llvm-6502/include/llvm/CodeGen/FastISel.h
Juergen Ributzka 323445f706 [FastISel][AArch64] Add lowering support for frem.
This lowers frem to a runtime libcall inside fast-isel.

The test case also checks the CallLoweringInfo bug that was exposed by this
change.

This fixes rdar://problem/18342783.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217833 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 22:07:49 +00:00

570 lines
23 KiB
C++

//===-- FastISel.h - Definition of the FastISel class ---*- C++ -*---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the FastISel class.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_FASTISEL_H
#define LLVM_CODEGEN_FASTISEL_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/IntrinsicInst.h"
namespace llvm {
/// \brief This is a fast-path instruction selection class that generates poor
/// code and doesn't support illegal types or non-trivial lowering, but runs
/// quickly.
class FastISel {
public:
struct ArgListEntry {
Value *Val;
Type *Ty;
bool IsSExt : 1;
bool IsZExt : 1;
bool IsInReg : 1;
bool IsSRet : 1;
bool IsNest : 1;
bool IsByVal : 1;
bool IsInAlloca : 1;
bool IsReturned : 1;
uint16_t Alignment;
ArgListEntry()
: Val(nullptr), Ty(nullptr), IsSExt(false), IsZExt(false),
IsInReg(false), IsSRet(false), IsNest(false), IsByVal(false),
IsInAlloca(false), IsReturned(false), Alignment(0) {}
/// \brief Set CallLoweringInfo attribute flags based on a call instruction
/// and called function attributes.
void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
};
typedef std::vector<ArgListEntry> ArgListTy;
struct CallLoweringInfo {
Type *RetTy;
bool RetSExt : 1;
bool RetZExt : 1;
bool IsVarArg : 1;
bool IsInReg : 1;
bool DoesNotReturn : 1;
bool IsReturnValueUsed : 1;
// \brief IsTailCall Should be modified by implementations of FastLowerCall
// that perform tail call conversions.
bool IsTailCall;
unsigned NumFixedArgs;
CallingConv::ID CallConv;
const Value *Callee;
const char *SymName;
ArgListTy Args;
ImmutableCallSite *CS;
MachineInstr *Call;
unsigned ResultReg;
unsigned NumResultRegs;
SmallVector<Value *, 16> OutVals;
SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
SmallVector<unsigned, 16> OutRegs;
SmallVector<ISD::InputArg, 4> Ins;
SmallVector<unsigned, 4> InRegs;
CallLoweringInfo()
: RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
Callee(nullptr), SymName(nullptr), CS(nullptr), Call(nullptr),
ResultReg(0), NumResultRegs(0) {}
CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
const Value *Target, ArgListTy &&ArgsList,
ImmutableCallSite &Call) {
RetTy = ResultTy;
Callee = Target;
IsInReg = Call.paramHasAttr(0, Attribute::InReg);
DoesNotReturn = Call.doesNotReturn();
IsVarArg = FuncTy->isVarArg();
IsReturnValueUsed = !Call.getInstruction()->use_empty();
RetSExt = Call.paramHasAttr(0, Attribute::SExt);
RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
CallConv = Call.getCallingConv();
Args = std::move(ArgsList);
NumFixedArgs = FuncTy->getNumParams();
CS = &Call;
return *this;
}
CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
const char *Target, ArgListTy &&ArgsList,
ImmutableCallSite &Call,
unsigned FixedArgs = ~0U) {
RetTy = ResultTy;
Callee = Call.getCalledValue();
SymName = Target;
IsInReg = Call.paramHasAttr(0, Attribute::InReg);
DoesNotReturn = Call.doesNotReturn();
IsVarArg = FuncTy->isVarArg();
IsReturnValueUsed = !Call.getInstruction()->use_empty();
RetSExt = Call.paramHasAttr(0, Attribute::SExt);
RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
CallConv = Call.getCallingConv();
Args = std::move(ArgsList);
NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs;
CS = &Call;
return *this;
}
CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
const Value *Target, ArgListTy &&ArgsList,
unsigned FixedArgs = ~0U) {
RetTy = ResultTy;
Callee = Target;
CallConv = CC;
Args = std::move(ArgsList);
NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
return *this;
}
CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
const char *Target, ArgListTy &&ArgsList,
unsigned FixedArgs = ~0U) {
RetTy = ResultTy;
SymName = Target;
CallConv = CC;
Args = std::move(ArgsList);
NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
return *this;
}
CallLoweringInfo &setTailCall(bool Value = true) {
IsTailCall = Value;
return *this;
}
ArgListTy &getArgs() { return Args; }
void clearOuts() {
OutVals.clear();
OutFlags.clear();
OutRegs.clear();
}
void clearIns() {
Ins.clear();
InRegs.clear();
}
};
protected:
DenseMap<const Value *, unsigned> LocalValueMap;
FunctionLoweringInfo &FuncInfo;
MachineFunction *MF;
MachineRegisterInfo &MRI;
MachineFrameInfo &MFI;
MachineConstantPool &MCP;
DebugLoc DbgLoc;
const TargetMachine &TM;
const DataLayout &DL;
const TargetInstrInfo &TII;
const TargetLowering &TLI;
const TargetRegisterInfo &TRI;
const TargetLibraryInfo *LibInfo;
bool SkipTargetIndependentISel;
/// \brief The position of the last instruction for materializing constants
/// for use in the current block. It resets to EmitStartPt when it makes sense
/// (for example, it's usually profitable to avoid function calls between the
/// definition and the use)
MachineInstr *LastLocalValue;
/// \brief The top most instruction in the current block that is allowed for
/// emitting local variables. LastLocalValue resets to EmitStartPt when it
/// makes sense (for example, on function calls)
MachineInstr *EmitStartPt;
public:
/// \brief Return the position of the last instruction emitted for
/// materializing constants for use in the current block.
MachineInstr *getLastLocalValue() { return LastLocalValue; }
/// \brief Update the position of the last instruction emitted for
/// materializing constants for use in the current block.
void setLastLocalValue(MachineInstr *I) {
EmitStartPt = I;
LastLocalValue = I;
}
/// \brief Set the current block to which generated machine instructions will
/// be appended, and clear the local CSE map.
void startNewBlock();
/// \brief Return current debug location information.
DebugLoc getCurDebugLoc() const { return DbgLoc; }
/// \brief Do "fast" instruction selection for function arguments and append
/// the machine instructions to the current block. Returns true when
/// successful.
bool lowerArguments();
/// \brief Do "fast" instruction selection for the given LLVM IR instruction
/// and append the generated machine instructions to the current block.
/// Returns true if selection was successful.
bool selectInstruction(const Instruction *I);
/// \brief Do "fast" instruction selection for the given LLVM IR operator
/// (Instruction or ConstantExpr), and append generated machine instructions
/// to the current block. Return true if selection was successful.
bool selectOperator(const User *I, unsigned Opcode);
/// \brief Create a virtual register and arrange for it to be assigned the
/// value for the given LLVM value.
unsigned getRegForValue(const Value *V);
/// \brief Look up the value to see if its value is already cached in a
/// register. It may be defined by instructions across blocks or defined
/// locally.
unsigned lookUpRegForValue(const Value *V);
/// \brief This is a wrapper around getRegForValue that also takes care of
/// truncating or sign-extending the given getelementptr index value.
std::pair<unsigned, bool> getRegForGEPIndex(const Value *V);
/// \brief We're checking to see if we can fold \p LI into \p FoldInst. Note
/// that we could have a sequence where multiple LLVM IR instructions are
/// folded into the same machineinstr. For example we could have:
///
/// A: x = load i32 *P
/// B: y = icmp A, 42
/// C: br y, ...
///
/// In this scenario, \p LI is "A", and \p FoldInst is "C". We know about "B"
/// (and any other folded instructions) because it is between A and C.
///
/// If we succeed folding, return true.
bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
/// \brief The specified machine instr operand is a vreg, and that vreg is
/// being provided by the specified load instruction. If possible, try to
/// fold the load as an operand to the instruction, returning true if
/// possible.
///
/// This method should be implemented by targets.
virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
const LoadInst * /*LI*/) {
return false;
}
/// \brief Reset InsertPt to prepare for inserting instructions into the
/// current block.
void recomputeInsertPt();
/// \brief Remove all dead instructions between the I and E.
void removeDeadCode(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator E);
struct SavePoint {
MachineBasicBlock::iterator InsertPt;
DebugLoc DL;
};
/// \brief Prepare InsertPt to begin inserting instructions into the local
/// value area and return the old insert position.
SavePoint enterLocalValueArea();
/// \brief Reset InsertPt to the given old insert position.
void leaveLocalValueArea(SavePoint Old);
virtual ~FastISel();
protected:
explicit FastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo,
bool SkipTargetIndependentISel = false);
/// \brief This method is called by target-independent code when the normal
/// FastISel process fails to select an instruction. This gives targets a
/// chance to emit code for anything that doesn't fit into FastISel's
/// framework. It returns true if it was successful.
virtual bool fastSelectInstruction(const Instruction *I) = 0;
/// \brief This method is called by target-independent code to do target-
/// specific argument lowering. It returns true if it was successful.
virtual bool fastLowerArguments();
/// \brief This method is called by target-independent code to do target-
/// specific call lowering. It returns true if it was successful.
virtual bool fastLowerCall(CallLoweringInfo &CLI);
/// \brief This method is called by target-independent code to do target-
/// specific intrinsic lowering. It returns true if it was successful.
virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II);
/// \brief This method is called by target-independent code to request that an
/// instruction with the given type and opcode be emitted.
virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode);
/// \brief This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register operand be emitted.
virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
bool Op0IsKill);
/// \brief This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register operands be emitted.
virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
bool Op0IsKill, unsigned Op1, bool Op1IsKill);
/// \brief This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register and immediate
// operands be emitted.
virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
bool Op0IsKill, uint64_t Imm);
/// \brief This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register and floating-point
/// immediate operands be emitted.
virtual unsigned fastEmit_rf(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
bool Op0IsKill, const ConstantFP *FPImm);
/// \brief This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register and immediate
/// operands be emitted.
virtual unsigned fastEmit_rri(MVT VT, MVT RetVT, unsigned Opcode,
unsigned Op0, bool Op0IsKill, unsigned Op1,
bool Op1IsKill, uint64_t Imm);
/// \brief This method is a wrapper of fastEmit_ri.
///
/// It first tries to emit an instruction with an immediate operand using
/// fastEmit_ri. If that fails, it materializes the immediate into a register
/// and try fastEmit_rr instead.
unsigned fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill,
uint64_t Imm, MVT ImmType);
/// \brief This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and immediate operand be emitted.
virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm);
/// \brief This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and floating-point immediate
/// operand be emitted.
virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode,
const ConstantFP *FPImm);
/// \brief Emit a MachineInstr with no operands and a result register in the
/// given register class.
unsigned fastEmitInst_(unsigned MachineInstOpcode,
const TargetRegisterClass *RC);
/// \brief Emit a MachineInstr with one register operand and a result register
/// in the given register class.
unsigned fastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0,
bool Op0IsKill);
/// \brief Emit a MachineInstr with two register operands and a result
/// register in the given register class.
unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0,
bool Op0IsKill, unsigned Op1, bool Op1IsKill);
/// \brief Emit a MachineInstr with three register operands and a result
/// register in the given register class.
unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0,
bool Op0IsKill, unsigned Op1, bool Op1IsKill,
unsigned Op2, bool Op2IsKill);
/// \brief Emit a MachineInstr with a register operand, an immediate, and a
/// result register in the given register class.
unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0,
bool Op0IsKill, uint64_t Imm);
/// \brief Emit a MachineInstr with one register operand and two immediate
/// operands.
unsigned fastEmitInst_rii(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0,
bool Op0IsKill, uint64_t Imm1, uint64_t Imm2);
/// \brief Emit a MachineInstr with two register operands and a result
/// register in the given register class.
unsigned fastEmitInst_rf(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0,
bool Op0IsKill, const ConstantFP *FPImm);
/// \brief Emit a MachineInstr with two register operands, an immediate, and a
/// result register in the given register class.
unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0,
bool Op0IsKill, unsigned Op1, bool Op1IsKill,
uint64_t Imm);
/// \brief Emit a MachineInstr with two register operands, two immediates
/// operands, and a result register in the given register class.
unsigned fastEmitInst_rrii(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0,
bool Op0IsKill, unsigned Op1, bool Op1IsKill,
uint64_t Imm1, uint64_t Imm2);
/// \brief Emit a MachineInstr with a single immediate operand, and a result
/// register in the given register class.
unsigned fastEmitInst_i(unsigned MachineInstrOpcode,
const TargetRegisterClass *RC, uint64_t Imm);
/// \brief Emit a MachineInstr with a two immediate operands.
unsigned fastEmitInst_ii(unsigned MachineInstrOpcode,
const TargetRegisterClass *RC, uint64_t Imm1,
uint64_t Imm2);
/// \brief Emit a MachineInstr for an extract_subreg from a specified index of
/// a superregister to a specified type.
unsigned fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill,
uint32_t Idx);
/// \brief Emit MachineInstrs to compute the value of Op with all but the
/// least significant bit set to zero.
unsigned fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill);
/// \brief Emit an unconditional branch to the given block, unless it is the
/// immediate (fall-through) successor, and update the CFG.
void fastEmitBranch(MachineBasicBlock *MBB, DebugLoc DL);
/// \brief Update the value map to include the new mapping for this
/// instruction, or insert an extra copy to get the result in a previous
/// determined register.
///
/// NOTE: This is only necessary because we might select a block that uses a
/// value before we select the block that defines the value. It might be
/// possible to fix this by selecting blocks in reverse postorder.
void updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs = 1);
unsigned createResultReg(const TargetRegisterClass *RC);
/// \brief Try to constrain Op so that it is usable by argument OpNum of the
/// provided MCInstrDesc. If this fails, create a new virtual register in the
/// correct class and COPY the value there.
unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
unsigned OpNum);
/// \brief Emit a constant in a register using target-specific logic, such as
/// constant pool loads.
virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; }
/// \brief Emit an alloca address in a register using target-specific logic.
virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; }
/// \brief Emit the floating-point constant +0.0 in a register using target-
/// specific logic.
virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) {
return 0;
}
/// \brief Check if \c Add is an add that can be safely folded into \c GEP.
///
/// \c Add can be folded into \c GEP if:
/// - \c Add is an add,
/// - \c Add's size matches \c GEP's,
/// - \c Add is in the same basic block as \c GEP, and
/// - \c Add has a constant operand.
bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
/// \brief Test whether the given value has exactly one use.
bool hasTrivialKill(const Value *V);
/// \brief Create a machine mem operand from the given instruction.
MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;
CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const;
bool lowerCallTo(const CallInst *CI, const char *SymName, unsigned NumArgs);
bool lowerCallTo(CallLoweringInfo &CLI);
bool isCommutativeIntrinsic(IntrinsicInst const *II) {
switch (II->getIntrinsicID()) {
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
return true;
default:
return false;
}
}
bool lowerCall(const CallInst *I);
/// \brief Select and emit code for a binary operator instruction, which has
/// an opcode which directly corresponds to the given ISD opcode.
bool selectBinaryOp(const User *I, unsigned ISDOpcode);
bool selectFNeg(const User *I);
bool selectGetElementPtr(const User *I);
bool selectStackmap(const CallInst *I);
bool selectPatchpoint(const CallInst *I);
bool selectCall(const User *Call);
bool selectIntrinsicCall(const IntrinsicInst *II);
bool selectBitCast(const User *I);
bool selectCast(const User *I, unsigned Opcode);
bool selectExtractValue(const User *I);
bool selectInsertValue(const User *I);
private:
/// \brief Handle PHI nodes in successor blocks.
///
/// Emit code to ensure constants are copied into registers when needed.
/// Remember the virtual registers that need to be added to the Machine PHI
/// nodes as input. We cannot just directly add them, because expansion might
/// result in multiple MBB's for one BB. As such, the start of the BB might
/// correspond to a different MBB than the end.
bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
/// \brief Helper for materializeRegForValue to materialize a constant in a
/// target-independent way.
unsigned materializeConstant(const Value *V, MVT VT);
/// \brief Helper for getRegForVale. This function is called when the value
/// isn't already available in a register and must be materialized with new
/// instructions.
unsigned materializeRegForValue(const Value *V, MVT VT);
/// \brief Clears LocalValueMap and moves the area for the new local variables
/// to the beginning of the block. It helps to avoid spilling cached variables
/// across heavy instructions like calls.
void flushLocalValueMap();
/// \brief Insertion point before trying to select the current instruction.
MachineBasicBlock::iterator SavedInsertPt;
/// \brief Add a stackmap or patchpoint intrinsic call's live variable
/// operands to a stackmap or patchpoint machine instruction.
bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
const CallInst *CI, unsigned StartIdx);
bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
const Value *Callee, bool ForceRetVoidTy,
CallLoweringInfo &CLI);
};
} // end namespace llvm
#endif