llvm-6502/lib/IR/Attributes.cpp
Reid Kleckner 4b70bfc905 Begin adding docs and IR-level support for the inalloca attribute
The inalloca attribute is designed to support passing C++ objects by
value in the Microsoft C++ ABI.  It behaves the same as byval, except
that it always implies that the argument is in memory and that the bytes
are never copied.  This attribute allows the caller to take the address
of an outgoing argument's memory and execute arbitrary code to store
into it.

This patch adds basic IR support, docs, and verification.  It does not
attempt to implement any lowering or fix any possibly broken transforms.

When this patch lands, a complete description of this feature should
appear at http://llvm.org/docs/InAlloca.html .

Differential Revision: http://llvm-reviews.chandlerc.com/D2173

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197645 91177308-0d34-0410-b5e6-96231b3b80d8
2013-12-19 02:14:12 +00:00

1185 lines
38 KiB
C++

//===-- Attributes.cpp - Implement AttributesList -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// \file
// \brief This file implements the Attribute, AttributeImpl, AttrBuilder,
// AttributeSetImpl, and AttributeSet classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Attributes.h"
#include "AttributeImpl.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Atomic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Attribute Construction Methods
//===----------------------------------------------------------------------===//
Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind,
uint64_t Val) {
LLVMContextImpl *pImpl = Context.pImpl;
FoldingSetNodeID ID;
ID.AddInteger(Kind);
if (Val) ID.AddInteger(Val);
void *InsertPoint;
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
if (!PA) {
// If we didn't find any existing attributes of the same shape then create a
// new one and insert it.
if (!Val)
PA = new EnumAttributeImpl(Kind);
else
PA = new AlignAttributeImpl(Kind, Val);
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
}
// Return the Attribute that we found or created.
return Attribute(PA);
}
Attribute Attribute::get(LLVMContext &Context, StringRef Kind, StringRef Val) {
LLVMContextImpl *pImpl = Context.pImpl;
FoldingSetNodeID ID;
ID.AddString(Kind);
if (!Val.empty()) ID.AddString(Val);
void *InsertPoint;
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
if (!PA) {
// If we didn't find any existing attributes of the same shape then create a
// new one and insert it.
PA = new StringAttributeImpl(Kind, Val);
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
}
// Return the Attribute that we found or created.
return Attribute(PA);
}
Attribute Attribute::getWithAlignment(LLVMContext &Context, uint64_t Align) {
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x40000000 && "Alignment too large.");
return get(Context, Alignment, Align);
}
Attribute Attribute::getWithStackAlignment(LLVMContext &Context,
uint64_t Align) {
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x100 && "Alignment too large.");
return get(Context, StackAlignment, Align);
}
//===----------------------------------------------------------------------===//
// Attribute Accessor Methods
//===----------------------------------------------------------------------===//
bool Attribute::isEnumAttribute() const {
return pImpl && pImpl->isEnumAttribute();
}
bool Attribute::isAlignAttribute() const {
return pImpl && pImpl->isAlignAttribute();
}
bool Attribute::isStringAttribute() const {
return pImpl && pImpl->isStringAttribute();
}
Attribute::AttrKind Attribute::getKindAsEnum() const {
if (!pImpl) return None;
assert((isEnumAttribute() || isAlignAttribute()) &&
"Invalid attribute type to get the kind as an enum!");
return pImpl ? pImpl->getKindAsEnum() : None;
}
uint64_t Attribute::getValueAsInt() const {
if (!pImpl) return 0;
assert(isAlignAttribute() &&
"Expected the attribute to be an alignment attribute!");
return pImpl ? pImpl->getValueAsInt() : 0;
}
StringRef Attribute::getKindAsString() const {
if (!pImpl) return StringRef();
assert(isStringAttribute() &&
"Invalid attribute type to get the kind as a string!");
return pImpl ? pImpl->getKindAsString() : StringRef();
}
StringRef Attribute::getValueAsString() const {
if (!pImpl) return StringRef();
assert(isStringAttribute() &&
"Invalid attribute type to get the value as a string!");
return pImpl ? pImpl->getValueAsString() : StringRef();
}
bool Attribute::hasAttribute(AttrKind Kind) const {
return (pImpl && pImpl->hasAttribute(Kind)) || (!pImpl && Kind == None);
}
bool Attribute::hasAttribute(StringRef Kind) const {
if (!isStringAttribute()) return false;
return pImpl && pImpl->hasAttribute(Kind);
}
/// This returns the alignment field of an attribute as a byte alignment value.
unsigned Attribute::getAlignment() const {
assert(hasAttribute(Attribute::Alignment) &&
"Trying to get alignment from non-alignment attribute!");
return pImpl->getValueAsInt();
}
/// This returns the stack alignment field of an attribute as a byte alignment
/// value.
unsigned Attribute::getStackAlignment() const {
assert(hasAttribute(Attribute::StackAlignment) &&
"Trying to get alignment from non-alignment attribute!");
return pImpl->getValueAsInt();
}
std::string Attribute::getAsString(bool InAttrGrp) const {
if (!pImpl) return "";
if (hasAttribute(Attribute::SanitizeAddress))
return "sanitize_address";
if (hasAttribute(Attribute::AlwaysInline))
return "alwaysinline";
if (hasAttribute(Attribute::Builtin))
return "builtin";
if (hasAttribute(Attribute::ByVal))
return "byval";
if (hasAttribute(Attribute::InAlloca))
return "inalloca";
if (hasAttribute(Attribute::InlineHint))
return "inlinehint";
if (hasAttribute(Attribute::InReg))
return "inreg";
if (hasAttribute(Attribute::MinSize))
return "minsize";
if (hasAttribute(Attribute::Naked))
return "naked";
if (hasAttribute(Attribute::Nest))
return "nest";
if (hasAttribute(Attribute::NoAlias))
return "noalias";
if (hasAttribute(Attribute::NoBuiltin))
return "nobuiltin";
if (hasAttribute(Attribute::NoCapture))
return "nocapture";
if (hasAttribute(Attribute::NoDuplicate))
return "noduplicate";
if (hasAttribute(Attribute::NoImplicitFloat))
return "noimplicitfloat";
if (hasAttribute(Attribute::NoInline))
return "noinline";
if (hasAttribute(Attribute::NonLazyBind))
return "nonlazybind";
if (hasAttribute(Attribute::NoRedZone))
return "noredzone";
if (hasAttribute(Attribute::NoReturn))
return "noreturn";
if (hasAttribute(Attribute::NoUnwind))
return "nounwind";
if (hasAttribute(Attribute::OptimizeNone))
return "optnone";
if (hasAttribute(Attribute::OptimizeForSize))
return "optsize";
if (hasAttribute(Attribute::ReadNone))
return "readnone";
if (hasAttribute(Attribute::ReadOnly))
return "readonly";
if (hasAttribute(Attribute::Returned))
return "returned";
if (hasAttribute(Attribute::ReturnsTwice))
return "returns_twice";
if (hasAttribute(Attribute::SExt))
return "signext";
if (hasAttribute(Attribute::StackProtect))
return "ssp";
if (hasAttribute(Attribute::StackProtectReq))
return "sspreq";
if (hasAttribute(Attribute::StackProtectStrong))
return "sspstrong";
if (hasAttribute(Attribute::StructRet))
return "sret";
if (hasAttribute(Attribute::SanitizeThread))
return "sanitize_thread";
if (hasAttribute(Attribute::SanitizeMemory))
return "sanitize_memory";
if (hasAttribute(Attribute::UWTable))
return "uwtable";
if (hasAttribute(Attribute::ZExt))
return "zeroext";
if (hasAttribute(Attribute::Cold))
return "cold";
// FIXME: These should be output like this:
//
// align=4
// alignstack=8
//
if (hasAttribute(Attribute::Alignment)) {
std::string Result;
Result += "align";
Result += (InAttrGrp) ? "=" : " ";
Result += utostr(getValueAsInt());
return Result;
}
if (hasAttribute(Attribute::StackAlignment)) {
std::string Result;
Result += "alignstack";
if (InAttrGrp) {
Result += "=";
Result += utostr(getValueAsInt());
} else {
Result += "(";
Result += utostr(getValueAsInt());
Result += ")";
}
return Result;
}
// Convert target-dependent attributes to strings of the form:
//
// "kind"
// "kind" = "value"
//
if (isStringAttribute()) {
std::string Result;
Result += '\"' + getKindAsString().str() + '"';
StringRef Val = pImpl->getValueAsString();
if (Val.empty()) return Result;
Result += "=\"" + Val.str() + '"';
return Result;
}
llvm_unreachable("Unknown attribute");
}
bool Attribute::operator<(Attribute A) const {
if (!pImpl && !A.pImpl) return false;
if (!pImpl) return true;
if (!A.pImpl) return false;
return *pImpl < *A.pImpl;
}
//===----------------------------------------------------------------------===//
// AttributeImpl Definition
//===----------------------------------------------------------------------===//
// Pin the vtabels to this file.
AttributeImpl::~AttributeImpl() {}
void EnumAttributeImpl::anchor() {}
void AlignAttributeImpl::anchor() {}
void StringAttributeImpl::anchor() {}
bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const {
if (isStringAttribute()) return false;
return getKindAsEnum() == A;
}
bool AttributeImpl::hasAttribute(StringRef Kind) const {
if (!isStringAttribute()) return false;
return getKindAsString() == Kind;
}
Attribute::AttrKind AttributeImpl::getKindAsEnum() const {
assert(isEnumAttribute() || isAlignAttribute());
return static_cast<const EnumAttributeImpl *>(this)->getEnumKind();
}
uint64_t AttributeImpl::getValueAsInt() const {
assert(isAlignAttribute());
return static_cast<const AlignAttributeImpl *>(this)->getAlignment();
}
StringRef AttributeImpl::getKindAsString() const {
assert(isStringAttribute());
return static_cast<const StringAttributeImpl *>(this)->getStringKind();
}
StringRef AttributeImpl::getValueAsString() const {
assert(isStringAttribute());
return static_cast<const StringAttributeImpl *>(this)->getStringValue();
}
bool AttributeImpl::operator<(const AttributeImpl &AI) const {
// This sorts the attributes with Attribute::AttrKinds coming first (sorted
// relative to their enum value) and then strings.
if (isEnumAttribute()) {
if (AI.isEnumAttribute()) return getKindAsEnum() < AI.getKindAsEnum();
if (AI.isAlignAttribute()) return true;
if (AI.isStringAttribute()) return true;
}
if (isAlignAttribute()) {
if (AI.isEnumAttribute()) return false;
if (AI.isAlignAttribute()) return getValueAsInt() < AI.getValueAsInt();
if (AI.isStringAttribute()) return true;
}
if (AI.isEnumAttribute()) return false;
if (AI.isAlignAttribute()) return false;
if (getKindAsString() == AI.getKindAsString())
return getValueAsString() < AI.getValueAsString();
return getKindAsString() < AI.getKindAsString();
}
uint64_t AttributeImpl::getAttrMask(Attribute::AttrKind Val) {
// FIXME: Remove this.
switch (Val) {
case Attribute::EndAttrKinds:
llvm_unreachable("Synthetic enumerators which should never get here");
case Attribute::None: return 0;
case Attribute::ZExt: return 1 << 0;
case Attribute::SExt: return 1 << 1;
case Attribute::NoReturn: return 1 << 2;
case Attribute::InReg: return 1 << 3;
case Attribute::StructRet: return 1 << 4;
case Attribute::NoUnwind: return 1 << 5;
case Attribute::NoAlias: return 1 << 6;
case Attribute::ByVal: return 1 << 7;
case Attribute::Nest: return 1 << 8;
case Attribute::ReadNone: return 1 << 9;
case Attribute::ReadOnly: return 1 << 10;
case Attribute::NoInline: return 1 << 11;
case Attribute::AlwaysInline: return 1 << 12;
case Attribute::OptimizeForSize: return 1 << 13;
case Attribute::StackProtect: return 1 << 14;
case Attribute::StackProtectReq: return 1 << 15;
case Attribute::Alignment: return 31 << 16;
case Attribute::NoCapture: return 1 << 21;
case Attribute::NoRedZone: return 1 << 22;
case Attribute::NoImplicitFloat: return 1 << 23;
case Attribute::Naked: return 1 << 24;
case Attribute::InlineHint: return 1 << 25;
case Attribute::StackAlignment: return 7 << 26;
case Attribute::ReturnsTwice: return 1 << 29;
case Attribute::UWTable: return 1 << 30;
case Attribute::NonLazyBind: return 1U << 31;
case Attribute::SanitizeAddress: return 1ULL << 32;
case Attribute::MinSize: return 1ULL << 33;
case Attribute::NoDuplicate: return 1ULL << 34;
case Attribute::StackProtectStrong: return 1ULL << 35;
case Attribute::SanitizeThread: return 1ULL << 36;
case Attribute::SanitizeMemory: return 1ULL << 37;
case Attribute::NoBuiltin: return 1ULL << 38;
case Attribute::Returned: return 1ULL << 39;
case Attribute::Cold: return 1ULL << 40;
case Attribute::Builtin: return 1ULL << 41;
case Attribute::OptimizeNone: return 1ULL << 42;
case Attribute::InAlloca: return 1ULL << 43;
}
llvm_unreachable("Unsupported attribute type");
}
//===----------------------------------------------------------------------===//
// AttributeSetNode Definition
//===----------------------------------------------------------------------===//
AttributeSetNode *AttributeSetNode::get(LLVMContext &C,
ArrayRef<Attribute> Attrs) {
if (Attrs.empty())
return 0;
// Otherwise, build a key to look up the existing attributes.
LLVMContextImpl *pImpl = C.pImpl;
FoldingSetNodeID ID;
SmallVector<Attribute, 8> SortedAttrs(Attrs.begin(), Attrs.end());
array_pod_sort(SortedAttrs.begin(), SortedAttrs.end());
for (SmallVectorImpl<Attribute>::iterator I = SortedAttrs.begin(),
E = SortedAttrs.end(); I != E; ++I)
I->Profile(ID);
void *InsertPoint;
AttributeSetNode *PA =
pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint);
// If we didn't find any existing attributes of the same shape then create a
// new one and insert it.
if (!PA) {
// Coallocate entries after the AttributeSetNode itself.
void *Mem = ::operator new(sizeof(AttributeSetNode) +
sizeof(Attribute) * SortedAttrs.size());
PA = new (Mem) AttributeSetNode(SortedAttrs);
pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint);
}
// Return the AttributesListNode that we found or created.
return PA;
}
bool AttributeSetNode::hasAttribute(Attribute::AttrKind Kind) const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->hasAttribute(Kind))
return true;
return false;
}
bool AttributeSetNode::hasAttribute(StringRef Kind) const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->hasAttribute(Kind))
return true;
return false;
}
Attribute AttributeSetNode::getAttribute(Attribute::AttrKind Kind) const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->hasAttribute(Kind))
return *I;
return Attribute();
}
Attribute AttributeSetNode::getAttribute(StringRef Kind) const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->hasAttribute(Kind))
return *I;
return Attribute();
}
unsigned AttributeSetNode::getAlignment() const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->hasAttribute(Attribute::Alignment))
return I->getAlignment();
return 0;
}
unsigned AttributeSetNode::getStackAlignment() const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (I->hasAttribute(Attribute::StackAlignment))
return I->getStackAlignment();
return 0;
}
std::string AttributeSetNode::getAsString(bool InAttrGrp) const {
std::string Str;
for (iterator I = begin(), E = end(); I != E; ++I) {
if (I != begin())
Str += ' ';
Str += I->getAsString(InAttrGrp);
}
return Str;
}
//===----------------------------------------------------------------------===//
// AttributeSetImpl Definition
//===----------------------------------------------------------------------===//
uint64_t AttributeSetImpl::Raw(unsigned Index) const {
for (unsigned I = 0, E = getNumAttributes(); I != E; ++I) {
if (getSlotIndex(I) != Index) continue;
const AttributeSetNode *ASN = getSlotNode(I);
uint64_t Mask = 0;
for (AttributeSetNode::iterator II = ASN->begin(),
IE = ASN->end(); II != IE; ++II) {
Attribute Attr = *II;
// This cannot handle string attributes.
if (Attr.isStringAttribute()) continue;
Attribute::AttrKind Kind = Attr.getKindAsEnum();
if (Kind == Attribute::Alignment)
Mask |= (Log2_32(ASN->getAlignment()) + 1) << 16;
else if (Kind == Attribute::StackAlignment)
Mask |= (Log2_32(ASN->getStackAlignment()) + 1) << 26;
else
Mask |= AttributeImpl::getAttrMask(Kind);
}
return Mask;
}
return 0;
}
void AttributeSetImpl::dump() const {
AttributeSet(const_cast<AttributeSetImpl *>(this)).dump();
}
//===----------------------------------------------------------------------===//
// AttributeSet Construction and Mutation Methods
//===----------------------------------------------------------------------===//
AttributeSet
AttributeSet::getImpl(LLVMContext &C,
ArrayRef<std::pair<unsigned, AttributeSetNode*> > Attrs) {
LLVMContextImpl *pImpl = C.pImpl;
FoldingSetNodeID ID;
AttributeSetImpl::Profile(ID, Attrs);
void *InsertPoint;
AttributeSetImpl *PA = pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint);
// If we didn't find any existing attributes of the same shape then
// create a new one and insert it.
if (!PA) {
// Coallocate entries after the AttributeSetImpl itself.
void *Mem = ::operator new(sizeof(AttributeSetImpl) +
sizeof(std::pair<unsigned, AttributeSetNode *>) *
Attrs.size());
PA = new (Mem) AttributeSetImpl(C, Attrs);
pImpl->AttrsLists.InsertNode(PA, InsertPoint);
}
// Return the AttributesList that we found or created.
return AttributeSet(PA);
}
AttributeSet AttributeSet::get(LLVMContext &C,
ArrayRef<std::pair<unsigned, Attribute> > Attrs){
// If there are no attributes then return a null AttributesList pointer.
if (Attrs.empty())
return AttributeSet();
#ifndef NDEBUG
for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
assert((!i || Attrs[i-1].first <= Attrs[i].first) &&
"Misordered Attributes list!");
assert(!Attrs[i].second.hasAttribute(Attribute::None) &&
"Pointless attribute!");
}
#endif
// Create a vector if (unsigned, AttributeSetNode*) pairs from the attributes
// list.
SmallVector<std::pair<unsigned, AttributeSetNode*>, 8> AttrPairVec;
for (ArrayRef<std::pair<unsigned, Attribute> >::iterator I = Attrs.begin(),
E = Attrs.end(); I != E; ) {
unsigned Index = I->first;
SmallVector<Attribute, 4> AttrVec;
while (I != E && I->first == Index) {
AttrVec.push_back(I->second);
++I;
}
AttrPairVec.push_back(std::make_pair(Index,
AttributeSetNode::get(C, AttrVec)));
}
return getImpl(C, AttrPairVec);
}
AttributeSet AttributeSet::get(LLVMContext &C,
ArrayRef<std::pair<unsigned,
AttributeSetNode*> > Attrs) {
// If there are no attributes then return a null AttributesList pointer.
if (Attrs.empty())
return AttributeSet();
return getImpl(C, Attrs);
}
AttributeSet AttributeSet::get(LLVMContext &C, unsigned Index, AttrBuilder &B) {
if (!B.hasAttributes())
return AttributeSet();
// Add target-independent attributes.
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
for (Attribute::AttrKind Kind = Attribute::None;
Kind != Attribute::EndAttrKinds; Kind = Attribute::AttrKind(Kind + 1)) {
if (!B.contains(Kind))
continue;
if (Kind == Attribute::Alignment)
Attrs.push_back(std::make_pair(Index, Attribute::
getWithAlignment(C, B.getAlignment())));
else if (Kind == Attribute::StackAlignment)
Attrs.push_back(std::make_pair(Index, Attribute::
getWithStackAlignment(C, B.getStackAlignment())));
else
Attrs.push_back(std::make_pair(Index, Attribute::get(C, Kind)));
}
// Add target-dependent (string) attributes.
for (AttrBuilder::td_iterator I = B.td_begin(), E = B.td_end();
I != E; ++I)
Attrs.push_back(std::make_pair(Index, Attribute::get(C, I->first,I->second)));
return get(C, Attrs);
}
AttributeSet AttributeSet::get(LLVMContext &C, unsigned Index,
ArrayRef<Attribute::AttrKind> Kind) {
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
for (ArrayRef<Attribute::AttrKind>::iterator I = Kind.begin(),
E = Kind.end(); I != E; ++I)
Attrs.push_back(std::make_pair(Index, Attribute::get(C, *I)));
return get(C, Attrs);
}
AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef<AttributeSet> Attrs) {
if (Attrs.empty()) return AttributeSet();
if (Attrs.size() == 1) return Attrs[0];
SmallVector<std::pair<unsigned, AttributeSetNode*>, 8> AttrNodeVec;
AttributeSetImpl *A0 = Attrs[0].pImpl;
if (A0)
AttrNodeVec.append(A0->getNode(0), A0->getNode(A0->getNumAttributes()));
// Copy all attributes from Attrs into AttrNodeVec while keeping AttrNodeVec
// ordered by index. Because we know that each list in Attrs is ordered by
// index we only need to merge each successive list in rather than doing a
// full sort.
for (unsigned I = 1, E = Attrs.size(); I != E; ++I) {
AttributeSetImpl *AS = Attrs[I].pImpl;
if (!AS) continue;
SmallVector<std::pair<unsigned, AttributeSetNode *>, 8>::iterator
ANVI = AttrNodeVec.begin(), ANVE;
for (const AttributeSetImpl::IndexAttrPair
*AI = AS->getNode(0),
*AE = AS->getNode(AS->getNumAttributes());
AI != AE; ++AI) {
ANVE = AttrNodeVec.end();
while (ANVI != ANVE && ANVI->first <= AI->first)
++ANVI;
ANVI = AttrNodeVec.insert(ANVI, *AI) + 1;
}
}
return getImpl(C, AttrNodeVec);
}
AttributeSet AttributeSet::addAttribute(LLVMContext &C, unsigned Index,
Attribute::AttrKind Attr) const {
if (hasAttribute(Index, Attr)) return *this;
return addAttributes(C, Index, AttributeSet::get(C, Index, Attr));
}
AttributeSet AttributeSet::addAttribute(LLVMContext &C, unsigned Index,
StringRef Kind) const {
llvm::AttrBuilder B;
B.addAttribute(Kind);
return addAttributes(C, Index, AttributeSet::get(C, Index, B));
}
AttributeSet AttributeSet::addAttribute(LLVMContext &C, unsigned Index,
StringRef Kind, StringRef Value) const {
llvm::AttrBuilder B;
B.addAttribute(Kind, Value);
return addAttributes(C, Index, AttributeSet::get(C, Index, B));
}
AttributeSet AttributeSet::addAttributes(LLVMContext &C, unsigned Index,
AttributeSet Attrs) const {
if (!pImpl) return Attrs;
if (!Attrs.pImpl) return *this;
#ifndef NDEBUG
// FIXME it is not obvious how this should work for alignment. For now, say
// we can't change a known alignment.
unsigned OldAlign = getParamAlignment(Index);
unsigned NewAlign = Attrs.getParamAlignment(Index);
assert((!OldAlign || !NewAlign || OldAlign == NewAlign) &&
"Attempt to change alignment!");
#endif
// Add the attribute slots before the one we're trying to add.
SmallVector<AttributeSet, 4> AttrSet;
uint64_t NumAttrs = pImpl->getNumAttributes();
AttributeSet AS;
uint64_t LastIndex = 0;
for (unsigned I = 0, E = NumAttrs; I != E; ++I) {
if (getSlotIndex(I) >= Index) {
if (getSlotIndex(I) == Index) AS = getSlotAttributes(LastIndex++);
break;
}
LastIndex = I + 1;
AttrSet.push_back(getSlotAttributes(I));
}
// Now add the attribute into the correct slot. There may already be an
// AttributeSet there.
AttrBuilder B(AS, Index);
for (unsigned I = 0, E = Attrs.pImpl->getNumAttributes(); I != E; ++I)
if (Attrs.getSlotIndex(I) == Index) {
for (AttributeSetImpl::iterator II = Attrs.pImpl->begin(I),
IE = Attrs.pImpl->end(I); II != IE; ++II)
B.addAttribute(*II);
break;
}
AttrSet.push_back(AttributeSet::get(C, Index, B));
// Add the remaining attribute slots.
for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I)
AttrSet.push_back(getSlotAttributes(I));
return get(C, AttrSet);
}
AttributeSet AttributeSet::removeAttribute(LLVMContext &C, unsigned Index,
Attribute::AttrKind Attr) const {
if (!hasAttribute(Index, Attr)) return *this;
return removeAttributes(C, Index, AttributeSet::get(C, Index, Attr));
}
AttributeSet AttributeSet::removeAttributes(LLVMContext &C, unsigned Index,
AttributeSet Attrs) const {
if (!pImpl) return AttributeSet();
if (!Attrs.pImpl) return *this;
#ifndef NDEBUG
// FIXME it is not obvious how this should work for alignment.
// For now, say we can't pass in alignment, which no current use does.
assert(!Attrs.hasAttribute(Index, Attribute::Alignment) &&
"Attempt to change alignment!");
#endif
// Add the attribute slots before the one we're trying to add.
SmallVector<AttributeSet, 4> AttrSet;
uint64_t NumAttrs = pImpl->getNumAttributes();
AttributeSet AS;
uint64_t LastIndex = 0;
for (unsigned I = 0, E = NumAttrs; I != E; ++I) {
if (getSlotIndex(I) >= Index) {
if (getSlotIndex(I) == Index) AS = getSlotAttributes(LastIndex++);
break;
}
LastIndex = I + 1;
AttrSet.push_back(getSlotAttributes(I));
}
// Now remove the attribute from the correct slot. There may already be an
// AttributeSet there.
AttrBuilder B(AS, Index);
for (unsigned I = 0, E = Attrs.pImpl->getNumAttributes(); I != E; ++I)
if (Attrs.getSlotIndex(I) == Index) {
B.removeAttributes(Attrs.pImpl->getSlotAttributes(I), Index);
break;
}
AttrSet.push_back(AttributeSet::get(C, Index, B));
// Add the remaining attribute slots.
for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I)
AttrSet.push_back(getSlotAttributes(I));
return get(C, AttrSet);
}
//===----------------------------------------------------------------------===//
// AttributeSet Accessor Methods
//===----------------------------------------------------------------------===//
LLVMContext &AttributeSet::getContext() const {
return pImpl->getContext();
}
AttributeSet AttributeSet::getParamAttributes(unsigned Index) const {
return pImpl && hasAttributes(Index) ?
AttributeSet::get(pImpl->getContext(),
ArrayRef<std::pair<unsigned, AttributeSetNode*> >(
std::make_pair(Index, getAttributes(Index)))) :
AttributeSet();
}
AttributeSet AttributeSet::getRetAttributes() const {
return pImpl && hasAttributes(ReturnIndex) ?
AttributeSet::get(pImpl->getContext(),
ArrayRef<std::pair<unsigned, AttributeSetNode*> >(
std::make_pair(ReturnIndex,
getAttributes(ReturnIndex)))) :
AttributeSet();
}
AttributeSet AttributeSet::getFnAttributes() const {
return pImpl && hasAttributes(FunctionIndex) ?
AttributeSet::get(pImpl->getContext(),
ArrayRef<std::pair<unsigned, AttributeSetNode*> >(
std::make_pair(FunctionIndex,
getAttributes(FunctionIndex)))) :
AttributeSet();
}
bool AttributeSet::hasAttribute(unsigned Index, Attribute::AttrKind Kind) const{
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->hasAttribute(Kind) : false;
}
bool AttributeSet::hasAttribute(unsigned Index, StringRef Kind) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->hasAttribute(Kind) : false;
}
bool AttributeSet::hasAttributes(unsigned Index) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->hasAttributes() : false;
}
/// \brief Return true if the specified attribute is set for at least one
/// parameter or for the return value.
bool AttributeSet::hasAttrSomewhere(Attribute::AttrKind Attr) const {
if (pImpl == 0) return false;
for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I)
for (AttributeSetImpl::iterator II = pImpl->begin(I),
IE = pImpl->end(I); II != IE; ++II)
if (II->hasAttribute(Attr))
return true;
return false;
}
Attribute AttributeSet::getAttribute(unsigned Index,
Attribute::AttrKind Kind) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->getAttribute(Kind) : Attribute();
}
Attribute AttributeSet::getAttribute(unsigned Index,
StringRef Kind) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->getAttribute(Kind) : Attribute();
}
unsigned AttributeSet::getParamAlignment(unsigned Index) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->getAlignment() : 0;
}
unsigned AttributeSet::getStackAlignment(unsigned Index) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->getStackAlignment() : 0;
}
std::string AttributeSet::getAsString(unsigned Index,
bool InAttrGrp) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->getAsString(InAttrGrp) : std::string("");
}
/// \brief The attributes for the specified index are returned.
AttributeSetNode *AttributeSet::getAttributes(unsigned Index) const {
if (!pImpl) return 0;
// Loop through to find the attribute node we want.
for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I)
if (pImpl->getSlotIndex(I) == Index)
return pImpl->getSlotNode(I);
return 0;
}
AttributeSet::iterator AttributeSet::begin(unsigned Slot) const {
if (!pImpl)
return ArrayRef<Attribute>().begin();
return pImpl->begin(Slot);
}
AttributeSet::iterator AttributeSet::end(unsigned Slot) const {
if (!pImpl)
return ArrayRef<Attribute>().end();
return pImpl->end(Slot);
}
//===----------------------------------------------------------------------===//
// AttributeSet Introspection Methods
//===----------------------------------------------------------------------===//
/// \brief Return the number of slots used in this attribute list. This is the
/// number of arguments that have an attribute set on them (including the
/// function itself).
unsigned AttributeSet::getNumSlots() const {
return pImpl ? pImpl->getNumAttributes() : 0;
}
unsigned AttributeSet::getSlotIndex(unsigned Slot) const {
assert(pImpl && Slot < pImpl->getNumAttributes() &&
"Slot # out of range!");
return pImpl->getSlotIndex(Slot);
}
AttributeSet AttributeSet::getSlotAttributes(unsigned Slot) const {
assert(pImpl && Slot < pImpl->getNumAttributes() &&
"Slot # out of range!");
return pImpl->getSlotAttributes(Slot);
}
uint64_t AttributeSet::Raw(unsigned Index) const {
// FIXME: Remove this.
return pImpl ? pImpl->Raw(Index) : 0;
}
void AttributeSet::dump() const {
dbgs() << "PAL[\n";
for (unsigned i = 0, e = getNumSlots(); i < e; ++i) {
uint64_t Index = getSlotIndex(i);
dbgs() << " { ";
if (Index == ~0U)
dbgs() << "~0U";
else
dbgs() << Index;
dbgs() << " => " << getAsString(Index) << " }\n";
}
dbgs() << "]\n";
}
//===----------------------------------------------------------------------===//
// AttrBuilder Method Implementations
//===----------------------------------------------------------------------===//
AttrBuilder::AttrBuilder(AttributeSet AS, unsigned Index)
: Attrs(0), Alignment(0), StackAlignment(0) {
AttributeSetImpl *pImpl = AS.pImpl;
if (!pImpl) return;
for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I) {
if (pImpl->getSlotIndex(I) != Index) continue;
for (AttributeSetImpl::iterator II = pImpl->begin(I),
IE = pImpl->end(I); II != IE; ++II)
addAttribute(*II);
break;
}
}
void AttrBuilder::clear() {
Attrs.reset();
Alignment = StackAlignment = 0;
}
AttrBuilder &AttrBuilder::addAttribute(Attribute::AttrKind Val) {
assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!");
assert(Val != Attribute::Alignment && Val != Attribute::StackAlignment &&
"Adding alignment attribute without adding alignment value!");
Attrs[Val] = true;
return *this;
}
AttrBuilder &AttrBuilder::addAttribute(Attribute Attr) {
if (Attr.isStringAttribute()) {
addAttribute(Attr.getKindAsString(), Attr.getValueAsString());
return *this;
}
Attribute::AttrKind Kind = Attr.getKindAsEnum();
Attrs[Kind] = true;
if (Kind == Attribute::Alignment)
Alignment = Attr.getAlignment();
else if (Kind == Attribute::StackAlignment)
StackAlignment = Attr.getStackAlignment();
return *this;
}
AttrBuilder &AttrBuilder::addAttribute(StringRef A, StringRef V) {
TargetDepAttrs[A] = V;
return *this;
}
AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) {
assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!");
Attrs[Val] = false;
if (Val == Attribute::Alignment)
Alignment = 0;
else if (Val == Attribute::StackAlignment)
StackAlignment = 0;
return *this;
}
AttrBuilder &AttrBuilder::removeAttributes(AttributeSet A, uint64_t Index) {
unsigned Slot = ~0U;
for (unsigned I = 0, E = A.getNumSlots(); I != E; ++I)
if (A.getSlotIndex(I) == Index) {
Slot = I;
break;
}
assert(Slot != ~0U && "Couldn't find index in AttributeSet!");
for (AttributeSet::iterator I = A.begin(Slot), E = A.end(Slot); I != E; ++I) {
Attribute Attr = *I;
if (Attr.isEnumAttribute() || Attr.isAlignAttribute()) {
Attribute::AttrKind Kind = I->getKindAsEnum();
Attrs[Kind] = false;
if (Kind == Attribute::Alignment)
Alignment = 0;
else if (Kind == Attribute::StackAlignment)
StackAlignment = 0;
} else {
assert(Attr.isStringAttribute() && "Invalid attribute type!");
std::map<std::string, std::string>::iterator
Iter = TargetDepAttrs.find(Attr.getKindAsString());
if (Iter != TargetDepAttrs.end())
TargetDepAttrs.erase(Iter);
}
}
return *this;
}
AttrBuilder &AttrBuilder::removeAttribute(StringRef A) {
std::map<std::string, std::string>::iterator I = TargetDepAttrs.find(A);
if (I != TargetDepAttrs.end())
TargetDepAttrs.erase(I);
return *this;
}
AttrBuilder &AttrBuilder::addAlignmentAttr(unsigned Align) {
if (Align == 0) return *this;
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x40000000 && "Alignment too large.");
Attrs[Attribute::Alignment] = true;
Alignment = Align;
return *this;
}
AttrBuilder &AttrBuilder::addStackAlignmentAttr(unsigned Align) {
// Default alignment, allow the target to define how to align it.
if (Align == 0) return *this;
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x100 && "Alignment too large.");
Attrs[Attribute::StackAlignment] = true;
StackAlignment = Align;
return *this;
}
AttrBuilder &AttrBuilder::merge(const AttrBuilder &B) {
// FIXME: What if both have alignments, but they don't match?!
if (!Alignment)
Alignment = B.Alignment;
if (!StackAlignment)
StackAlignment = B.StackAlignment;
Attrs |= B.Attrs;
for (td_const_iterator I = B.TargetDepAttrs.begin(),
E = B.TargetDepAttrs.end(); I != E; ++I)
TargetDepAttrs[I->first] = I->second;
return *this;
}
bool AttrBuilder::contains(StringRef A) const {
return TargetDepAttrs.find(A) != TargetDepAttrs.end();
}
bool AttrBuilder::hasAttributes() const {
return !Attrs.none() || !TargetDepAttrs.empty();
}
bool AttrBuilder::hasAttributes(AttributeSet A, uint64_t Index) const {
unsigned Slot = ~0U;
for (unsigned I = 0, E = A.getNumSlots(); I != E; ++I)
if (A.getSlotIndex(I) == Index) {
Slot = I;
break;
}
assert(Slot != ~0U && "Couldn't find the index!");
for (AttributeSet::iterator I = A.begin(Slot), E = A.end(Slot);
I != E; ++I) {
Attribute Attr = *I;
if (Attr.isEnumAttribute() || Attr.isAlignAttribute()) {
if (Attrs[I->getKindAsEnum()])
return true;
} else {
assert(Attr.isStringAttribute() && "Invalid attribute kind!");
return TargetDepAttrs.find(Attr.getKindAsString())!=TargetDepAttrs.end();
}
}
return false;
}
bool AttrBuilder::hasAlignmentAttr() const {
return Alignment != 0;
}
bool AttrBuilder::operator==(const AttrBuilder &B) {
if (Attrs != B.Attrs)
return false;
for (td_const_iterator I = TargetDepAttrs.begin(),
E = TargetDepAttrs.end(); I != E; ++I)
if (B.TargetDepAttrs.find(I->first) == B.TargetDepAttrs.end())
return false;
return Alignment == B.Alignment && StackAlignment == B.StackAlignment;
}
AttrBuilder &AttrBuilder::addRawValue(uint64_t Val) {
// FIXME: Remove this in 4.0.
if (!Val) return *this;
for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
I = Attribute::AttrKind(I + 1)) {
if (uint64_t A = (Val & AttributeImpl::getAttrMask(I))) {
Attrs[I] = true;
if (I == Attribute::Alignment)
Alignment = 1ULL << ((A >> 16) - 1);
else if (I == Attribute::StackAlignment)
StackAlignment = 1ULL << ((A >> 26)-1);
}
}
return *this;
}
//===----------------------------------------------------------------------===//
// AttributeFuncs Function Defintions
//===----------------------------------------------------------------------===//
/// \brief Which attributes cannot be applied to a type.
AttributeSet AttributeFuncs::typeIncompatible(Type *Ty, uint64_t Index) {
AttrBuilder Incompatible;
if (!Ty->isIntegerTy())
// Attribute that only apply to integers.
Incompatible.addAttribute(Attribute::SExt)
.addAttribute(Attribute::ZExt);
if (!Ty->isPointerTy())
// Attribute that only apply to pointers.
Incompatible.addAttribute(Attribute::ByVal)
.addAttribute(Attribute::Nest)
.addAttribute(Attribute::NoAlias)
.addAttribute(Attribute::NoCapture)
.addAttribute(Attribute::ReadNone)
.addAttribute(Attribute::ReadOnly)
.addAttribute(Attribute::StructRet)
.addAttribute(Attribute::InAlloca);
return AttributeSet::get(Ty->getContext(), Index, Incompatible);
}