();
error_code ParseMetadata();
error_code ParseMetadataAttachment();
error_code ParseModuleTriple(std::string &Triple);
error_code ParseUseLists();
error_code InitStream();
error_code InitStreamFromBuffer();
error_code InitLazyStream();
error_code FindFunctionInStream(Function *F,
DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator);
};
} // End llvm namespace
#endif