llvm-6502/lib/Target/ARM/MCTargetDesc/ARMUnwindOpAsm.cpp
2013-04-16 12:02:21 +00:00

199 lines
5.6 KiB
C++

//===-- ARMUnwindOpAsm.cpp - ARM Unwind Opcodes Assembler -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the unwind opcode assmebler for ARM exception handling
// table.
//
//===----------------------------------------------------------------------===//
#include "ARMUnwindOpAsm.h"
#include "ARMUnwindOp.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
using namespace llvm;
void UnwindOpcodeAssembler::EmitRegSave(uint32_t RegSave) {
if (RegSave == 0u)
return;
// One byte opcode to save register r14 and r11-r4
if (RegSave & (1u << 4)) {
// The one byte opcode will always save r4, thus we can't use the one byte
// opcode when r4 is not in .save directive.
// Compute the consecutive registers from r4 to r11.
uint32_t Range = 0;
uint32_t Mask = (1u << 4);
for (uint32_t Bit = (1u << 5); Bit < (1u << 12); Bit <<= 1) {
if ((RegSave & Bit) == 0u)
break;
++Range;
Mask |= Bit;
}
// Emit this opcode when the mask covers every registers.
uint32_t UnmaskedReg = RegSave & 0xfff0u & (~Mask);
if (UnmaskedReg == 0u) {
// Pop r[4 : (4 + n)]
Ops.push_back(UNWIND_OPCODE_POP_REG_RANGE_R4 | Range);
RegSave &= 0x000fu;
} else if (UnmaskedReg == (1u << 14)) {
// Pop r[14] + r[4 : (4 + n)]
Ops.push_back(UNWIND_OPCODE_POP_REG_RANGE_R4_R14 | Range);
RegSave &= 0x000fu;
}
}
// Two bytes opcode to save register r15-r4
if ((RegSave & 0xfff0u) != 0) {
uint32_t Op = UNWIND_OPCODE_POP_REG_MASK_R4 | (RegSave >> 4);
Ops.push_back(static_cast<uint8_t>(Op >> 8));
Ops.push_back(static_cast<uint8_t>(Op & 0xff));
}
// Opcode to save register r3-r0
if ((RegSave & 0x000fu) != 0) {
uint32_t Op = UNWIND_OPCODE_POP_REG_MASK | (RegSave & 0x000fu);
Ops.push_back(static_cast<uint8_t>(Op >> 8));
Ops.push_back(static_cast<uint8_t>(Op & 0xff));
}
}
/// Emit unwind opcodes for .vsave directives
void UnwindOpcodeAssembler::EmitVFPRegSave(uint32_t VFPRegSave) {
size_t i = 32;
while (i > 16) {
uint32_t Bit = 1u << (i - 1);
if ((VFPRegSave & Bit) == 0u) {
--i;
continue;
}
uint32_t Range = 0;
--i;
Bit >>= 1;
while (i > 16 && (VFPRegSave & Bit)) {
--i;
++Range;
Bit >>= 1;
}
uint32_t Op =
UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD_D16 | ((i - 16) << 4) | Range;
Ops.push_back(static_cast<uint8_t>(Op >> 8));
Ops.push_back(static_cast<uint8_t>(Op & 0xff));
}
while (i > 0) {
uint32_t Bit = 1u << (i - 1);
if ((VFPRegSave & Bit) == 0u) {
--i;
continue;
}
uint32_t Range = 0;
--i;
Bit >>= 1;
while (i > 0 && (VFPRegSave & Bit)) {
--i;
++Range;
Bit >>= 1;
}
uint32_t Op = UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD | (i << 4) | Range;
Ops.push_back(static_cast<uint8_t>(Op >> 8));
Ops.push_back(static_cast<uint8_t>(Op & 0xff));
}
}
/// Emit unwind opcodes for .setfp directives
void UnwindOpcodeAssembler::EmitSetFP(uint16_t FPReg) {
Ops.push_back(UNWIND_OPCODE_SET_VSP | FPReg);
}
/// Emit unwind opcodes to update stack pointer
void UnwindOpcodeAssembler::EmitSPOffset(int64_t Offset) {
if (Offset > 0x200) {
uint8_t Buff[10];
size_t Size = encodeULEB128((Offset - 0x204) >> 2, Buff);
Ops.push_back(UNWIND_OPCODE_INC_VSP_ULEB128);
Ops.append(Buff, Buff + Size);
} else if (Offset > 0) {
if (Offset > 0x100) {
Ops.push_back(UNWIND_OPCODE_INC_VSP | 0x3fu);
Offset -= 0x100;
}
Ops.push_back(UNWIND_OPCODE_INC_VSP |
static_cast<uint8_t>((Offset - 4) >> 2));
} else if (Offset < 0) {
while (Offset < -0x100) {
Ops.push_back(UNWIND_OPCODE_DEC_VSP | 0x3fu);
Offset += 0x100;
}
Ops.push_back(UNWIND_OPCODE_DEC_VSP |
static_cast<uint8_t>(((-Offset) - 4) >> 2));
}
}
void UnwindOpcodeAssembler::AddOpcodeSizePrefix(size_t Pos) {
size_t SizeInWords = (size() + 3) / 4;
assert(SizeInWords <= 0x100u &&
"Only 256 additional words are allowed for unwind opcodes");
Ops[Pos] = static_cast<uint8_t>(SizeInWords - 1);
}
void UnwindOpcodeAssembler::AddPersonalityIndexPrefix(size_t Pos, unsigned PI) {
assert(PI < NUM_PERSONALITY_INDEX && "Invalid personality prefix");
Ops[Pos] = EHT_COMPACT | PI;
}
void UnwindOpcodeAssembler::EmitFinishOpcodes() {
for (size_t i = (0x4u - (size() & 0x3u)) & 0x3u; i > 0; --i)
Ops.push_back(UNWIND_OPCODE_FINISH);
}
void UnwindOpcodeAssembler::Finalize() {
if (HasPersonality) {
// Personality specified by .personality directive
Offset = 1;
AddOpcodeSizePrefix(1);
} else {
if (getOpcodeSize() <= 3) {
// __aeabi_unwind_cpp_pr0: [ 0x80 , OP1 , OP2 , OP3 ]
Offset = 1;
PersonalityIndex = AEABI_UNWIND_CPP_PR0;
AddPersonalityIndexPrefix(Offset, PersonalityIndex);
} else {
// __aeabi_unwind_cpp_pr1: [ 0x81 , SIZE , OP1 , OP2 , ... ]
Offset = 0;
PersonalityIndex = AEABI_UNWIND_CPP_PR1;
AddPersonalityIndexPrefix(Offset, PersonalityIndex);
AddOpcodeSizePrefix(1);
}
}
// Emit the padding finish opcodes if the size() is not multiple of 4.
EmitFinishOpcodes();
// Swap the byte order
uint8_t *Ptr = Ops.begin() + Offset;
assert(size() % 4 == 0 && "Final unwind opcodes should align to 4");
for (size_t i = 0, n = size(); i < n; i += 4) {
std::swap(Ptr[i], Ptr[i + 3]);
std::swap(Ptr[i + 1], Ptr[i + 2]);
}
}