llvm-6502/lib/Target/R600/R600MachineScheduler.cpp
Chandler Carruth 417c5c172c [PM] Remove the old 'PassManager.h' header file at the top level of
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.

This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.

The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229094 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 10:01:29 +00:00

470 lines
14 KiB
C++

//===-- R600MachineScheduler.cpp - R600 Scheduler Interface -*- C++ -*-----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief R600 Machine Scheduler interface
//
//===----------------------------------------------------------------------===//
#include "R600MachineScheduler.h"
#include "AMDGPUSubtarget.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "misched"
void R600SchedStrategy::initialize(ScheduleDAGMI *dag) {
assert(dag->hasVRegLiveness() && "R600SchedStrategy needs vreg liveness");
DAG = static_cast<ScheduleDAGMILive*>(dag);
const AMDGPUSubtarget &ST = DAG->TM.getSubtarget<AMDGPUSubtarget>();
TII = static_cast<const R600InstrInfo*>(DAG->TII);
TRI = static_cast<const R600RegisterInfo*>(DAG->TRI);
VLIW5 = !ST.hasCaymanISA();
MRI = &DAG->MRI;
CurInstKind = IDOther;
CurEmitted = 0;
OccupedSlotsMask = 31;
InstKindLimit[IDAlu] = TII->getMaxAlusPerClause();
InstKindLimit[IDOther] = 32;
InstKindLimit[IDFetch] = ST.getTexVTXClauseSize();
AluInstCount = 0;
FetchInstCount = 0;
}
void R600SchedStrategy::MoveUnits(std::vector<SUnit *> &QSrc,
std::vector<SUnit *> &QDst)
{
QDst.insert(QDst.end(), QSrc.begin(), QSrc.end());
QSrc.clear();
}
static
unsigned getWFCountLimitedByGPR(unsigned GPRCount) {
assert (GPRCount && "GPRCount cannot be 0");
return 248 / GPRCount;
}
SUnit* R600SchedStrategy::pickNode(bool &IsTopNode) {
SUnit *SU = nullptr;
NextInstKind = IDOther;
IsTopNode = false;
// check if we might want to switch current clause type
bool AllowSwitchToAlu = (CurEmitted >= InstKindLimit[CurInstKind]) ||
(Available[CurInstKind].empty());
bool AllowSwitchFromAlu = (CurEmitted >= InstKindLimit[CurInstKind]) &&
(!Available[IDFetch].empty() || !Available[IDOther].empty());
if (CurInstKind == IDAlu && !Available[IDFetch].empty()) {
// We use the heuristic provided by AMD Accelerated Parallel Processing
// OpenCL Programming Guide :
// The approx. number of WF that allows TEX inst to hide ALU inst is :
// 500 (cycles for TEX) / (AluFetchRatio * 8 (cycles for ALU))
float ALUFetchRationEstimate =
(AluInstCount + AvailablesAluCount() + Pending[IDAlu].size()) /
(FetchInstCount + Available[IDFetch].size());
if (ALUFetchRationEstimate == 0) {
AllowSwitchFromAlu = true;
} else {
unsigned NeededWF = 62.5f / ALUFetchRationEstimate;
DEBUG( dbgs() << NeededWF << " approx. Wavefronts Required\n" );
// We assume the local GPR requirements to be "dominated" by the requirement
// of the TEX clause (which consumes 128 bits regs) ; ALU inst before and
// after TEX are indeed likely to consume or generate values from/for the
// TEX clause.
// Available[IDFetch].size() * 2 : GPRs required in the Fetch clause
// We assume that fetch instructions are either TnXYZW = TEX TnXYZW (need
// one GPR) or TmXYZW = TnXYZW (need 2 GPR).
// (TODO : use RegisterPressure)
// If we are going too use too many GPR, we flush Fetch instruction to lower
// register pressure on 128 bits regs.
unsigned NearRegisterRequirement = 2 * Available[IDFetch].size();
if (NeededWF > getWFCountLimitedByGPR(NearRegisterRequirement))
AllowSwitchFromAlu = true;
}
}
if (!SU && ((AllowSwitchToAlu && CurInstKind != IDAlu) ||
(!AllowSwitchFromAlu && CurInstKind == IDAlu))) {
// try to pick ALU
SU = pickAlu();
if (!SU && !PhysicalRegCopy.empty()) {
SU = PhysicalRegCopy.front();
PhysicalRegCopy.erase(PhysicalRegCopy.begin());
}
if (SU) {
if (CurEmitted >= InstKindLimit[IDAlu])
CurEmitted = 0;
NextInstKind = IDAlu;
}
}
if (!SU) {
// try to pick FETCH
SU = pickOther(IDFetch);
if (SU)
NextInstKind = IDFetch;
}
// try to pick other
if (!SU) {
SU = pickOther(IDOther);
if (SU)
NextInstKind = IDOther;
}
DEBUG(
if (SU) {
dbgs() << " ** Pick node **\n";
SU->dump(DAG);
} else {
dbgs() << "NO NODE \n";
for (unsigned i = 0; i < DAG->SUnits.size(); i++) {
const SUnit &S = DAG->SUnits[i];
if (!S.isScheduled)
S.dump(DAG);
}
}
);
return SU;
}
void R600SchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
if (NextInstKind != CurInstKind) {
DEBUG(dbgs() << "Instruction Type Switch\n");
if (NextInstKind != IDAlu)
OccupedSlotsMask |= 31;
CurEmitted = 0;
CurInstKind = NextInstKind;
}
if (CurInstKind == IDAlu) {
AluInstCount ++;
switch (getAluKind(SU)) {
case AluT_XYZW:
CurEmitted += 4;
break;
case AluDiscarded:
break;
default: {
++CurEmitted;
for (MachineInstr::mop_iterator It = SU->getInstr()->operands_begin(),
E = SU->getInstr()->operands_end(); It != E; ++It) {
MachineOperand &MO = *It;
if (MO.isReg() && MO.getReg() == AMDGPU::ALU_LITERAL_X)
++CurEmitted;
}
}
}
} else {
++CurEmitted;
}
DEBUG(dbgs() << CurEmitted << " Instructions Emitted in this clause\n");
if (CurInstKind != IDFetch) {
MoveUnits(Pending[IDFetch], Available[IDFetch]);
} else
FetchInstCount++;
}
static bool
isPhysicalRegCopy(MachineInstr *MI) {
if (MI->getOpcode() != AMDGPU::COPY)
return false;
return !TargetRegisterInfo::isVirtualRegister(MI->getOperand(1).getReg());
}
void R600SchedStrategy::releaseTopNode(SUnit *SU) {
DEBUG(dbgs() << "Top Releasing ";SU->dump(DAG););
}
void R600SchedStrategy::releaseBottomNode(SUnit *SU) {
DEBUG(dbgs() << "Bottom Releasing ";SU->dump(DAG););
if (isPhysicalRegCopy(SU->getInstr())) {
PhysicalRegCopy.push_back(SU);
return;
}
int IK = getInstKind(SU);
// There is no export clause, we can schedule one as soon as its ready
if (IK == IDOther)
Available[IDOther].push_back(SU);
else
Pending[IK].push_back(SU);
}
bool R600SchedStrategy::regBelongsToClass(unsigned Reg,
const TargetRegisterClass *RC) const {
if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
return RC->contains(Reg);
} else {
return MRI->getRegClass(Reg) == RC;
}
}
R600SchedStrategy::AluKind R600SchedStrategy::getAluKind(SUnit *SU) const {
MachineInstr *MI = SU->getInstr();
if (TII->isTransOnly(MI))
return AluTrans;
switch (MI->getOpcode()) {
case AMDGPU::PRED_X:
return AluPredX;
case AMDGPU::INTERP_PAIR_XY:
case AMDGPU::INTERP_PAIR_ZW:
case AMDGPU::INTERP_VEC_LOAD:
case AMDGPU::DOT_4:
return AluT_XYZW;
case AMDGPU::COPY:
if (MI->getOperand(1).isUndef()) {
// MI will become a KILL, don't considers it in scheduling
return AluDiscarded;
}
default:
break;
}
// Does the instruction take a whole IG ?
// XXX: Is it possible to add a helper function in R600InstrInfo that can
// be used here and in R600PacketizerList::isSoloInstruction() ?
if(TII->isVector(*MI) ||
TII->isCubeOp(MI->getOpcode()) ||
TII->isReductionOp(MI->getOpcode()) ||
MI->getOpcode() == AMDGPU::GROUP_BARRIER) {
return AluT_XYZW;
}
if (TII->isLDSInstr(MI->getOpcode())) {
return AluT_X;
}
// Is the result already assigned to a channel ?
unsigned DestSubReg = MI->getOperand(0).getSubReg();
switch (DestSubReg) {
case AMDGPU::sub0:
return AluT_X;
case AMDGPU::sub1:
return AluT_Y;
case AMDGPU::sub2:
return AluT_Z;
case AMDGPU::sub3:
return AluT_W;
default:
break;
}
// Is the result already member of a X/Y/Z/W class ?
unsigned DestReg = MI->getOperand(0).getReg();
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_XRegClass) ||
regBelongsToClass(DestReg, &AMDGPU::R600_AddrRegClass))
return AluT_X;
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_YRegClass))
return AluT_Y;
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass))
return AluT_Z;
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_WRegClass))
return AluT_W;
if (regBelongsToClass(DestReg, &AMDGPU::R600_Reg128RegClass))
return AluT_XYZW;
// LDS src registers cannot be used in the Trans slot.
if (TII->readsLDSSrcReg(MI))
return AluT_XYZW;
return AluAny;
}
int R600SchedStrategy::getInstKind(SUnit* SU) {
int Opcode = SU->getInstr()->getOpcode();
if (TII->usesTextureCache(Opcode) || TII->usesVertexCache(Opcode))
return IDFetch;
if (TII->isALUInstr(Opcode)) {
return IDAlu;
}
switch (Opcode) {
case AMDGPU::PRED_X:
case AMDGPU::COPY:
case AMDGPU::CONST_COPY:
case AMDGPU::INTERP_PAIR_XY:
case AMDGPU::INTERP_PAIR_ZW:
case AMDGPU::INTERP_VEC_LOAD:
case AMDGPU::DOT_4:
return IDAlu;
default:
return IDOther;
}
}
SUnit *R600SchedStrategy::PopInst(std::vector<SUnit *> &Q, bool AnyALU) {
if (Q.empty())
return nullptr;
for (std::vector<SUnit *>::reverse_iterator It = Q.rbegin(), E = Q.rend();
It != E; ++It) {
SUnit *SU = *It;
InstructionsGroupCandidate.push_back(SU->getInstr());
if (TII->fitsConstReadLimitations(InstructionsGroupCandidate)
&& (!AnyALU || !TII->isVectorOnly(SU->getInstr()))
) {
InstructionsGroupCandidate.pop_back();
Q.erase((It + 1).base());
return SU;
} else {
InstructionsGroupCandidate.pop_back();
}
}
return nullptr;
}
void R600SchedStrategy::LoadAlu() {
std::vector<SUnit *> &QSrc = Pending[IDAlu];
for (unsigned i = 0, e = QSrc.size(); i < e; ++i) {
AluKind AK = getAluKind(QSrc[i]);
AvailableAlus[AK].push_back(QSrc[i]);
}
QSrc.clear();
}
void R600SchedStrategy::PrepareNextSlot() {
DEBUG(dbgs() << "New Slot\n");
assert (OccupedSlotsMask && "Slot wasn't filled");
OccupedSlotsMask = 0;
// if (HwGen == AMDGPUSubtarget::NORTHERN_ISLANDS)
// OccupedSlotsMask |= 16;
InstructionsGroupCandidate.clear();
LoadAlu();
}
void R600SchedStrategy::AssignSlot(MachineInstr* MI, unsigned Slot) {
int DstIndex = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst);
if (DstIndex == -1) {
return;
}
unsigned DestReg = MI->getOperand(DstIndex).getReg();
// PressureRegister crashes if an operand is def and used in the same inst
// and we try to constraint its regclass
for (MachineInstr::mop_iterator It = MI->operands_begin(),
E = MI->operands_end(); It != E; ++It) {
MachineOperand &MO = *It;
if (MO.isReg() && !MO.isDef() &&
MO.getReg() == DestReg)
return;
}
// Constrains the regclass of DestReg to assign it to Slot
switch (Slot) {
case 0:
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_XRegClass);
break;
case 1:
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_YRegClass);
break;
case 2:
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass);
break;
case 3:
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_WRegClass);
break;
}
}
SUnit *R600SchedStrategy::AttemptFillSlot(unsigned Slot, bool AnyAlu) {
static const AluKind IndexToID[] = {AluT_X, AluT_Y, AluT_Z, AluT_W};
SUnit *SlotedSU = PopInst(AvailableAlus[IndexToID[Slot]], AnyAlu);
if (SlotedSU)
return SlotedSU;
SUnit *UnslotedSU = PopInst(AvailableAlus[AluAny], AnyAlu);
if (UnslotedSU)
AssignSlot(UnslotedSU->getInstr(), Slot);
return UnslotedSU;
}
unsigned R600SchedStrategy::AvailablesAluCount() const {
return AvailableAlus[AluAny].size() + AvailableAlus[AluT_XYZW].size() +
AvailableAlus[AluT_X].size() + AvailableAlus[AluT_Y].size() +
AvailableAlus[AluT_Z].size() + AvailableAlus[AluT_W].size() +
AvailableAlus[AluTrans].size() + AvailableAlus[AluDiscarded].size() +
AvailableAlus[AluPredX].size();
}
SUnit* R600SchedStrategy::pickAlu() {
while (AvailablesAluCount() || !Pending[IDAlu].empty()) {
if (!OccupedSlotsMask) {
// Bottom up scheduling : predX must comes first
if (!AvailableAlus[AluPredX].empty()) {
OccupedSlotsMask |= 31;
return PopInst(AvailableAlus[AluPredX], false);
}
// Flush physical reg copies (RA will discard them)
if (!AvailableAlus[AluDiscarded].empty()) {
OccupedSlotsMask |= 31;
return PopInst(AvailableAlus[AluDiscarded], false);
}
// If there is a T_XYZW alu available, use it
if (!AvailableAlus[AluT_XYZW].empty()) {
OccupedSlotsMask |= 15;
return PopInst(AvailableAlus[AluT_XYZW], false);
}
}
bool TransSlotOccuped = OccupedSlotsMask & 16;
if (!TransSlotOccuped && VLIW5) {
if (!AvailableAlus[AluTrans].empty()) {
OccupedSlotsMask |= 16;
return PopInst(AvailableAlus[AluTrans], false);
}
SUnit *SU = AttemptFillSlot(3, true);
if (SU) {
OccupedSlotsMask |= 16;
return SU;
}
}
for (int Chan = 3; Chan > -1; --Chan) {
bool isOccupied = OccupedSlotsMask & (1 << Chan);
if (!isOccupied) {
SUnit *SU = AttemptFillSlot(Chan, false);
if (SU) {
OccupedSlotsMask |= (1 << Chan);
InstructionsGroupCandidate.push_back(SU->getInstr());
return SU;
}
}
}
PrepareNextSlot();
}
return nullptr;
}
SUnit* R600SchedStrategy::pickOther(int QID) {
SUnit *SU = nullptr;
std::vector<SUnit *> &AQ = Available[QID];
if (AQ.empty()) {
MoveUnits(Pending[QID], AQ);
}
if (!AQ.empty()) {
SU = AQ.back();
AQ.resize(AQ.size() - 1);
}
return SU;
}