mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
6bfd6a578a
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2034 91177308-0d34-0410-b5e6-96231b3b80d8
721 lines
24 KiB
C++
721 lines
24 KiB
C++
//===-- Writer.cpp - Library for Printing VM assembly files ------*- C++ -*--=//
|
|
//
|
|
// This library implements the functionality defined in llvm/Assembly/Writer.h
|
|
//
|
|
// This library uses the Analysis library to figure out offsets for
|
|
// variables in the method tables...
|
|
//
|
|
// TODO: print out the type name instead of the full type if a particular type
|
|
// is in the symbol table...
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Assembly/CachedWriter.h"
|
|
#include "llvm/Analysis/SlotCalculator.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/ConstantVals.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "Support/StringExtras.h"
|
|
#include "Support/STLExtras.h"
|
|
#include <algorithm>
|
|
#include <map>
|
|
using std::string;
|
|
using std::map;
|
|
using std::vector;
|
|
using std::ostream;
|
|
|
|
static const Module *getModuleFromVal(const Value *V) {
|
|
if (const FunctionArgument *MA = dyn_cast<const FunctionArgument>(V))
|
|
return MA->getParent() ? MA->getParent()->getParent() : 0;
|
|
else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V))
|
|
return BB->getParent() ? BB->getParent()->getParent() : 0;
|
|
else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
|
|
const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
|
|
return M ? M->getParent() : 0;
|
|
} else if (const GlobalValue *GV = dyn_cast<const GlobalValue>(V))
|
|
return GV->getParent();
|
|
else if (const Module *Mod = dyn_cast<const Module>(V))
|
|
return Mod;
|
|
return 0;
|
|
}
|
|
|
|
static SlotCalculator *createSlotCalculator(const Value *V) {
|
|
assert(!isa<Type>(V) && "Can't create an SC for a type!");
|
|
if (const FunctionArgument *FA = dyn_cast<const FunctionArgument>(V)) {
|
|
return new SlotCalculator(FA->getParent(), true);
|
|
} else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
|
|
return new SlotCalculator(I->getParent()->getParent(), true);
|
|
} else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V)) {
|
|
return new SlotCalculator(BB->getParent(), true);
|
|
} else if (const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V)){
|
|
return new SlotCalculator(GV->getParent(), true);
|
|
} else if (const Function *Func = dyn_cast<const Function>(V)) {
|
|
return new SlotCalculator(Func, true);
|
|
} else if (const Module *Mod = dyn_cast<const Module>(V)) {
|
|
return new SlotCalculator(Mod, true);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// WriteAsOperand - Write the name of the specified value out to the specified
|
|
// ostream. This can be useful when you just want to print int %reg126, not the
|
|
// whole instruction that generated it.
|
|
//
|
|
static void WriteAsOperandInternal(ostream &Out, const Value *V, bool PrintName,
|
|
SlotCalculator *Table) {
|
|
if (PrintName && V->hasName()) {
|
|
Out << " %" << V->getName();
|
|
} else {
|
|
if (const Constant *CPV = dyn_cast<const Constant>(V)) {
|
|
Out << " " << CPV->getStrValue();
|
|
} else {
|
|
int Slot;
|
|
if (Table) {
|
|
Slot = Table->getValSlot(V);
|
|
} else {
|
|
if (const Type *Ty = dyn_cast<const Type>(V)) {
|
|
Out << " " << Ty->getDescription();
|
|
return;
|
|
}
|
|
|
|
Table = createSlotCalculator(V);
|
|
if (Table == 0) { Out << "BAD VALUE TYPE!"; return; }
|
|
|
|
Slot = Table->getValSlot(V);
|
|
delete Table;
|
|
}
|
|
if (Slot >= 0) Out << " %" << Slot;
|
|
else if (PrintName)
|
|
Out << "<badref>"; // Not embeded into a location?
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// If the module has a symbol table, take all global types and stuff their
|
|
// names into the TypeNames map.
|
|
//
|
|
static void fillTypeNameTable(const Module *M,
|
|
map<const Type *, string> &TypeNames) {
|
|
if (M && M->hasSymbolTable()) {
|
|
const SymbolTable *ST = M->getSymbolTable();
|
|
SymbolTable::const_iterator PI = ST->find(Type::TypeTy);
|
|
if (PI != ST->end()) {
|
|
SymbolTable::type_const_iterator I = PI->second.begin();
|
|
for (; I != PI->second.end(); ++I) {
|
|
// As a heuristic, don't insert pointer to primitive types, because
|
|
// they are used too often to have a single useful name.
|
|
//
|
|
const Type *Ty = cast<const Type>(I->second);
|
|
if (!isa<PointerType>(Ty) ||
|
|
!cast<PointerType>(Ty)->getElementType()->isPrimitiveType())
|
|
TypeNames.insert(std::make_pair(Ty, "%"+I->first));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
|
|
map<const Type *, string> &TypeNames) {
|
|
if (Ty->isPrimitiveType()) return Ty->getDescription(); // Base case
|
|
|
|
// Check to see if the type is named.
|
|
map<const Type *, string>::iterator I = TypeNames.find(Ty);
|
|
if (I != TypeNames.end()) return I->second;
|
|
|
|
// Check to see if the Type is already on the stack...
|
|
unsigned Slot = 0, CurSize = TypeStack.size();
|
|
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
|
|
|
|
// This is another base case for the recursion. In this case, we know
|
|
// that we have looped back to a type that we have previously visited.
|
|
// Generate the appropriate upreference to handle this.
|
|
//
|
|
if (Slot < CurSize)
|
|
return "\\" + utostr(CurSize-Slot); // Here's the upreference
|
|
|
|
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
|
|
|
|
string Result;
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::FunctionTyID: {
|
|
const FunctionType *MTy = cast<const FunctionType>(Ty);
|
|
Result = calcTypeName(MTy->getReturnType(), TypeStack, TypeNames) + " (";
|
|
for (FunctionType::ParamTypes::const_iterator
|
|
I = MTy->getParamTypes().begin(),
|
|
E = MTy->getParamTypes().end(); I != E; ++I) {
|
|
if (I != MTy->getParamTypes().begin())
|
|
Result += ", ";
|
|
Result += calcTypeName(*I, TypeStack, TypeNames);
|
|
}
|
|
if (MTy->isVarArg()) {
|
|
if (!MTy->getParamTypes().empty()) Result += ", ";
|
|
Result += "...";
|
|
}
|
|
Result += ")";
|
|
break;
|
|
}
|
|
case Type::StructTyID: {
|
|
const StructType *STy = cast<const StructType>(Ty);
|
|
Result = "{ ";
|
|
for (StructType::ElementTypes::const_iterator
|
|
I = STy->getElementTypes().begin(),
|
|
E = STy->getElementTypes().end(); I != E; ++I) {
|
|
if (I != STy->getElementTypes().begin())
|
|
Result += ", ";
|
|
Result += calcTypeName(*I, TypeStack, TypeNames);
|
|
}
|
|
Result += " }";
|
|
break;
|
|
}
|
|
case Type::PointerTyID:
|
|
Result = calcTypeName(cast<const PointerType>(Ty)->getElementType(),
|
|
TypeStack, TypeNames) + " *";
|
|
break;
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *ATy = cast<const ArrayType>(Ty);
|
|
int NumElements = ATy->getNumElements();
|
|
Result = "[";
|
|
if (NumElements != -1) Result += itostr(NumElements) + " x ";
|
|
Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]";
|
|
break;
|
|
}
|
|
default:
|
|
assert(0 && "Unhandled case in getTypeProps!");
|
|
Result = "<error>";
|
|
}
|
|
|
|
TypeStack.pop_back(); // Remove self from stack...
|
|
return Result;
|
|
}
|
|
|
|
|
|
// printTypeInt - The internal guts of printing out a type that has a
|
|
// potentially named portion.
|
|
//
|
|
static ostream &printTypeInt(ostream &Out, const Type *Ty,
|
|
map<const Type *, string> &TypeNames) {
|
|
// Primitive types always print out their description, regardless of whether
|
|
// they have been named or not.
|
|
//
|
|
if (Ty->isPrimitiveType()) return Out << Ty->getDescription();
|
|
|
|
// Check to see if the type is named.
|
|
map<const Type *, string>::iterator I = TypeNames.find(Ty);
|
|
if (I != TypeNames.end()) return Out << I->second;
|
|
|
|
// Otherwise we have a type that has not been named but is a derived type.
|
|
// Carefully recurse the type hierarchy to print out any contained symbolic
|
|
// names.
|
|
//
|
|
vector<const Type *> TypeStack;
|
|
string TypeName = calcTypeName(Ty, TypeStack, TypeNames);
|
|
TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
|
|
return Out << TypeName;
|
|
}
|
|
|
|
|
|
// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
|
|
// type, iff there is an entry in the modules symbol table for the specified
|
|
// type or one of it's component types. This is slower than a simple x << Type;
|
|
//
|
|
ostream &WriteTypeSymbolic(ostream &Out, const Type *Ty, const Module *M) {
|
|
Out << " ";
|
|
|
|
// If they want us to print out a type, attempt to make it symbolic if there
|
|
// is a symbol table in the module...
|
|
if (M && M->hasSymbolTable()) {
|
|
map<const Type *, string> TypeNames;
|
|
fillTypeNameTable(M, TypeNames);
|
|
|
|
return printTypeInt(Out, Ty, TypeNames);
|
|
} else {
|
|
return Out << Ty->getDescription();
|
|
}
|
|
}
|
|
|
|
|
|
// WriteAsOperand - Write the name of the specified value out to the specified
|
|
// ostream. This can be useful when you just want to print int %reg126, not the
|
|
// whole instruction that generated it.
|
|
//
|
|
ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType,
|
|
bool PrintName, SlotCalculator *Table) {
|
|
if (PrintType)
|
|
WriteTypeSymbolic(Out, V->getType(), getModuleFromVal(V));
|
|
|
|
WriteAsOperandInternal(Out, V, PrintName, Table);
|
|
return Out;
|
|
}
|
|
|
|
|
|
|
|
class AssemblyWriter {
|
|
ostream &Out;
|
|
SlotCalculator &Table;
|
|
const Module *TheModule;
|
|
map<const Type *, string> TypeNames;
|
|
public:
|
|
inline AssemblyWriter(ostream &o, SlotCalculator &Tab, const Module *M)
|
|
: Out(o), Table(Tab), TheModule(M) {
|
|
|
|
// If the module has a symbol table, take all global types and stuff their
|
|
// names into the TypeNames map.
|
|
//
|
|
fillTypeNameTable(M, TypeNames);
|
|
}
|
|
|
|
inline void write(const Module *M) { printModule(M); }
|
|
inline void write(const GlobalVariable *G) { printGlobal(G); }
|
|
inline void write(const Function *F) { printFunction(F); }
|
|
inline void write(const BasicBlock *BB) { printBasicBlock(BB); }
|
|
inline void write(const Instruction *I) { printInstruction(I); }
|
|
inline void write(const Constant *CPV) { printConstant(CPV); }
|
|
inline void write(const Type *Ty) { printType(Ty); }
|
|
|
|
private :
|
|
void printModule(const Module *M);
|
|
void printSymbolTable(const SymbolTable &ST);
|
|
void printConstant(const Constant *CPV);
|
|
void printGlobal(const GlobalVariable *GV);
|
|
void printFunction(const Function *F);
|
|
void printFunctionArgument(const FunctionArgument *FA);
|
|
void printBasicBlock(const BasicBlock *BB);
|
|
void printInstruction(const Instruction *I);
|
|
ostream &printType(const Type *Ty);
|
|
|
|
void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
|
|
|
|
// printInfoComment - Print a little comment after the instruction indicating
|
|
// which slot it occupies.
|
|
void printInfoComment(const Value *V);
|
|
};
|
|
|
|
|
|
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
|
|
bool PrintName) {
|
|
if (PrintType) { Out << " "; printType(Operand->getType()); }
|
|
WriteAsOperandInternal(Out, Operand, PrintName, &Table);
|
|
}
|
|
|
|
|
|
void AssemblyWriter::printModule(const Module *M) {
|
|
// Loop over the symbol table, emitting all named constants...
|
|
if (M->hasSymbolTable())
|
|
printSymbolTable(*M->getSymbolTable());
|
|
|
|
for_each(M->gbegin(), M->gend(),
|
|
bind_obj(this, &AssemblyWriter::printGlobal));
|
|
|
|
Out << "implementation\n";
|
|
|
|
// Output all of the methods...
|
|
for_each(M->begin(), M->end(), bind_obj(this,&AssemblyWriter::printFunction));
|
|
}
|
|
|
|
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
|
|
if (GV->hasName()) Out << "%" << GV->getName() << " = ";
|
|
|
|
if (GV->hasInternalLinkage()) Out << "internal ";
|
|
if (!GV->hasInitializer()) Out << "uninitialized ";
|
|
|
|
Out << (GV->isConstant() ? "constant " : "global ");
|
|
printType(GV->getType()->getElementType());
|
|
|
|
if (GV->hasInitializer())
|
|
writeOperand(GV->getInitializer(), false, false);
|
|
|
|
printInfoComment(GV);
|
|
Out << "\n";
|
|
}
|
|
|
|
|
|
// printSymbolTable - Run through symbol table looking for named constants
|
|
// if a named constant is found, emit it's declaration...
|
|
//
|
|
void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
|
|
for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
|
|
SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
|
|
SymbolTable::type_const_iterator End = ST.type_end(TI->first);
|
|
|
|
for (; I != End; ++I) {
|
|
const Value *V = I->second;
|
|
if (const Constant *CPV = dyn_cast<const Constant>(V)) {
|
|
printConstant(CPV);
|
|
} else if (const Type *Ty = dyn_cast<const Type>(V)) {
|
|
Out << "\t%" << I->first << " = type " << Ty->getDescription() << "\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// printConstant - Print out a constant pool entry...
|
|
//
|
|
void AssemblyWriter::printConstant(const Constant *CPV) {
|
|
// Don't print out unnamed constants, they will be inlined
|
|
if (!CPV->hasName()) return;
|
|
|
|
// Print out name...
|
|
Out << "\t%" << CPV->getName() << " = ";
|
|
|
|
// Print out the constant type...
|
|
printType(CPV->getType());
|
|
|
|
// Write the value out now...
|
|
writeOperand(CPV, false, false);
|
|
|
|
if (!CPV->hasName() && CPV->getType() != Type::VoidTy) {
|
|
int Slot = Table.getValSlot(CPV); // Print out the def slot taken...
|
|
Out << "\t\t; <";
|
|
printType(CPV->getType()) << ">:";
|
|
if (Slot >= 0) Out << Slot;
|
|
else Out << "<badref>";
|
|
}
|
|
|
|
Out << "\n";
|
|
}
|
|
|
|
// printFunction - Print all aspects of a method.
|
|
//
|
|
void AssemblyWriter::printFunction(const Function *M) {
|
|
// Print out the return type and name...
|
|
Out << "\n" << (M->isExternal() ? "declare " : "")
|
|
<< (M->hasInternalLinkage() ? "internal " : "");
|
|
printType(M->getReturnType()) << " \"" << M->getName() << "\"(";
|
|
Table.incorporateMethod(M);
|
|
|
|
// Loop over the arguments, printing them...
|
|
const FunctionType *MT = M->getFunctionType();
|
|
|
|
if (!M->isExternal()) {
|
|
for_each(M->getArgumentList().begin(), M->getArgumentList().end(),
|
|
bind_obj(this, &AssemblyWriter::printFunctionArgument));
|
|
} else {
|
|
// Loop over the arguments, printing them...
|
|
const FunctionType *MT = M->getFunctionType();
|
|
for (FunctionType::ParamTypes::const_iterator I = MT->getParamTypes().begin(),
|
|
E = MT->getParamTypes().end(); I != E; ++I) {
|
|
if (I != MT->getParamTypes().begin()) Out << ", ";
|
|
printType(*I);
|
|
}
|
|
}
|
|
|
|
// Finish printing arguments...
|
|
if (MT->isVarArg()) {
|
|
if (MT->getParamTypes().size()) Out << ", ";
|
|
Out << "..."; // Output varargs portion of signature!
|
|
}
|
|
Out << ")\n";
|
|
|
|
if (!M->isExternal()) {
|
|
// Loop over the symbol table, emitting all named constants...
|
|
if (M->hasSymbolTable())
|
|
printSymbolTable(*M->getSymbolTable());
|
|
|
|
Out << "begin";
|
|
|
|
// Output all of its basic blocks... for the method
|
|
for_each(M->begin(), M->end(),
|
|
bind_obj(this, &AssemblyWriter::printBasicBlock));
|
|
|
|
Out << "end\n";
|
|
}
|
|
|
|
Table.purgeMethod();
|
|
}
|
|
|
|
// printFunctionArgument - This member is called for every argument that
|
|
// is passed into the method. Simply print it out
|
|
//
|
|
void AssemblyWriter::printFunctionArgument(const FunctionArgument *Arg) {
|
|
// Insert commas as we go... the first arg doesn't get a comma
|
|
if (Arg != Arg->getParent()->getArgumentList().front()) Out << ", ";
|
|
|
|
// Output type...
|
|
printType(Arg->getType());
|
|
|
|
// Output name, if available...
|
|
if (Arg->hasName())
|
|
Out << " %" << Arg->getName();
|
|
else if (Table.getValSlot(Arg) < 0)
|
|
Out << "<badref>";
|
|
}
|
|
|
|
// printBasicBlock - This member is called for each basic block in a methd.
|
|
//
|
|
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
|
|
if (BB->hasName()) { // Print out the label if it exists...
|
|
Out << "\n" << BB->getName() << ":";
|
|
} else {
|
|
int Slot = Table.getValSlot(BB);
|
|
Out << "\n; <label>:";
|
|
if (Slot >= 0)
|
|
Out << Slot; // Extra newline seperates out label's
|
|
else
|
|
Out << "<badref>";
|
|
}
|
|
Out << "\t\t\t\t\t;[#uses=" << BB->use_size() << "]\n"; // Output # uses
|
|
|
|
// Output all of the instructions in the basic block...
|
|
for_each(BB->begin(), BB->end(),
|
|
bind_obj(this, &AssemblyWriter::printInstruction));
|
|
}
|
|
|
|
|
|
// printInfoComment - Print a little comment after the instruction indicating
|
|
// which slot it occupies.
|
|
//
|
|
void AssemblyWriter::printInfoComment(const Value *V) {
|
|
if (V->getType() != Type::VoidTy) {
|
|
Out << "\t\t; <";
|
|
printType(V->getType()) << ">";
|
|
|
|
if (!V->hasName()) {
|
|
int Slot = Table.getValSlot(V); // Print out the def slot taken...
|
|
if (Slot >= 0) Out << ":" << Slot;
|
|
else Out << ":<badref>";
|
|
}
|
|
Out << " [#uses=" << V->use_size() << "]"; // Output # uses
|
|
}
|
|
}
|
|
|
|
// printInstruction - This member is called for each Instruction in a methd.
|
|
//
|
|
void AssemblyWriter::printInstruction(const Instruction *I) {
|
|
Out << "\t";
|
|
|
|
// Print out name if it exists...
|
|
if (I && I->hasName())
|
|
Out << "%" << I->getName() << " = ";
|
|
|
|
// Print out the opcode...
|
|
Out << I->getOpcodeName();
|
|
|
|
// Print out the type of the operands...
|
|
const Value *Operand = I->getNumOperands() ? I->getOperand(0) : 0;
|
|
|
|
// Special case conditional branches to swizzle the condition out to the front
|
|
if (I->getOpcode() == Instruction::Br && I->getNumOperands() > 1) {
|
|
writeOperand(I->getOperand(2), true);
|
|
Out << ",";
|
|
writeOperand(Operand, true);
|
|
Out << ",";
|
|
writeOperand(I->getOperand(1), true);
|
|
|
|
} else if (I->getOpcode() == Instruction::Switch) {
|
|
// Special case switch statement to get formatting nice and correct...
|
|
writeOperand(Operand , true); Out << ",";
|
|
writeOperand(I->getOperand(1), true); Out << " [";
|
|
|
|
for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; op += 2) {
|
|
Out << "\n\t\t";
|
|
writeOperand(I->getOperand(op ), true); Out << ",";
|
|
writeOperand(I->getOperand(op+1), true);
|
|
}
|
|
Out << "\n\t]";
|
|
} else if (isa<PHINode>(I)) {
|
|
Out << " ";
|
|
printType(I->getType());
|
|
Out << " ";
|
|
|
|
for (unsigned op = 0, Eop = I->getNumOperands(); op < Eop; op += 2) {
|
|
if (op) Out << ", ";
|
|
Out << "[";
|
|
writeOperand(I->getOperand(op ), false); Out << ",";
|
|
writeOperand(I->getOperand(op+1), false); Out << " ]";
|
|
}
|
|
} else if (isa<ReturnInst>(I) && !Operand) {
|
|
Out << " void";
|
|
} else if (isa<CallInst>(I)) {
|
|
const PointerType *PTy = dyn_cast<PointerType>(Operand->getType());
|
|
const FunctionType*MTy = PTy ? dyn_cast<FunctionType>(PTy->getElementType()):0;
|
|
const Type *RetTy = MTy ? MTy->getReturnType() : 0;
|
|
|
|
// If possible, print out the short form of the call instruction, but we can
|
|
// only do this if the first argument is a pointer to a nonvararg method,
|
|
// and if the value returned is not a pointer to a method.
|
|
//
|
|
if (RetTy && !MTy->isVarArg() &&
|
|
(!isa<PointerType>(RetTy)||!isa<FunctionType>(cast<PointerType>(RetTy)))){
|
|
Out << " "; printType(RetTy);
|
|
writeOperand(Operand, false);
|
|
} else {
|
|
writeOperand(Operand, true);
|
|
}
|
|
Out << "(";
|
|
if (I->getNumOperands() > 1) writeOperand(I->getOperand(1), true);
|
|
for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; ++op) {
|
|
Out << ",";
|
|
writeOperand(I->getOperand(op), true);
|
|
}
|
|
|
|
Out << " )";
|
|
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
|
|
// TODO: Should try to print out short form of the Invoke instruction
|
|
writeOperand(Operand, true);
|
|
Out << "(";
|
|
if (I->getNumOperands() > 3) writeOperand(I->getOperand(3), true);
|
|
for (unsigned op = 4, Eop = I->getNumOperands(); op < Eop; ++op) {
|
|
Out << ",";
|
|
writeOperand(I->getOperand(op), true);
|
|
}
|
|
|
|
Out << " )\n\t\t\tto";
|
|
writeOperand(II->getNormalDest(), true);
|
|
Out << " except";
|
|
writeOperand(II->getExceptionalDest(), true);
|
|
|
|
} else if (I->getOpcode() == Instruction::Malloc ||
|
|
I->getOpcode() == Instruction::Alloca) {
|
|
Out << " ";
|
|
printType(cast<const PointerType>(I->getType())->getElementType());
|
|
if (I->getNumOperands()) {
|
|
Out << ",";
|
|
writeOperand(I->getOperand(0), true);
|
|
}
|
|
} else if (isa<CastInst>(I)) {
|
|
writeOperand(Operand, true);
|
|
Out << " to ";
|
|
printType(I->getType());
|
|
} else if (Operand) { // Print the normal way...
|
|
|
|
// PrintAllTypes - Instructions who have operands of all the same type
|
|
// omit the type from all but the first operand. If the instruction has
|
|
// different type operands (for example br), then they are all printed.
|
|
bool PrintAllTypes = false;
|
|
const Type *TheType = Operand->getType();
|
|
|
|
for (unsigned i = 1, E = I->getNumOperands(); i != E; ++i) {
|
|
Operand = I->getOperand(i);
|
|
if (Operand->getType() != TheType) {
|
|
PrintAllTypes = true; // We have differing types! Print them all!
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Shift Left & Right print both types even for Ubyte LHS
|
|
if (isa<ShiftInst>(I)) PrintAllTypes = true;
|
|
|
|
if (!PrintAllTypes) {
|
|
Out << " ";
|
|
printType(I->getOperand(0)->getType());
|
|
}
|
|
|
|
for (unsigned i = 0, E = I->getNumOperands(); i != E; ++i) {
|
|
if (i) Out << ",";
|
|
writeOperand(I->getOperand(i), PrintAllTypes);
|
|
}
|
|
}
|
|
|
|
printInfoComment(I);
|
|
Out << "\n";
|
|
}
|
|
|
|
|
|
// printType - Go to extreme measures to attempt to print out a short, symbolic
|
|
// version of a type name.
|
|
//
|
|
ostream &AssemblyWriter::printType(const Type *Ty) {
|
|
return printTypeInt(Out, Ty, TypeNames);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External Interface declarations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
void WriteToAssembly(const Module *M, ostream &o) {
|
|
if (M == 0) { o << "<null> module\n"; return; }
|
|
SlotCalculator SlotTable(M, true);
|
|
AssemblyWriter W(o, SlotTable, M);
|
|
|
|
W.write(M);
|
|
}
|
|
|
|
void WriteToAssembly(const GlobalVariable *G, ostream &o) {
|
|
if (G == 0) { o << "<null> global variable\n"; return; }
|
|
SlotCalculator SlotTable(G->getParent(), true);
|
|
AssemblyWriter W(o, SlotTable, G->getParent());
|
|
W.write(G);
|
|
}
|
|
|
|
void WriteToAssembly(const Function *F, ostream &o) {
|
|
if (F == 0) { o << "<null> function\n"; return; }
|
|
SlotCalculator SlotTable(F->getParent(), true);
|
|
AssemblyWriter W(o, SlotTable, F->getParent());
|
|
|
|
W.write(F);
|
|
}
|
|
|
|
|
|
void WriteToAssembly(const BasicBlock *BB, ostream &o) {
|
|
if (BB == 0) { o << "<null> basic block\n"; return; }
|
|
|
|
SlotCalculator SlotTable(BB->getParent(), true);
|
|
AssemblyWriter W(o, SlotTable,
|
|
BB->getParent() ? BB->getParent()->getParent() : 0);
|
|
|
|
W.write(BB);
|
|
}
|
|
|
|
void WriteToAssembly(const Constant *CPV, ostream &o) {
|
|
if (CPV == 0) { o << "<null> constant pool value\n"; return; }
|
|
o << " " << CPV->getType()->getDescription() << " " << CPV->getStrValue();
|
|
}
|
|
|
|
void WriteToAssembly(const Instruction *I, ostream &o) {
|
|
if (I == 0) { o << "<null> instruction\n"; return; }
|
|
|
|
const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
|
|
SlotCalculator SlotTable(F, true);
|
|
AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0);
|
|
|
|
W.write(I);
|
|
}
|
|
|
|
void CachedWriter::setModule(const Module *M) {
|
|
delete SC; delete AW;
|
|
if (M) {
|
|
SC = new SlotCalculator(M, true);
|
|
AW = new AssemblyWriter(Out, *SC, M);
|
|
} else {
|
|
SC = 0; AW = 0;
|
|
}
|
|
}
|
|
|
|
CachedWriter::~CachedWriter() {
|
|
delete AW;
|
|
delete SC;
|
|
}
|
|
|
|
CachedWriter &CachedWriter::operator<<(const Value *V) {
|
|
assert(AW && SC && "CachedWriter does not have a current module!");
|
|
switch (V->getValueType()) {
|
|
case Value::ConstantVal:
|
|
Out << " "; AW->write(V->getType());
|
|
Out << " " << cast<Constant>(V)->getStrValue(); break;
|
|
case Value::FunctionArgumentVal:
|
|
AW->write(V->getType()); Out << " " << V->getName(); break;
|
|
case Value::TypeVal: AW->write(cast<const Type>(V)); break;
|
|
case Value::InstructionVal: AW->write(cast<Instruction>(V)); break;
|
|
case Value::BasicBlockVal: AW->write(cast<BasicBlock>(V)); break;
|
|
case Value::FunctionVal: AW->write(cast<Function>(V)); break;
|
|
case Value::GlobalVariableVal: AW->write(cast<GlobalVariable>(V)); break;
|
|
case Value::ModuleVal: AW->write(cast<Module>(V)); break;
|
|
default: Out << "<unknown value type: " << V->getValueType() << ">"; break;
|
|
}
|
|
return *this;
|
|
}
|