llvm-6502/lib/Target/AArch64/AArch64ISelLowering.cpp
Chandler Carruth 42e8630239 [Modules] Fix potential ODR violations by sinking the DEBUG_TYPE
definition below all of the header #include lines, lib/Target/...
edition.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206842 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-22 02:41:26 +00:00

5541 lines
207 KiB
C++

//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that AArch64 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64ISelLowering.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64TargetMachine.h"
#include "AArch64TargetObjectFile.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-isel"
static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
assert (TM.getSubtarget<AArch64Subtarget>().isTargetELF() &&
"unknown subtarget type");
return new AArch64ElfTargetObjectFile();
}
AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
: TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) {
const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
// SIMD compares set the entire lane's bits to 1
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// Scalar register <-> type mapping
addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
if (Subtarget->hasFPARMv8()) {
addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
}
if (Subtarget->hasNEON()) {
// And the vectors
addRegisterClass(MVT::v1i8, &AArch64::FPR8RegClass);
addRegisterClass(MVT::v1i16, &AArch64::FPR16RegClass);
addRegisterClass(MVT::v1i32, &AArch64::FPR32RegClass);
addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
addRegisterClass(MVT::v1f64, &AArch64::FPR64RegClass);
addRegisterClass(MVT::v8i8, &AArch64::FPR64RegClass);
addRegisterClass(MVT::v4i16, &AArch64::FPR64RegClass);
addRegisterClass(MVT::v2i32, &AArch64::FPR64RegClass);
addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
addRegisterClass(MVT::v2f32, &AArch64::FPR64RegClass);
addRegisterClass(MVT::v16i8, &AArch64::FPR128RegClass);
addRegisterClass(MVT::v8i16, &AArch64::FPR128RegClass);
addRegisterClass(MVT::v4i32, &AArch64::FPR128RegClass);
addRegisterClass(MVT::v2i64, &AArch64::FPR128RegClass);
addRegisterClass(MVT::v4f32, &AArch64::FPR128RegClass);
addRegisterClass(MVT::v2f64, &AArch64::FPR128RegClass);
}
computeRegisterProperties();
// We combine OR nodes for bitfield and NEON BSL operations.
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
setTargetDAGCombine(ISD::INTRINSIC_VOID);
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
// AArch64 does not have i1 loads, or much of anything for i1 really.
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
setStackPointerRegisterToSaveRestore(AArch64::XSP);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
// We'll lower globals to wrappers for selection.
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
// A64 instructions have the comparison predicate attached to the user of the
// result, but having a separate comparison is valuable for matching.
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::SELECT, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::SETCC, MVT::i32, Custom);
setOperationAction(ISD::SETCC, MVT::i64, Custom);
setOperationAction(ISD::SETCC, MVT::f32, Custom);
setOperationAction(ISD::SETCC, MVT::f64, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
// Legal floating-point operations.
setOperationAction(ISD::FABS, MVT::f32, Legal);
setOperationAction(ISD::FABS, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
setOperationAction(ISD::FNEG, MVT::f32, Legal);
setOperationAction(ISD::FNEG, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f32, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
setOperationAction(ISD::FSQRT, MVT::f32, Legal);
setOperationAction(ISD::FSQRT, MVT::f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
// Illegal floating-point operations.
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FEXP, MVT::f32, Expand);
setOperationAction(ISD::FEXP, MVT::f64, Expand);
setOperationAction(ISD::FEXP2, MVT::f32, Expand);
setOperationAction(ISD::FEXP2, MVT::f64, Expand);
setOperationAction(ISD::FLOG, MVT::f32, Expand);
setOperationAction(ISD::FLOG, MVT::f64, Expand);
setOperationAction(ISD::FLOG2, MVT::f32, Expand);
setOperationAction(ISD::FLOG2, MVT::f64, Expand);
setOperationAction(ISD::FLOG10, MVT::f32, Expand);
setOperationAction(ISD::FLOG10, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FPOWI, MVT::f32, Expand);
setOperationAction(ISD::FPOWI, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
// Virtually no operation on f128 is legal, but LLVM can't expand them when
// there's a valid register class, so we need custom operations in most cases.
setOperationAction(ISD::FABS, MVT::f128, Expand);
setOperationAction(ISD::FADD, MVT::f128, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
setOperationAction(ISD::FCOS, MVT::f128, Expand);
setOperationAction(ISD::FDIV, MVT::f128, Custom);
setOperationAction(ISD::FMA, MVT::f128, Expand);
setOperationAction(ISD::FMUL, MVT::f128, Custom);
setOperationAction(ISD::FNEG, MVT::f128, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
setOperationAction(ISD::FP_ROUND, MVT::f128, Expand);
setOperationAction(ISD::FPOW, MVT::f128, Expand);
setOperationAction(ISD::FREM, MVT::f128, Expand);
setOperationAction(ISD::FRINT, MVT::f128, Expand);
setOperationAction(ISD::FSIN, MVT::f128, Expand);
setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
setOperationAction(ISD::FSQRT, MVT::f128, Expand);
setOperationAction(ISD::FSUB, MVT::f128, Custom);
setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
setOperationAction(ISD::SETCC, MVT::f128, Custom);
setOperationAction(ISD::BR_CC, MVT::f128, Custom);
setOperationAction(ISD::SELECT, MVT::f128, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
// Lowering for many of the conversions is actually specified by the non-f128
// type. The LowerXXX function will be trivial when f128 isn't involved.
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
// i128 shift operation support
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
// This prevents LLVM trying to compress double constants into a floating
// constant-pool entry and trying to load from there. It's of doubtful benefit
// for A64: we'd need LDR followed by FCVT, I believe.
setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setExceptionPointerRegister(AArch64::X0);
setExceptionSelectorRegister(AArch64::X1);
if (Subtarget->hasNEON()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v1i64, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v16i8, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Expand);
setOperationAction(ISD::BUILD_VECTOR, MVT::v1i8, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v1i16, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v1i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v1f64, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i16, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i32, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f32, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1f64, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i32, Legal);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Legal);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Legal);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Legal);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i8, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i16, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
setOperationAction(ISD::SETCC, MVT::v8i8, Custom);
setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
setOperationAction(ISD::SETCC, MVT::v4i16, Custom);
setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
setOperationAction(ISD::SETCC, MVT::v2i32, Custom);
setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
setOperationAction(ISD::SETCC, MVT::v1i64, Custom);
setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
setOperationAction(ISD::SETCC, MVT::v2f32, Custom);
setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
setOperationAction(ISD::SETCC, MVT::v1f64, Custom);
setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
setOperationAction(ISD::FFLOOR, MVT::v2f32, Legal);
setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
setOperationAction(ISD::FFLOOR, MVT::v1f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
setOperationAction(ISD::FCEIL, MVT::v2f32, Legal);
setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
setOperationAction(ISD::FCEIL, MVT::v1f64, Legal);
setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::v2f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::v1f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
setOperationAction(ISD::FRINT, MVT::v2f32, Legal);
setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
setOperationAction(ISD::FRINT, MVT::v1f64, Legal);
setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
setOperationAction(ISD::FROUND, MVT::v2f32, Legal);
setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
setOperationAction(ISD::FROUND, MVT::v1f64, Legal);
setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v1i8, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v1i16, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v1i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v1i8, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v1i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v1i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v1i8, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v1i16, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v1i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v1i8, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v1i16, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v1i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v2i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Custom);
// Neon does not support vector divide/remainder operations except
// floating-point divide.
setOperationAction(ISD::SDIV, MVT::v1i8, Expand);
setOperationAction(ISD::SDIV, MVT::v8i8, Expand);
setOperationAction(ISD::SDIV, MVT::v16i8, Expand);
setOperationAction(ISD::SDIV, MVT::v1i16, Expand);
setOperationAction(ISD::SDIV, MVT::v4i16, Expand);
setOperationAction(ISD::SDIV, MVT::v8i16, Expand);
setOperationAction(ISD::SDIV, MVT::v1i32, Expand);
setOperationAction(ISD::SDIV, MVT::v2i32, Expand);
setOperationAction(ISD::SDIV, MVT::v4i32, Expand);
setOperationAction(ISD::SDIV, MVT::v1i64, Expand);
setOperationAction(ISD::SDIV, MVT::v2i64, Expand);
setOperationAction(ISD::UDIV, MVT::v1i8, Expand);
setOperationAction(ISD::UDIV, MVT::v8i8, Expand);
setOperationAction(ISD::UDIV, MVT::v16i8, Expand);
setOperationAction(ISD::UDIV, MVT::v1i16, Expand);
setOperationAction(ISD::UDIV, MVT::v4i16, Expand);
setOperationAction(ISD::UDIV, MVT::v8i16, Expand);
setOperationAction(ISD::UDIV, MVT::v1i32, Expand);
setOperationAction(ISD::UDIV, MVT::v2i32, Expand);
setOperationAction(ISD::UDIV, MVT::v4i32, Expand);
setOperationAction(ISD::UDIV, MVT::v1i64, Expand);
setOperationAction(ISD::UDIV, MVT::v2i64, Expand);
setOperationAction(ISD::SREM, MVT::v1i8, Expand);
setOperationAction(ISD::SREM, MVT::v8i8, Expand);
setOperationAction(ISD::SREM, MVT::v16i8, Expand);
setOperationAction(ISD::SREM, MVT::v1i16, Expand);
setOperationAction(ISD::SREM, MVT::v4i16, Expand);
setOperationAction(ISD::SREM, MVT::v8i16, Expand);
setOperationAction(ISD::SREM, MVT::v1i32, Expand);
setOperationAction(ISD::SREM, MVT::v2i32, Expand);
setOperationAction(ISD::SREM, MVT::v4i32, Expand);
setOperationAction(ISD::SREM, MVT::v1i64, Expand);
setOperationAction(ISD::SREM, MVT::v2i64, Expand);
setOperationAction(ISD::UREM, MVT::v1i8, Expand);
setOperationAction(ISD::UREM, MVT::v8i8, Expand);
setOperationAction(ISD::UREM, MVT::v16i8, Expand);
setOperationAction(ISD::UREM, MVT::v1i16, Expand);
setOperationAction(ISD::UREM, MVT::v4i16, Expand);
setOperationAction(ISD::UREM, MVT::v8i16, Expand);
setOperationAction(ISD::UREM, MVT::v1i32, Expand);
setOperationAction(ISD::UREM, MVT::v2i32, Expand);
setOperationAction(ISD::UREM, MVT::v4i32, Expand);
setOperationAction(ISD::UREM, MVT::v1i64, Expand);
setOperationAction(ISD::UREM, MVT::v2i64, Expand);
setOperationAction(ISD::FREM, MVT::v2f32, Expand);
setOperationAction(ISD::FREM, MVT::v4f32, Expand);
setOperationAction(ISD::FREM, MVT::v1f64, Expand);
setOperationAction(ISD::FREM, MVT::v2f64, Expand);
setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
setOperationAction(ISD::SELECT, MVT::v16i8, Expand);
setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
setOperationAction(ISD::SELECT, MVT::v8i16, Expand);
setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
setOperationAction(ISD::SELECT, MVT::v2i64, Expand);
setOperationAction(ISD::SELECT, MVT::v2f32, Expand);
setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
setOperationAction(ISD::SELECT, MVT::v2f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::v8i8, Custom);
setOperationAction(ISD::SELECT_CC, MVT::v16i8, Custom);
setOperationAction(ISD::SELECT_CC, MVT::v4i16, Custom);
setOperationAction(ISD::SELECT_CC, MVT::v8i16, Custom);
setOperationAction(ISD::SELECT_CC, MVT::v2i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::v4i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::v1i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::v2i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::v2f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::v4f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::v1f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::v2f64, Custom);
// Vector ExtLoad and TruncStore are expanded.
for (unsigned I = MVT::FIRST_VECTOR_VALUETYPE;
I <= MVT::LAST_VECTOR_VALUETYPE; ++I) {
MVT VT = (MVT::SimpleValueType) I;
setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, Expand);
for (unsigned II = MVT::FIRST_VECTOR_VALUETYPE;
II <= MVT::LAST_VECTOR_VALUETYPE; ++II) {
MVT VT1 = (MVT::SimpleValueType) II;
// A TruncStore has two vector types of the same number of elements
// and different element sizes.
if (VT.getVectorNumElements() == VT1.getVectorNumElements() &&
VT.getVectorElementType().getSizeInBits()
> VT1.getVectorElementType().getSizeInBits())
setTruncStoreAction(VT, VT1, Expand);
}
}
// There is no v1i64/v2i64 multiply, expand v1i64/v2i64 to GPR i64 multiply.
// FIXME: For a v2i64 multiply, we copy VPR to GPR and do 2 i64 multiplies,
// and then copy back to VPR. This solution may be optimized by Following 3
// NEON instructions:
// pmull v2.1q, v0.1d, v1.1d
// pmull2 v3.1q, v0.2d, v1.2d
// ins v2.d[1], v3.d[0]
// As currently we can't verify the correctness of such assumption, we can
// do such optimization in the future.
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
setOperationAction(ISD::MUL, MVT::v2i64, Expand);
setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
}
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::VSELECT);
MaskAndBranchFoldingIsLegal = true;
}
EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
// It's reasonably important that this value matches the "natural" legal
// promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
// in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
if (!VT.isVector()) return MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
unsigned &LdrOpc,
unsigned &StrOpc) {
static const unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
AArch64::LDXR_word, AArch64::LDXR_dword};
static const unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
AArch64::LDAXR_word, AArch64::LDAXR_dword};
static const unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
AArch64::STXR_word, AArch64::STXR_dword};
static const unsigned StoreRels[] = {AArch64::STLXR_byte,AArch64::STLXR_hword,
AArch64::STLXR_word, AArch64::STLXR_dword};
const unsigned *LoadOps, *StoreOps;
if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
LoadOps = LoadAcqs;
else
LoadOps = LoadBares;
if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
StoreOps = StoreRels;
else
StoreOps = StoreBares;
assert(isPowerOf2_32(Size) && Size <= 8 &&
"unsupported size for atomic binary op!");
LdrOpc = LoadOps[Log2_32(Size)];
StrOpc = StoreOps[Log2_32(Size)];
}
// FIXME: AArch64::DTripleRegClass and AArch64::QTripleRegClass don't really
// have value type mapped, and they are both being defined as MVT::untyped.
// Without knowing the MVT type, MachineLICM::getRegisterClassIDAndCost
// would fail to figure out the register pressure correctly.
std::pair<const TargetRegisterClass*, uint8_t>
AArch64TargetLowering::findRepresentativeClass(MVT VT) const{
const TargetRegisterClass *RRC = 0;
uint8_t Cost = 1;
switch (VT.SimpleTy) {
default:
return TargetLowering::findRepresentativeClass(VT);
case MVT::v4i64:
RRC = &AArch64::QPairRegClass;
Cost = 2;
break;
case MVT::v8i64:
RRC = &AArch64::QQuadRegClass;
Cost = 4;
break;
}
return std::make_pair(RRC, Cost);
}
MachineBasicBlock *
AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
unsigned Size,
unsigned BinOpcode) const {
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction *MF = BB->getParent();
MachineFunction::iterator It = BB;
++It;
unsigned dest = MI->getOperand(0).getReg();
unsigned ptr = MI->getOperand(1).getReg();
unsigned incr = MI->getOperand(2).getReg();
AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
DebugLoc dl = MI->getDebugLoc();
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
unsigned ldrOpc, strOpc;
getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, loopMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
const TargetRegisterClass *TRC
= Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
// loopMBB:
// ldxr dest, ptr
// <binop> scratch, dest, incr
// stxr stxr_status, scratch, ptr
// cbnz stxr_status, loopMBB
// fallthrough --> exitMBB
BB = loopMBB;
BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
if (BinOpcode) {
// All arithmetic operations we'll be creating are designed to take an extra
// shift or extend operand, which we can conveniently set to zero.
// Operand order needs to go the other way for NAND.
if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
BuildMI(BB, dl, TII->get(BinOpcode), scratch)
.addReg(incr).addReg(dest).addImm(0);
else
BuildMI(BB, dl, TII->get(BinOpcode), scratch)
.addReg(dest).addReg(incr).addImm(0);
}
// From the stxr, the register is GPR32; from the cmp it's GPR32wsp
unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
BuildMI(BB, dl, TII->get(AArch64::CBNZw))
.addReg(stxr_status).addMBB(loopMBB);
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
MI->eraseFromParent(); // The instruction is gone now.
return BB;
}
MachineBasicBlock *
AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size,
unsigned CmpOp,
A64CC::CondCodes Cond) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction *MF = BB->getParent();
MachineFunction::iterator It = BB;
++It;
unsigned dest = MI->getOperand(0).getReg();
unsigned ptr = MI->getOperand(1).getReg();
unsigned incr = MI->getOperand(2).getReg();
AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
unsigned oldval = dest;
DebugLoc dl = MI->getDebugLoc();
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
const TargetRegisterClass *TRC, *TRCsp;
if (Size == 8) {
TRC = &AArch64::GPR64RegClass;
TRCsp = &AArch64::GPR64xspRegClass;
} else {
TRC = &AArch64::GPR32RegClass;
TRCsp = &AArch64::GPR32wspRegClass;
}
unsigned ldrOpc, strOpc;
getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, loopMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
unsigned scratch = MRI.createVirtualRegister(TRC);
MRI.constrainRegClass(scratch, TRCsp);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
// loopMBB:
// ldxr dest, ptr
// cmp incr, dest (, sign extend if necessary)
// csel scratch, dest, incr, cond
// stxr stxr_status, scratch, ptr
// cbnz stxr_status, loopMBB
// fallthrough --> exitMBB
BB = loopMBB;
BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
// Build compare and cmov instructions.
MRI.constrainRegClass(incr, TRCsp);
BuildMI(BB, dl, TII->get(CmpOp))
.addReg(incr).addReg(oldval).addImm(0);
BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
scratch)
.addReg(oldval).addReg(incr).addImm(Cond);
unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
BuildMI(BB, dl, TII->get(strOpc), stxr_status)
.addReg(scratch).addReg(ptr);
BuildMI(BB, dl, TII->get(AArch64::CBNZw))
.addReg(stxr_status).addMBB(loopMBB);
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
MI->eraseFromParent(); // The instruction is gone now.
return BB;
}
MachineBasicBlock *
AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size) const {
unsigned dest = MI->getOperand(0).getReg();
unsigned ptr = MI->getOperand(1).getReg();
unsigned oldval = MI->getOperand(2).getReg();
unsigned newval = MI->getOperand(3).getReg();
AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
const TargetRegisterClass *TRCsp;
TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
unsigned ldrOpc, strOpc;
getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
MachineFunction *MF = BB->getParent();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It; // insert the new blocks after the current block
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, loop1MBB);
MF->insert(It, loop2MBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// thisMBB:
// ...
// fallthrough --> loop1MBB
BB->addSuccessor(loop1MBB);
// loop1MBB:
// ldxr dest, [ptr]
// cmp dest, oldval
// b.ne exitMBB
BB = loop1MBB;
BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
MRI.constrainRegClass(dest, TRCsp);
BuildMI(BB, dl, TII->get(CmpOp))
.addReg(dest).addReg(oldval).addImm(0);
BuildMI(BB, dl, TII->get(AArch64::Bcc))
.addImm(A64CC::NE).addMBB(exitMBB);
BB->addSuccessor(loop2MBB);
BB->addSuccessor(exitMBB);
// loop2MBB:
// strex stxr_status, newval, [ptr]
// cbnz stxr_status, loop1MBB
BB = loop2MBB;
unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
BuildMI(BB, dl, TII->get(AArch64::CBNZw))
.addReg(stxr_status).addMBB(loop1MBB);
BB->addSuccessor(loop1MBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
MI->eraseFromParent(); // The instruction is gone now.
return BB;
}
MachineBasicBlock *
AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
MachineBasicBlock *MBB) const {
// We materialise the F128CSEL pseudo-instruction using conditional branches
// and loads, giving an instruciton sequence like:
// str q0, [sp]
// b.ne IfTrue
// b Finish
// IfTrue:
// str q1, [sp]
// Finish:
// ldr q0, [sp]
//
// Using virtual registers would probably not be beneficial since COPY
// instructions are expensive for f128 (there's no actual instruction to
// implement them).
//
// An alternative would be to do an integer-CSEL on some address. E.g.:
// mov x0, sp
// add x1, sp, #16
// str q0, [x0]
// str q1, [x1]
// csel x0, x0, x1, ne
// ldr q0, [x0]
//
// It's unclear which approach is actually optimal.
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineFunction *MF = MBB->getParent();
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
DebugLoc DL = MI->getDebugLoc();
MachineFunction::iterator It = MBB;
++It;
unsigned DestReg = MI->getOperand(0).getReg();
unsigned IfTrueReg = MI->getOperand(1).getReg();
unsigned IfFalseReg = MI->getOperand(2).getReg();
unsigned CondCode = MI->getOperand(3).getImm();
bool NZCVKilled = MI->getOperand(4).isKill();
MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, TrueBB);
MF->insert(It, EndBB);
// Transfer rest of current basic-block to EndBB
EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
MBB->end());
EndBB->transferSuccessorsAndUpdatePHIs(MBB);
// We need somewhere to store the f128 value needed.
int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
// [... start of incoming MBB ...]
// str qIFFALSE, [sp]
// b.cc IfTrue
// b Done
BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
.addReg(IfFalseReg)
.addFrameIndex(ScratchFI)
.addImm(0);
BuildMI(MBB, DL, TII->get(AArch64::Bcc))
.addImm(CondCode)
.addMBB(TrueBB);
BuildMI(MBB, DL, TII->get(AArch64::Bimm))
.addMBB(EndBB);
MBB->addSuccessor(TrueBB);
MBB->addSuccessor(EndBB);
if (!NZCVKilled) {
// NZCV is live-through TrueBB.
TrueBB->addLiveIn(AArch64::NZCV);
EndBB->addLiveIn(AArch64::NZCV);
}
// IfTrue:
// str qIFTRUE, [sp]
BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
.addReg(IfTrueReg)
.addFrameIndex(ScratchFI)
.addImm(0);
// Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
// blocks.
TrueBB->addSuccessor(EndBB);
// Done:
// ldr qDEST, [sp]
// [... rest of incoming MBB ...]
MachineInstr *StartOfEnd = EndBB->begin();
BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
.addFrameIndex(ScratchFI)
.addImm(0);
MI->eraseFromParent();
return EndBB;
}
MachineBasicBlock *
AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) const {
switch (MI->getOpcode()) {
default: llvm_unreachable("Unhandled instruction with custom inserter");
case AArch64::F128CSEL:
return EmitF128CSEL(MI, MBB);
case AArch64::ATOMIC_LOAD_ADD_I8:
return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
case AArch64::ATOMIC_LOAD_ADD_I16:
return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
case AArch64::ATOMIC_LOAD_ADD_I32:
return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
case AArch64::ATOMIC_LOAD_ADD_I64:
return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
case AArch64::ATOMIC_LOAD_SUB_I8:
return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
case AArch64::ATOMIC_LOAD_SUB_I16:
return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
case AArch64::ATOMIC_LOAD_SUB_I32:
return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
case AArch64::ATOMIC_LOAD_SUB_I64:
return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
case AArch64::ATOMIC_LOAD_AND_I8:
return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
case AArch64::ATOMIC_LOAD_AND_I16:
return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
case AArch64::ATOMIC_LOAD_AND_I32:
return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
case AArch64::ATOMIC_LOAD_AND_I64:
return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
case AArch64::ATOMIC_LOAD_OR_I8:
return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
case AArch64::ATOMIC_LOAD_OR_I16:
return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
case AArch64::ATOMIC_LOAD_OR_I32:
return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
case AArch64::ATOMIC_LOAD_OR_I64:
return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
case AArch64::ATOMIC_LOAD_XOR_I8:
return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
case AArch64::ATOMIC_LOAD_XOR_I16:
return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
case AArch64::ATOMIC_LOAD_XOR_I32:
return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
case AArch64::ATOMIC_LOAD_XOR_I64:
return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
case AArch64::ATOMIC_LOAD_NAND_I8:
return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
case AArch64::ATOMIC_LOAD_NAND_I16:
return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
case AArch64::ATOMIC_LOAD_NAND_I32:
return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
case AArch64::ATOMIC_LOAD_NAND_I64:
return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
case AArch64::ATOMIC_LOAD_MIN_I8:
return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
case AArch64::ATOMIC_LOAD_MIN_I16:
return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
case AArch64::ATOMIC_LOAD_MIN_I32:
return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
case AArch64::ATOMIC_LOAD_MIN_I64:
return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
case AArch64::ATOMIC_LOAD_MAX_I8:
return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
case AArch64::ATOMIC_LOAD_MAX_I16:
return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
case AArch64::ATOMIC_LOAD_MAX_I32:
return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
case AArch64::ATOMIC_LOAD_MAX_I64:
return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
case AArch64::ATOMIC_LOAD_UMIN_I8:
return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
case AArch64::ATOMIC_LOAD_UMIN_I16:
return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
case AArch64::ATOMIC_LOAD_UMIN_I32:
return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
case AArch64::ATOMIC_LOAD_UMIN_I64:
return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
case AArch64::ATOMIC_LOAD_UMAX_I8:
return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
case AArch64::ATOMIC_LOAD_UMAX_I16:
return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
case AArch64::ATOMIC_LOAD_UMAX_I32:
return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
case AArch64::ATOMIC_LOAD_UMAX_I64:
return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
case AArch64::ATOMIC_SWAP_I8:
return emitAtomicBinary(MI, MBB, 1, 0);
case AArch64::ATOMIC_SWAP_I16:
return emitAtomicBinary(MI, MBB, 2, 0);
case AArch64::ATOMIC_SWAP_I32:
return emitAtomicBinary(MI, MBB, 4, 0);
case AArch64::ATOMIC_SWAP_I64:
return emitAtomicBinary(MI, MBB, 8, 0);
case AArch64::ATOMIC_CMP_SWAP_I8:
return emitAtomicCmpSwap(MI, MBB, 1);
case AArch64::ATOMIC_CMP_SWAP_I16:
return emitAtomicCmpSwap(MI, MBB, 2);
case AArch64::ATOMIC_CMP_SWAP_I32:
return emitAtomicCmpSwap(MI, MBB, 4);
case AArch64::ATOMIC_CMP_SWAP_I64:
return emitAtomicCmpSwap(MI, MBB, 8);
}
}
const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
case AArch64ISD::BR_CC: return "AArch64ISD::BR_CC";
case AArch64ISD::Call: return "AArch64ISD::Call";
case AArch64ISD::FPMOV: return "AArch64ISD::FPMOV";
case AArch64ISD::GOTLoad: return "AArch64ISD::GOTLoad";
case AArch64ISD::BFI: return "AArch64ISD::BFI";
case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
case AArch64ISD::Ret: return "AArch64ISD::Ret";
case AArch64ISD::SBFX: return "AArch64ISD::SBFX";
case AArch64ISD::SELECT_CC: return "AArch64ISD::SELECT_CC";
case AArch64ISD::SETCC: return "AArch64ISD::SETCC";
case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
case AArch64ISD::TLSDESCCALL: return "AArch64ISD::TLSDESCCALL";
case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall";
case AArch64ISD::NEON_MOVIMM:
return "AArch64ISD::NEON_MOVIMM";
case AArch64ISD::NEON_MVNIMM:
return "AArch64ISD::NEON_MVNIMM";
case AArch64ISD::NEON_FMOVIMM:
return "AArch64ISD::NEON_FMOVIMM";
case AArch64ISD::NEON_CMP:
return "AArch64ISD::NEON_CMP";
case AArch64ISD::NEON_CMPZ:
return "AArch64ISD::NEON_CMPZ";
case AArch64ISD::NEON_TST:
return "AArch64ISD::NEON_TST";
case AArch64ISD::NEON_QSHLs:
return "AArch64ISD::NEON_QSHLs";
case AArch64ISD::NEON_QSHLu:
return "AArch64ISD::NEON_QSHLu";
case AArch64ISD::NEON_VDUP:
return "AArch64ISD::NEON_VDUP";
case AArch64ISD::NEON_VDUPLANE:
return "AArch64ISD::NEON_VDUPLANE";
case AArch64ISD::NEON_REV16:
return "AArch64ISD::NEON_REV16";
case AArch64ISD::NEON_REV32:
return "AArch64ISD::NEON_REV32";
case AArch64ISD::NEON_REV64:
return "AArch64ISD::NEON_REV64";
case AArch64ISD::NEON_UZP1:
return "AArch64ISD::NEON_UZP1";
case AArch64ISD::NEON_UZP2:
return "AArch64ISD::NEON_UZP2";
case AArch64ISD::NEON_ZIP1:
return "AArch64ISD::NEON_ZIP1";
case AArch64ISD::NEON_ZIP2:
return "AArch64ISD::NEON_ZIP2";
case AArch64ISD::NEON_TRN1:
return "AArch64ISD::NEON_TRN1";
case AArch64ISD::NEON_TRN2:
return "AArch64ISD::NEON_TRN2";
case AArch64ISD::NEON_LD1_UPD:
return "AArch64ISD::NEON_LD1_UPD";
case AArch64ISD::NEON_LD2_UPD:
return "AArch64ISD::NEON_LD2_UPD";
case AArch64ISD::NEON_LD3_UPD:
return "AArch64ISD::NEON_LD3_UPD";
case AArch64ISD::NEON_LD4_UPD:
return "AArch64ISD::NEON_LD4_UPD";
case AArch64ISD::NEON_ST1_UPD:
return "AArch64ISD::NEON_ST1_UPD";
case AArch64ISD::NEON_ST2_UPD:
return "AArch64ISD::NEON_ST2_UPD";
case AArch64ISD::NEON_ST3_UPD:
return "AArch64ISD::NEON_ST3_UPD";
case AArch64ISD::NEON_ST4_UPD:
return "AArch64ISD::NEON_ST4_UPD";
case AArch64ISD::NEON_LD1x2_UPD:
return "AArch64ISD::NEON_LD1x2_UPD";
case AArch64ISD::NEON_LD1x3_UPD:
return "AArch64ISD::NEON_LD1x3_UPD";
case AArch64ISD::NEON_LD1x4_UPD:
return "AArch64ISD::NEON_LD1x4_UPD";
case AArch64ISD::NEON_ST1x2_UPD:
return "AArch64ISD::NEON_ST1x2_UPD";
case AArch64ISD::NEON_ST1x3_UPD:
return "AArch64ISD::NEON_ST1x3_UPD";
case AArch64ISD::NEON_ST1x4_UPD:
return "AArch64ISD::NEON_ST1x4_UPD";
case AArch64ISD::NEON_LD2DUP:
return "AArch64ISD::NEON_LD2DUP";
case AArch64ISD::NEON_LD3DUP:
return "AArch64ISD::NEON_LD3DUP";
case AArch64ISD::NEON_LD4DUP:
return "AArch64ISD::NEON_LD4DUP";
case AArch64ISD::NEON_LD2DUP_UPD:
return "AArch64ISD::NEON_LD2DUP_UPD";
case AArch64ISD::NEON_LD3DUP_UPD:
return "AArch64ISD::NEON_LD3DUP_UPD";
case AArch64ISD::NEON_LD4DUP_UPD:
return "AArch64ISD::NEON_LD4DUP_UPD";
case AArch64ISD::NEON_LD2LN_UPD:
return "AArch64ISD::NEON_LD2LN_UPD";
case AArch64ISD::NEON_LD3LN_UPD:
return "AArch64ISD::NEON_LD3LN_UPD";
case AArch64ISD::NEON_LD4LN_UPD:
return "AArch64ISD::NEON_LD4LN_UPD";
case AArch64ISD::NEON_ST2LN_UPD:
return "AArch64ISD::NEON_ST2LN_UPD";
case AArch64ISD::NEON_ST3LN_UPD:
return "AArch64ISD::NEON_ST3LN_UPD";
case AArch64ISD::NEON_ST4LN_UPD:
return "AArch64ISD::NEON_ST4LN_UPD";
case AArch64ISD::NEON_VEXTRACT:
return "AArch64ISD::NEON_VEXTRACT";
default:
return NULL;
}
}
static const MCPhysReg AArch64FPRArgRegs[] = {
AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
};
static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
static const MCPhysReg AArch64ArgRegs[] = {
AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
};
static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
// Mark all remaining general purpose registers as allocated. We don't
// backtrack: if (for example) an i128 gets put on the stack, no subsequent
// i64 will go in registers (C.11).
for (unsigned i = 0; i < NumArgRegs; ++i)
State.AllocateReg(AArch64ArgRegs[i]);
return false;
}
#include "AArch64GenCallingConv.inc"
CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
switch(CC) {
default: llvm_unreachable("Unsupported calling convention");
case CallingConv::Fast:
case CallingConv::C:
return CC_A64_APCS;
}
}
void
AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
SDLoc DL, SDValue &Chain) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
AArch64MachineFunctionInfo *FuncInfo
= MF.getInfo<AArch64MachineFunctionInfo>();
SmallVector<SDValue, 8> MemOps;
unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
NumArgRegs);
unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
NumFPRArgRegs);
unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
int GPRIdx = 0;
if (GPRSaveSize != 0) {
GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
MachinePointerInfo::getStack(i * 8),
false, false, 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
DAG.getConstant(8, getPointerTy()));
}
}
if (getSubtarget()->hasFPARMv8()) {
unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
int FPRIdx = 0;
// According to the AArch64 Procedure Call Standard, section B.1/B.3, we
// can omit a register save area if we know we'll never use registers of
// that class.
if (FPRSaveSize != 0) {
FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
&AArch64::FPR128RegClass);
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
MachinePointerInfo::getStack(i * 16),
false, false, 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
DAG.getConstant(16, getPointerTy()));
}
}
FuncInfo->setVariadicFPRIdx(FPRIdx);
FuncInfo->setVariadicFPRSize(FPRSaveSize);
}
unsigned StackOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), 8);
int StackIdx = MFI->CreateFixedObject(8, StackOffset, true);
FuncInfo->setVariadicStackIdx(StackIdx);
FuncInfo->setVariadicGPRIdx(GPRIdx);
FuncInfo->setVariadicGPRSize(GPRSaveSize);
if (!MemOps.empty()) {
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
MemOps.size());
}
}
SDValue
AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
AArch64MachineFunctionInfo *FuncInfo
= MF.getInfo<AArch64MachineFunctionInfo>();
MachineFrameInfo *MFI = MF.getFrameInfo();
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
SmallVector<SDValue, 16> ArgValues;
SDValue ArgValue;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
ISD::ArgFlagsTy Flags = Ins[i].Flags;
if (Flags.isByVal()) {
// Byval is used for small structs and HFAs in the PCS, but the system
// should work in a non-compliant manner for larger structs.
EVT PtrTy = getPointerTy();
int Size = Flags.getByValSize();
unsigned NumRegs = (Size + 7) / 8;
uint32_t BEAlign = 0;
if (Size < 8 && !getSubtarget()->isLittle())
BEAlign = 8-Size;
unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
VA.getLocMemOffset() + BEAlign,
false);
SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
InVals.push_back(FrameIdxN);
continue;
} else if (VA.isRegLoc()) {
MVT RegVT = VA.getLocVT();
const TargetRegisterClass *RC = getRegClassFor(RegVT);
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
} else { // VA.isRegLoc()
assert(VA.isMemLoc());
int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
VA.getLocMemOffset(), true);
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
MachinePointerInfo::getFixedStack(FI),
false, false, false, 0);
}
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
break;
case CCValAssign::SExt:
case CCValAssign::ZExt:
case CCValAssign::AExt:
case CCValAssign::FPExt: {
unsigned DestSize = VA.getValVT().getSizeInBits();
unsigned DestSubReg;
switch (DestSize) {
case 8: DestSubReg = AArch64::sub_8; break;
case 16: DestSubReg = AArch64::sub_16; break;
case 32: DestSubReg = AArch64::sub_32; break;
case 64: DestSubReg = AArch64::sub_64; break;
default: llvm_unreachable("Unexpected argument promotion");
}
ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
VA.getValVT(), ArgValue,
DAG.getTargetConstant(DestSubReg, MVT::i32)),
0);
break;
}
}
InVals.push_back(ArgValue);
}
if (isVarArg)
SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
unsigned StackArgSize = CCInfo.getNextStackOffset();
if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
// This is a non-standard ABI so by fiat I say we're allowed to make full
// use of the stack area to be popped, which must be aligned to 16 bytes in
// any case:
StackArgSize = RoundUpToAlignment(StackArgSize, 16);
// If we're expected to restore the stack (e.g. fastcc) then we'll be adding
// a multiple of 16.
FuncInfo->setArgumentStackToRestore(StackArgSize);
// This realignment carries over to the available bytes below. Our own
// callers will guarantee the space is free by giving an aligned value to
// CALLSEQ_START.
}
// Even if we're not expected to free up the space, it's useful to know how
// much is there while considering tail calls (because we can reuse it).
FuncInfo->setBytesInStackArgArea(StackArgSize);
return Chain;
}
SDValue
AArch64TargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc dl, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to a location.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slots.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
// Analyze outgoing return values.
CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
// PCS: "If the type, T, of the result of a function is such that
// void func(T arg) would require that arg be passed as a value in a
// register (or set of registers) according to the rules in 5.4, then the
// result is returned in the same registers as would be used for such an
// argument.
//
// Otherwise, the caller shall reserve a block of memory of sufficient
// size and alignment to hold the result. The address of the memory block
// shall be passed as an additional argument to the function in x8."
//
// This is implemented in two places. The register-return values are dealt
// with here, more complex returns are passed as an sret parameter, which
// means we don't have to worry about it during actual return.
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
SDValue Arg = OutVals[i];
// There's no convenient note in the ABI about this as there is for normal
// arguments, but it says return values are passed in the same registers as
// an argument would be. I believe that includes the comments about
// unspecified higher bits, putting the burden of widening on the *caller*
// for return values.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info");
case CCValAssign::Full: break;
case CCValAssign::SExt:
case CCValAssign::ZExt:
case CCValAssign::AExt:
// Floating-point values should only be extended when they're going into
// memory, which can't happen here so an integer extend is acceptable.
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other,
&RetOps[0], RetOps.size());
}
unsigned AArch64TargetLowering::getByValTypeAlignment(Type *Ty) const {
// This is a new backend. For anything more precise than this a FE should
// set an explicit alignment.
return 4;
}
SDValue
AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
AArch64MachineFunctionInfo *FuncInfo
= MF.getInfo<AArch64MachineFunctionInfo>();
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
bool IsSibCall = false;
if (IsTailCall) {
IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
Outs, OutVals, Ins, DAG);
// A sibling call is one where we're under the usual C ABI and not planning
// to change that but can still do a tail call:
if (!TailCallOpt && IsTailCall)
IsSibCall = true;
}
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
// On AArch64 (and all other architectures I'm aware of) the most this has to
// do is adjust the stack pointer.
unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
if (IsSibCall) {
// Since we're not changing the ABI to make this a tail call, the memory
// operands are already available in the caller's incoming argument space.
NumBytes = 0;
}
// FPDiff is the byte offset of the call's argument area from the callee's.
// Stores to callee stack arguments will be placed in FixedStackSlots offset
// by this amount for a tail call. In a sibling call it must be 0 because the
// caller will deallocate the entire stack and the callee still expects its
// arguments to begin at SP+0. Completely unused for non-tail calls.
int FPDiff = 0;
if (IsTailCall && !IsSibCall) {
unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
// FPDiff will be negative if this tail call requires more space than we
// would automatically have in our incoming argument space. Positive if we
// can actually shrink the stack.
FPDiff = NumReusableBytes - NumBytes;
// The stack pointer must be 16-byte aligned at all times it's used for a
// memory operation, which in practice means at *all* times and in
// particular across call boundaries. Therefore our own arguments started at
// a 16-byte aligned SP and the delta applied for the tail call should
// satisfy the same constraint.
assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
}
if (!IsSibCall)
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
dl);
SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
getPointerTy());
SmallVector<SDValue, 8> MemOpChains;
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
SDValue Arg = OutVals[i];
// Callee does the actual widening, so all extensions just use an implicit
// definition of the rest of the Loc. Aesthetically, this would be nicer as
// an ANY_EXTEND, but that isn't valid for floating-point types and this
// alternative works on integer types too.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
case CCValAssign::ZExt:
case CCValAssign::AExt:
case CCValAssign::FPExt: {
unsigned SrcSize = VA.getValVT().getSizeInBits();
unsigned SrcSubReg;
switch (SrcSize) {
case 8: SrcSubReg = AArch64::sub_8; break;
case 16: SrcSubReg = AArch64::sub_16; break;
case 32: SrcSubReg = AArch64::sub_32; break;
case 64: SrcSubReg = AArch64::sub_64; break;
default: llvm_unreachable("Unexpected argument promotion");
}
Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
VA.getLocVT(),
DAG.getUNDEF(VA.getLocVT()),
Arg,
DAG.getTargetConstant(SrcSubReg, MVT::i32)),
0);
break;
}
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
if (VA.isRegLoc()) {
// A normal register (sub-) argument. For now we just note it down because
// we want to copy things into registers as late as possible to avoid
// register-pressure (and possibly worse).
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
assert(VA.isMemLoc() && "unexpected argument location");
SDValue DstAddr;
MachinePointerInfo DstInfo;
if (IsTailCall) {
uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
VA.getLocVT().getSizeInBits();
OpSize = (OpSize + 7) / 8;
int32_t Offset = VA.getLocMemOffset() + FPDiff;
int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
DstAddr = DAG.getFrameIndex(FI, getPointerTy());
DstInfo = MachinePointerInfo::getFixedStack(FI);
// Make sure any stack arguments overlapping with where we're storing are
// loaded before this eventual operation. Otherwise they'll be clobbered.
Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
} else {
uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize()*8 :
VA.getLocVT().getSizeInBits();
OpSize = (OpSize + 7) / 8;
uint32_t BEAlign = 0;
if (OpSize < 8 && !getSubtarget()->isLittle())
BEAlign = 8-OpSize;
SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + BEAlign);
DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
}
if (Flags.isByVal()) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
Flags.getByValAlign(),
/*isVolatile = */ false,
/*alwaysInline = */ false,
DstInfo, MachinePointerInfo());
MemOpChains.push_back(Cpy);
} else {
// Normal stack argument, put it where it's needed.
SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
false, false, 0);
MemOpChains.push_back(Store);
}
}
// The loads and stores generated above shouldn't clash with each
// other. Combining them with this TokenFactor notes that fact for the rest of
// the backend.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Most of the rest of the instructions need to be glued together; we don't
// want assignments to actual registers used by a call to be rearranged by a
// well-meaning scheduler.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// The linker is responsible for inserting veneers when necessary to put a
// function call destination in range, so we don't need to bother with a
// wrapper here.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = G->getGlobal();
Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
const char *Sym = S->getSymbol();
Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
}
// We don't usually want to end the call-sequence here because we would tidy
// the frame up *after* the call, however in the ABI-changing tail-call case
// we've carefully laid out the parameters so that when sp is reset they'll be
// in the correct location.
if (IsTailCall && !IsSibCall) {
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(0, true), InFlag, dl);
InFlag = Chain.getValue(1);
}
// We produce the following DAG scheme for the actual call instruction:
// (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
//
// Most arguments aren't going to be used and just keep the values live as
// far as LLVM is concerned. It's expected to be selected as simply "bl
// callee" (for a direct, non-tail call).
std::vector<SDValue> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
if (IsTailCall) {
// Each tail call may have to adjust the stack by a different amount, so
// this information must travel along with the operation for eventual
// consumption by emitEpilogue.
Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
}
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers. This
// is used later in codegen to constrain register-allocation.
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// If we needed glue, put it in as the last argument.
if (InFlag.getNode())
Ops.push_back(InFlag);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
if (IsTailCall) {
return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
}
Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
// Now we can reclaim the stack, just as well do it before working out where
// our return value is.
if (!IsSibCall) {
uint64_t CalleePopBytes
= DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(CalleePopBytes, true),
InFlag, dl);
InFlag = Chain.getValue(1);
}
return LowerCallResult(Chain, InFlag, CallConv,
IsVarArg, Ins, dl, DAG, InVals);
}
SDValue
AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign VA = RVLocs[i];
// Return values that are too big to fit into registers should use an sret
// pointer, so this can be a lot simpler than the main argument code.
assert(VA.isRegLoc() && "Memory locations not expected for call return");
SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
InFlag);
Chain = Val.getValue(1);
InFlag = Val.getValue(2);
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
break;
case CCValAssign::ZExt:
case CCValAssign::SExt:
case CCValAssign::AExt:
// Floating-point arguments only get extended/truncated if they're going
// in memory, so using the integer operation is acceptable here.
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
break;
}
InVals.push_back(Val);
}
return Chain;
}
bool
AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool IsVarArg,
bool IsCalleeStructRet,
bool IsCallerStructRet,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const {
// For CallingConv::C this function knows whether the ABI needs
// changing. That's not true for other conventions so they will have to opt in
// manually.
if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
return false;
const MachineFunction &MF = DAG.getMachineFunction();
const Function *CallerF = MF.getFunction();
CallingConv::ID CallerCC = CallerF->getCallingConv();
bool CCMatch = CallerCC == CalleeCC;
// Byval parameters hand the function a pointer directly into the stack area
// we want to reuse during a tail call. Working around this *is* possible (see
// X86) but less efficient and uglier in LowerCall.
for (Function::const_arg_iterator i = CallerF->arg_begin(),
e = CallerF->arg_end(); i != e; ++i)
if (i->hasByValAttr())
return false;
if (getTargetMachine().Options.GuaranteedTailCallOpt) {
if (IsTailCallConvention(CalleeCC) && CCMatch)
return true;
return false;
}
// Now we search for cases where we can use a tail call without changing the
// ABI. Sibcall is used in some places (particularly gcc) to refer to this
// concept.
// I want anyone implementing a new calling convention to think long and hard
// about this assert.
assert((!IsVarArg || CalleeCC == CallingConv::C)
&& "Unexpected variadic calling convention");
if (IsVarArg && !Outs.empty()) {
// At least two cases here: if caller is fastcc then we can't have any
// memory arguments (we'd be expected to clean up the stack afterwards). If
// caller is C then we could potentially use its argument area.
// FIXME: for now we take the most conservative of these in both cases:
// disallow all variadic memory operands.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
if (!ArgLocs[i].isRegLoc())
return false;
}
// If the calling conventions do not match, then we'd better make sure the
// results are returned in the same way as what the caller expects.
if (!CCMatch) {
SmallVector<CCValAssign, 16> RVLocs1;
CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
getTargetMachine(), RVLocs1, *DAG.getContext());
CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
SmallVector<CCValAssign, 16> RVLocs2;
CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
getTargetMachine(), RVLocs2, *DAG.getContext());
CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
if (RVLocs1.size() != RVLocs2.size())
return false;
for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
return false;
if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
return false;
if (RVLocs1[i].isRegLoc()) {
if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
return false;
} else {
if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
return false;
}
}
}
// Nothing more to check if the callee is taking no arguments
if (Outs.empty())
return true;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
const AArch64MachineFunctionInfo *FuncInfo
= MF.getInfo<AArch64MachineFunctionInfo>();
// If the stack arguments for this call would fit into our own save area then
// the call can be made tail.
return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
}
bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
bool TailCallOpt) const {
return CallCC == CallingConv::Fast && TailCallOpt;
}
bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
return CallCC == CallingConv::Fast;
}
SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
SelectionDAG &DAG,
MachineFrameInfo *MFI,
int ClobberedFI) const {
SmallVector<SDValue, 8> ArgChains;
int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
// Include the original chain at the beginning of the list. When this is
// used by target LowerCall hooks, this helps legalize find the
// CALLSEQ_BEGIN node.
ArgChains.push_back(Chain);
// Add a chain value for each stack argument corresponding
for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
if (FI->getIndex() < 0) {
int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
int64_t InLastByte = InFirstByte;
InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
(FirstByte <= InFirstByte && InFirstByte <= LastByte))
ArgChains.push_back(SDValue(L, 1));
}
// Build a tokenfactor for all the chains.
return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other,
&ArgChains[0], ArgChains.size());
}
static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
switch (CC) {
case ISD::SETEQ: return A64CC::EQ;
case ISD::SETGT: return A64CC::GT;
case ISD::SETGE: return A64CC::GE;
case ISD::SETLT: return A64CC::LT;
case ISD::SETLE: return A64CC::LE;
case ISD::SETNE: return A64CC::NE;
case ISD::SETUGT: return A64CC::HI;
case ISD::SETUGE: return A64CC::HS;
case ISD::SETULT: return A64CC::LO;
case ISD::SETULE: return A64CC::LS;
default: llvm_unreachable("Unexpected condition code");
}
}
bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
// icmp is implemented using adds/subs immediate, which take an unsigned
// 12-bit immediate, optionally shifted left by 12 bits.
// Symmetric by using adds/subs
if (Val < 0)
Val = -Val;
return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
}
SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
ISD::CondCode CC, SDValue &A64cc,
SelectionDAG &DAG, SDLoc &dl) const {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
int64_t C = 0;
EVT VT = RHSC->getValueType(0);
bool knownInvalid = false;
// I'm not convinced the rest of LLVM handles these edge cases properly, but
// we can at least get it right.
if (isSignedIntSetCC(CC)) {
C = RHSC->getSExtValue();
} else if (RHSC->getZExtValue() > INT64_MAX) {
// A 64-bit constant not representable by a signed 64-bit integer is far
// too big to fit into a SUBS immediate anyway.
knownInvalid = true;
} else {
C = RHSC->getZExtValue();
}
if (!knownInvalid && !isLegalICmpImmediate(C)) {
// Constant does not fit, try adjusting it by one?
switch (CC) {
default: break;
case ISD::SETLT:
case ISD::SETGE:
if (isLegalICmpImmediate(C-1)) {
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
RHS = DAG.getConstant(C-1, VT);
}
break;
case ISD::SETULT:
case ISD::SETUGE:
if (isLegalICmpImmediate(C-1)) {
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
RHS = DAG.getConstant(C-1, VT);
}
break;
case ISD::SETLE:
case ISD::SETGT:
if (isLegalICmpImmediate(C+1)) {
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
RHS = DAG.getConstant(C+1, VT);
}
break;
case ISD::SETULE:
case ISD::SETUGT:
if (isLegalICmpImmediate(C+1)) {
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
RHS = DAG.getConstant(C+1, VT);
}
break;
}
}
}
A64CC::CondCodes CondCode = IntCCToA64CC(CC);
A64cc = DAG.getConstant(CondCode, MVT::i32);
return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
DAG.getCondCode(CC));
}
static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
A64CC::CondCodes &Alternative) {
A64CC::CondCodes CondCode = A64CC::Invalid;
Alternative = A64CC::Invalid;
switch (CC) {
default: llvm_unreachable("Unknown FP condition!");
case ISD::SETEQ:
case ISD::SETOEQ: CondCode = A64CC::EQ; break;
case ISD::SETGT:
case ISD::SETOGT: CondCode = A64CC::GT; break;
case ISD::SETGE:
case ISD::SETOGE: CondCode = A64CC::GE; break;
case ISD::SETOLT: CondCode = A64CC::MI; break;
case ISD::SETOLE: CondCode = A64CC::LS; break;
case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
case ISD::SETO: CondCode = A64CC::VC; break;
case ISD::SETUO: CondCode = A64CC::VS; break;
case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
case ISD::SETUGT: CondCode = A64CC::HI; break;
case ISD::SETUGE: CondCode = A64CC::PL; break;
case ISD::SETLT:
case ISD::SETULT: CondCode = A64CC::LT; break;
case ISD::SETLE:
case ISD::SETULE: CondCode = A64CC::LE; break;
case ISD::SETNE:
case ISD::SETUNE: CondCode = A64CC::NE; break;
}
return CondCode;
}
SDValue
AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT PtrVT = getPointerTy();
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
switch(getTargetMachine().getCodeModel()) {
case CodeModel::Small:
// The most efficient code is PC-relative anyway for the small memory model,
// so we don't need to worry about relocation model.
return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
DAG.getTargetBlockAddress(BA, PtrVT, 0,
AArch64II::MO_NO_FLAG),
DAG.getTargetBlockAddress(BA, PtrVT, 0,
AArch64II::MO_LO12),
DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
case CodeModel::Large:
return DAG.getNode(
AArch64ISD::WrapperLarge, DL, PtrVT,
DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3),
DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
default:
llvm_unreachable("Only small and large code models supported now");
}
}
// (BRCOND chain, val, dest)
SDValue
AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue Chain = Op.getOperand(0);
SDValue TheBit = Op.getOperand(1);
SDValue DestBB = Op.getOperand(2);
// AArch64 BooleanContents is the default UndefinedBooleanContent, which means
// that as the consumer we are responsible for ignoring rubbish in higher
// bits.
TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
DAG.getConstant(1, MVT::i32));
SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
DAG.getConstant(0, TheBit.getValueType()),
DAG.getCondCode(ISD::SETNE));
return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
DestBB);
}
// (BR_CC chain, condcode, lhs, rhs, dest)
SDValue
AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue DestBB = Op.getOperand(4);
if (LHS.getValueType() == MVT::f128) {
// f128 comparisons are lowered to runtime calls by a routine which sets
// LHS, RHS and CC appropriately for the rest of this function to continue.
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
// If softenSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (RHS.getNode() == 0) {
RHS = DAG.getConstant(0, LHS.getValueType());
CC = ISD::SETNE;
}
}
if (LHS.getValueType().isInteger()) {
SDValue A64cc;
// Integers are handled in a separate function because the combinations of
// immediates and tests can get hairy and we may want to fiddle things.
SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
Chain, CmpOp, A64cc, DestBB);
}
// Note that some LLVM floating-point CondCodes can't be lowered to a single
// conditional branch, hence FPCCToA64CC can set a second test, where either
// passing is sufficient.
A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
CondCode = FPCCToA64CC(CC, Alternative);
SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
DAG.getCondCode(CC));
SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
Chain, SetCC, A64cc, DestBB);
if (Alternative != A64CC::Invalid) {
A64cc = DAG.getConstant(Alternative, MVT::i32);
A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
A64BR_CC, SetCC, A64cc, DestBB);
}
return A64BR_CC;
}
SDValue
AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
RTLIB::Libcall Call) const {
ArgListTy Args;
ArgListEntry Entry;
for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
EVT ArgVT = Op.getOperand(i).getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
Entry.isSExt = false;
Entry.isZExt = false;
Args.push_back(Entry);
}
SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
// By default, the input chain to this libcall is the entry node of the
// function. If the libcall is going to be emitted as a tail call then
// isUsedByReturnOnly will change it to the right chain if the return
// node which is being folded has a non-entry input chain.
SDValue InChain = DAG.getEntryNode();
// isTailCall may be true since the callee does not reference caller stack
// frame. Check if it's in the right position.
SDValue TCChain = InChain;
bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
if (isTailCall)
InChain = TCChain;
TargetLowering::
CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
0, getLibcallCallingConv(Call), isTailCall,
/*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
Callee, Args, DAG, SDLoc(Op));
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
if (!CallInfo.second.getNode())
// It's a tailcall, return the chain (which is the DAG root).
return DAG.getRoot();
return CallInfo.first;
}
SDValue
AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
if (Op.getOperand(0).getValueType() != MVT::f128) {
// It's legal except when f128 is involved
return Op;
}
RTLIB::Libcall LC;
LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
SDValue SrcVal = Op.getOperand(0);
return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
/*isSigned*/ false, SDLoc(Op)).first;
}
SDValue
AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
RTLIB::Libcall LC;
LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
return LowerF128ToCall(Op, DAG, LC);
}
static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG,
bool IsSigned) {
SDLoc dl(Op);
EVT VT = Op.getValueType();
SDValue Vec = Op.getOperand(0);
EVT OpVT = Vec.getValueType();
unsigned Opc = IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
if (VT.getVectorNumElements() == 1) {
assert(OpVT == MVT::v1f64 && "Unexpected vector type!");
if (VT.getSizeInBits() == OpVT.getSizeInBits())
return Op;
return DAG.UnrollVectorOp(Op.getNode());
}
if (VT.getSizeInBits() > OpVT.getSizeInBits()) {
assert(Vec.getValueType() == MVT::v2f32 && VT == MVT::v2i64 &&
"Unexpected vector type!");
Vec = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Vec);
return DAG.getNode(Opc, dl, VT, Vec);
} else if (VT.getSizeInBits() < OpVT.getSizeInBits()) {
EVT CastVT = EVT::getIntegerVT(*DAG.getContext(),
OpVT.getVectorElementType().getSizeInBits());
CastVT =
EVT::getVectorVT(*DAG.getContext(), CastVT, VT.getVectorNumElements());
Vec = DAG.getNode(Opc, dl, CastVT, Vec);
return DAG.getNode(ISD::TRUNCATE, dl, VT, Vec);
}
return DAG.getNode(Opc, dl, VT, Vec);
}
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
// We custom lower concat_vectors with 4, 8, or 16 operands that are all the
// same operand and of type v1* using the DUP instruction.
unsigned NumOps = Op->getNumOperands();
if (NumOps == 2) {
assert(Op.getValueType().getSizeInBits() == 128 && "unexpected concat");
return Op;
}
if (NumOps != 4 && NumOps != 8 && NumOps != 16)
return SDValue();
// Must be a single value for VDUP.
SDValue Op0 = Op.getOperand(0);
for (unsigned i = 1; i < NumOps; ++i) {
SDValue OpN = Op.getOperand(i);
if (Op0 != OpN)
return SDValue();
}
// Verify the value type.
EVT EltVT = Op0.getValueType();
switch (NumOps) {
default: llvm_unreachable("Unexpected number of operands");
case 4:
if (EltVT != MVT::v1i16 && EltVT != MVT::v1i32)
return SDValue();
break;
case 8:
if (EltVT != MVT::v1i8 && EltVT != MVT::v1i16)
return SDValue();
break;
case 16:
if (EltVT != MVT::v1i8)
return SDValue();
break;
}
SDLoc DL(Op);
EVT VT = Op.getValueType();
// VDUP produces better code for constants.
if (Op0->getOpcode() == ISD::BUILD_VECTOR)
return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Op0->getOperand(0));
return DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, Op0,
DAG.getConstant(0, MVT::i64));
}
SDValue
AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
bool IsSigned) const {
if (Op.getValueType().isVector())
return LowerVectorFP_TO_INT(Op, DAG, IsSigned);
if (Op.getOperand(0).getValueType() != MVT::f128) {
// It's legal except when f128 is involved
return Op;
}
RTLIB::Libcall LC;
if (IsSigned)
LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
else
LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
return LowerF128ToCall(Op, DAG, LC);
}
SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MFI->setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
if (Depth) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset = DAG.getConstant(8, MVT::i64);
return DAG.getLoad(VT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
MachinePointerInfo(), false, false, false, 0);
}
// Return X30, which contains the return address. Mark it an implicit live-in.
unsigned Reg = MF.addLiveIn(AArch64::X30, getRegClassFor(MVT::i64));
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, MVT::i64);
}
SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG)
const {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
unsigned FrameReg = AArch64::X29;
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo(),
false, false, false, 0);
return FrameAddr;
}
SDValue
AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
SelectionDAG &DAG) const {
assert(getTargetMachine().getCodeModel() == CodeModel::Large);
assert(getTargetMachine().getRelocationModel() == Reloc::Static);
EVT PtrVT = getPointerTy();
SDLoc dl(Op);
const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GN->getGlobal();
SDValue GlobalAddr = DAG.getNode(
AArch64ISD::WrapperLarge, dl, PtrVT,
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3),
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
if (GN->getOffset() != 0)
return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
DAG.getConstant(GN->getOffset(), PtrVT));
return GlobalAddr;
}
SDValue
AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
SelectionDAG &DAG) const {
assert(getTargetMachine().getCodeModel() == CodeModel::Small);
EVT PtrVT = getPointerTy();
SDLoc dl(Op);
const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GN->getGlobal();
unsigned Alignment = GV->getAlignment();
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
// Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
// to zero when they remain undefined. In PIC mode the GOT can take care of
// this, but in absolute mode we use a constant pool load.
SDValue PoolAddr;
PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
AArch64II::MO_NO_FLAG),
DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
AArch64II::MO_LO12),
DAG.getConstant(8, MVT::i32));
SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
MachinePointerInfo::getConstantPool(),
/*isVolatile=*/ false,
/*isNonTemporal=*/ true,
/*isInvariant=*/ true, 8);
if (GN->getOffset() != 0)
return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
DAG.getConstant(GN->getOffset(), PtrVT));
return GlobalAddr;
}
if (Alignment == 0) {
const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
if (GVPtrTy->getElementType()->isSized()) {
Alignment
= getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
} else {
// Be conservative if we can't guess, not that it really matters:
// functions and labels aren't valid for loads, and the methods used to
// actually calculate an address work with any alignment.
Alignment = 1;
}
}
unsigned char HiFixup, LoFixup;
bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM);
if (UseGOT) {
HiFixup = AArch64II::MO_GOT;
LoFixup = AArch64II::MO_GOT_LO12;
Alignment = 8;
} else {
HiFixup = AArch64II::MO_NO_FLAG;
LoFixup = AArch64II::MO_LO12;
}
// AArch64's small model demands the following sequence:
// ADRP x0, somewhere
// ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
HiFixup),
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
LoFixup),
DAG.getConstant(Alignment, MVT::i32));
if (UseGOT) {
GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
GlobalRef);
}
if (GN->getOffset() != 0)
return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
DAG.getConstant(GN->getOffset(), PtrVT));
return GlobalRef;
}
SDValue
AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
SelectionDAG &DAG) const {
// TableGen doesn't have easy access to the CodeModel or RelocationModel, so
// we make those distinctions here.
switch (getTargetMachine().getCodeModel()) {
case CodeModel::Small:
return LowerGlobalAddressELFSmall(Op, DAG);
case CodeModel::Large:
return LowerGlobalAddressELFLarge(Op, DAG);
default:
llvm_unreachable("Only small and large code models supported now");
}
}
SDValue
AArch64TargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT PtrVT = getPointerTy();
ConstantPoolSDNode *CN = cast<ConstantPoolSDNode>(Op);
const Constant *C = CN->getConstVal();
switch(getTargetMachine().getCodeModel()) {
case CodeModel::Small:
// The most efficient code is PC-relative anyway for the small memory model,
// so we don't need to worry about relocation model.
return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
DAG.getTargetConstantPool(C, PtrVT, 0, 0,
AArch64II::MO_NO_FLAG),
DAG.getTargetConstantPool(C, PtrVT, 0, 0,
AArch64II::MO_LO12),
DAG.getConstant(CN->getAlignment(), MVT::i32));
case CodeModel::Large:
return DAG.getNode(
AArch64ISD::WrapperLarge, DL, PtrVT,
DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G3),
DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G2_NC),
DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G1_NC),
DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G0_NC));
default:
llvm_unreachable("Only small and large code models supported now");
}
}
SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
SDValue DescAddr,
SDLoc DL,
SelectionDAG &DAG) const {
EVT PtrVT = getPointerTy();
// The function we need to call is simply the first entry in the GOT for this
// descriptor, load it in preparation.
SDValue Func, Chain;
Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
DescAddr);
// The function takes only one argument: the address of the descriptor itself
// in X0.
SDValue Glue;
Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
Glue = Chain.getValue(1);
// Finally, there's a special calling-convention which means that the lookup
// must preserve all registers (except X0, obviously).
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
const AArch64RegisterInfo *A64RI
= static_cast<const AArch64RegisterInfo *>(TRI);
const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
// We're now ready to populate the argument list, as with a normal call:
std::vector<SDValue> Ops;
Ops.push_back(Chain);
Ops.push_back(Func);
Ops.push_back(SymAddr);
Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
Ops.push_back(DAG.getRegisterMask(Mask));
Ops.push_back(Glue);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0],
Ops.size());
Glue = Chain.getValue(1);
// After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
// back to the generic handling code.
return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
}
SDValue
AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
assert(getSubtarget()->isTargetELF() &&
"TLS not implemented for non-ELF targets");
assert(getTargetMachine().getCodeModel() == CodeModel::Small
&& "TLS only supported in small memory model");
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
SDValue TPOff;
EVT PtrVT = getPointerTy();
SDLoc DL(Op);
const GlobalValue *GV = GA->getGlobal();
SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
if (Model == TLSModel::InitialExec) {
TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
AArch64II::MO_GOTTPREL),
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
AArch64II::MO_GOTTPREL_LO12),
DAG.getConstant(8, MVT::i32));
TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
TPOff);
} else if (Model == TLSModel::LocalExec) {
SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
AArch64II::MO_TPREL_G1);
SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
AArch64II::MO_TPREL_G0_NC);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
DAG.getTargetConstant(1, MVT::i32)), 0);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
TPOff, LoVar,
DAG.getTargetConstant(0, MVT::i32)), 0);
} else if (Model == TLSModel::GeneralDynamic) {
// Accesses used in this sequence go via the TLS descriptor which lives in
// the GOT. Prepare an address we can use to handle this.
SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
AArch64II::MO_TLSDESC);
SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
AArch64II::MO_TLSDESC_LO12);
SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
HiDesc, LoDesc,
DAG.getConstant(8, MVT::i32));
SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
} else if (Model == TLSModel::LocalDynamic) {
// Local-dynamic accesses proceed in two phases. A general-dynamic TLS
// descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
// the beginning of the module's TLS region, followed by a DTPREL offset
// calculation.
// These accesses will need deduplicating if there's more than one.
AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
.getInfo<AArch64MachineFunctionInfo>();
MFI->incNumLocalDynamicTLSAccesses();
// Get the location of _TLS_MODULE_BASE_:
SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
AArch64II::MO_TLSDESC);
SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
AArch64II::MO_TLSDESC_LO12);
SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
HiDesc, LoDesc,
DAG.getConstant(8, MVT::i32));
SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
// Get the variable's offset from _TLS_MODULE_BASE_
SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
AArch64II::MO_DTPREL_G1);
SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
AArch64II::MO_DTPREL_G0_NC);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
DAG.getTargetConstant(0, MVT::i32)), 0);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
TPOff, LoVar,
DAG.getTargetConstant(0, MVT::i32)), 0);
} else
llvm_unreachable("Unsupported TLS access model");
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
}
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG,
bool IsSigned) {
SDLoc dl(Op);
EVT VT = Op.getValueType();
SDValue Vec = Op.getOperand(0);
unsigned Opc = IsSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
if (VT.getVectorNumElements() == 1) {
assert(VT == MVT::v1f64 && "Unexpected vector type!");
if (VT.getSizeInBits() == Vec.getValueSizeInBits())
return Op;
return DAG.UnrollVectorOp(Op.getNode());
}
if (VT.getSizeInBits() < Vec.getValueSizeInBits()) {
assert(Vec.getValueType() == MVT::v2i64 && VT == MVT::v2f32 &&
"Unexpected vector type!");
Vec = DAG.getNode(Opc, dl, MVT::v2f64, Vec);
return DAG.getNode(ISD::FP_ROUND, dl, VT, Vec, DAG.getIntPtrConstant(0));
} else if (VT.getSizeInBits() > Vec.getValueSizeInBits()) {
unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
EVT CastVT = EVT::getIntegerVT(*DAG.getContext(),
VT.getVectorElementType().getSizeInBits());
CastVT =
EVT::getVectorVT(*DAG.getContext(), CastVT, VT.getVectorNumElements());
Vec = DAG.getNode(CastOpc, dl, CastVT, Vec);
}
return DAG.getNode(Opc, dl, VT, Vec);
}
SDValue
AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
bool IsSigned) const {
if (Op.getValueType().isVector())
return LowerVectorINT_TO_FP(Op, DAG, IsSigned);
if (Op.getValueType() != MVT::f128) {
// Legal for everything except f128.
return Op;
}
RTLIB::Libcall LC;
if (IsSigned)
LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
else
LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
return LowerF128ToCall(Op, DAG, LC);
}
SDValue
AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
SDLoc dl(JT);
EVT PtrVT = getPointerTy();
// When compiling PIC, jump tables get put in the code section so a static
// relocation-style is acceptable for both cases.
switch (getTargetMachine().getCodeModel()) {
case CodeModel::Small:
return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
DAG.getTargetJumpTable(JT->getIndex(), PtrVT),
DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
AArch64II::MO_LO12),
DAG.getConstant(1, MVT::i32));
case CodeModel::Large:
return DAG.getNode(
AArch64ISD::WrapperLarge, dl, PtrVT,
DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3),
DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC),
DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC),
DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC));
default:
llvm_unreachable("Only small and large code models supported now");
}
}
// (SELECT testbit, iftrue, iffalse)
SDValue
AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue TheBit = Op.getOperand(0);
SDValue IfTrue = Op.getOperand(1);
SDValue IfFalse = Op.getOperand(2);
// AArch64 BooleanContents is the default UndefinedBooleanContent, which means
// that as the consumer we are responsible for ignoring rubbish in higher
// bits.
TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
DAG.getConstant(1, MVT::i32));
SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
DAG.getConstant(0, TheBit.getValueType()),
DAG.getCondCode(ISD::SETNE));
return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
A64CMP, IfTrue, IfFalse,
DAG.getConstant(A64CC::NE, MVT::i32));
}
static SDValue LowerVectorSETCC(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
EVT VT = Op.getValueType();
bool Invert = false;
SDValue Op0, Op1;
unsigned Opcode;
if (LHS.getValueType().isInteger()) {
// Attempt to use Vector Integer Compare Mask Test instruction.
// TST = icmp ne (and (op0, op1), zero).
if (CC == ISD::SETNE) {
if (((LHS.getOpcode() == ISD::AND) &&
ISD::isBuildVectorAllZeros(RHS.getNode())) ||
((RHS.getOpcode() == ISD::AND) &&
ISD::isBuildVectorAllZeros(LHS.getNode()))) {
SDValue AndOp = (LHS.getOpcode() == ISD::AND) ? LHS : RHS;
SDValue NewLHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(0));
SDValue NewRHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(1));
return DAG.getNode(AArch64ISD::NEON_TST, DL, VT, NewLHS, NewRHS);
}
}
// Attempt to use Vector Integer Compare Mask against Zero instr (Signed).
// Note: Compare against Zero does not support unsigned predicates.
if ((ISD::isBuildVectorAllZeros(RHS.getNode()) ||
ISD::isBuildVectorAllZeros(LHS.getNode())) &&
!isUnsignedIntSetCC(CC)) {
// If LHS is the zero value, swap operands and CondCode.
if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
CC = getSetCCSwappedOperands(CC);
Op0 = RHS;
} else
Op0 = LHS;
// Ensure valid CondCode for Compare Mask against Zero instruction:
// EQ, GE, GT, LE, LT.
if (ISD::SETNE == CC) {
Invert = true;
CC = ISD::SETEQ;
}
// Using constant type to differentiate integer and FP compares with zero.
Op1 = DAG.getConstant(0, MVT::i32);
Opcode = AArch64ISD::NEON_CMPZ;
} else {
// Attempt to use Vector Integer Compare Mask instr (Signed/Unsigned).
// Ensure valid CondCode for Compare Mask instr: EQ, GE, GT, UGE, UGT.
bool Swap = false;
switch (CC) {
default:
llvm_unreachable("Illegal integer comparison.");
case ISD::SETEQ:
case ISD::SETGT:
case ISD::SETGE:
case ISD::SETUGT:
case ISD::SETUGE:
break;
case ISD::SETNE:
Invert = true;
CC = ISD::SETEQ;
break;
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETLT:
case ISD::SETLE:
Swap = true;
CC = getSetCCSwappedOperands(CC);
}
if (Swap)
std::swap(LHS, RHS);
Opcode = AArch64ISD::NEON_CMP;
Op0 = LHS;
Op1 = RHS;
}
// Generate Compare Mask instr or Compare Mask against Zero instr.
SDValue NeonCmp =
DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
if (Invert)
NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
return NeonCmp;
}
// Now handle Floating Point cases.
// Attempt to use Vector Floating Point Compare Mask against Zero instruction.
if (ISD::isBuildVectorAllZeros(RHS.getNode()) ||
ISD::isBuildVectorAllZeros(LHS.getNode())) {
// If LHS is the zero value, swap operands and CondCode.
if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
CC = getSetCCSwappedOperands(CC);
Op0 = RHS;
} else
Op0 = LHS;
// Using constant type to differentiate integer and FP compares with zero.
Op1 = DAG.getConstantFP(0, MVT::f32);
Opcode = AArch64ISD::NEON_CMPZ;
} else {
// Attempt to use Vector Floating Point Compare Mask instruction.
Op0 = LHS;
Op1 = RHS;
Opcode = AArch64ISD::NEON_CMP;
}
SDValue NeonCmpAlt;
// Some register compares have to be implemented with swapped CC and operands,
// e.g.: OLT implemented as OGT with swapped operands.
bool SwapIfRegArgs = false;
// Ensure valid CondCode for FP Compare Mask against Zero instruction:
// EQ, GE, GT, LE, LT.
// And ensure valid CondCode for FP Compare Mask instruction: EQ, GE, GT.
switch (CC) {
default:
llvm_unreachable("Illegal FP comparison");
case ISD::SETUNE:
case ISD::SETNE:
Invert = true; // Fallthrough
case ISD::SETOEQ:
case ISD::SETEQ:
CC = ISD::SETEQ;
break;
case ISD::SETOLT:
case ISD::SETLT:
CC = ISD::SETLT;
SwapIfRegArgs = true;
break;
case ISD::SETOGT:
case ISD::SETGT:
CC = ISD::SETGT;
break;
case ISD::SETOLE:
case ISD::SETLE:
CC = ISD::SETLE;
SwapIfRegArgs = true;
break;
case ISD::SETOGE:
case ISD::SETGE:
CC = ISD::SETGE;
break;
case ISD::SETUGE:
Invert = true;
CC = ISD::SETLT;
SwapIfRegArgs = true;
break;
case ISD::SETULE:
Invert = true;
CC = ISD::SETGT;
break;
case ISD::SETUGT:
Invert = true;
CC = ISD::SETLE;
SwapIfRegArgs = true;
break;
case ISD::SETULT:
Invert = true;
CC = ISD::SETGE;
break;
case ISD::SETUEQ:
Invert = true; // Fallthrough
case ISD::SETONE:
// Expand this to (OGT |OLT).
NeonCmpAlt =
DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGT));
CC = ISD::SETLT;
SwapIfRegArgs = true;
break;
case ISD::SETUO:
Invert = true; // Fallthrough
case ISD::SETO:
// Expand this to (OGE | OLT).
NeonCmpAlt =
DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGE));
CC = ISD::SETLT;
SwapIfRegArgs = true;
break;
}
if (Opcode == AArch64ISD::NEON_CMP && SwapIfRegArgs) {
CC = getSetCCSwappedOperands(CC);
std::swap(Op0, Op1);
}
// Generate FP Compare Mask instr or FP Compare Mask against Zero instr
SDValue NeonCmp = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
if (NeonCmpAlt.getNode())
NeonCmp = DAG.getNode(ISD::OR, DL, VT, NeonCmp, NeonCmpAlt);
if (Invert)
NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
return NeonCmp;
}
// (SETCC lhs, rhs, condcode)
SDValue
AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
EVT VT = Op.getValueType();
if (VT.isVector())
return LowerVectorSETCC(Op, DAG);
if (LHS.getValueType() == MVT::f128) {
// f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
// for the rest of the function (some i32 or i64 values).
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
// If softenSetCCOperands returned a scalar, use it.
if (RHS.getNode() == 0) {
assert(LHS.getValueType() == Op.getValueType() &&
"Unexpected setcc expansion!");
return LHS;
}
}
if (LHS.getValueType().isInteger()) {
SDValue A64cc;
// Integers are handled in a separate function because the combinations of
// immediates and tests can get hairy and we may want to fiddle things.
SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
A64cc);
}
// Note that some LLVM floating-point CondCodes can't be lowered to a single
// conditional branch, hence FPCCToA64CC can set a second test, where either
// passing is sufficient.
A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
CondCode = FPCCToA64CC(CC, Alternative);
SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
DAG.getCondCode(CC));
SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
CmpOp, DAG.getConstant(1, VT),
DAG.getConstant(0, VT), A64cc);
if (Alternative != A64CC::Invalid) {
A64cc = DAG.getConstant(Alternative, MVT::i32);
A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
}
return A64SELECT_CC;
}
static SDValue LowerVectorSELECT_CC(SDValue Op, SelectionDAG &DAG) {
SDLoc dl(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue IfTrue = Op.getOperand(2);
SDValue IfFalse = Op.getOperand(3);
EVT IfTrueVT = IfTrue.getValueType();
EVT CondVT = IfTrueVT.changeVectorElementTypeToInteger();
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
// If LHS & RHS are floating point and IfTrue & IfFalse are vectors, we will
// use NEON compare.
if ((LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64)) {
EVT EltVT = LHS.getValueType();
unsigned EltNum = 128 / EltVT.getSizeInBits();
EVT VT = EVT::getVectorVT(*DAG.getContext(), EltVT, EltNum);
unsigned SubConstant =
(LHS.getValueType() == MVT::f32) ? AArch64::sub_32 :AArch64::sub_64;
EVT CEltT = (LHS.getValueType() == MVT::f32) ? MVT::i32 : MVT::i64;
EVT CVT = EVT::getVectorVT(*DAG.getContext(), CEltT, EltNum);
LHS
= SDValue(DAG.getMachineNode(TargetOpcode::SUBREG_TO_REG, dl,
VT, DAG.getTargetConstant(0, MVT::i32), LHS,
DAG.getTargetConstant(SubConstant, MVT::i32)), 0);
RHS
= SDValue(DAG.getMachineNode(TargetOpcode::SUBREG_TO_REG, dl,
VT, DAG.getTargetConstant(0, MVT::i32), RHS,
DAG.getTargetConstant(SubConstant, MVT::i32)), 0);
SDValue VSetCC = DAG.getSetCC(dl, CVT, LHS, RHS, CC);
SDValue ResCC = LowerVectorSETCC(VSetCC, DAG);
if (CEltT.getSizeInBits() < IfTrueVT.getSizeInBits()) {
EVT DUPVT =
EVT::getVectorVT(*DAG.getContext(), CEltT,
IfTrueVT.getSizeInBits() / CEltT.getSizeInBits());
ResCC = DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, DUPVT, ResCC,
DAG.getConstant(0, MVT::i64, false));
ResCC = DAG.getNode(ISD::BITCAST, dl, CondVT, ResCC);
} else {
// FIXME: If IfTrue & IfFalse hold v1i8, v1i16 or v1i32, this function
// can't handle them and will hit this assert.
assert(CEltT.getSizeInBits() == IfTrueVT.getSizeInBits() &&
"Vector of IfTrue & IfFalse is too small.");
unsigned ExEltNum =
EltNum * IfTrueVT.getSizeInBits() / ResCC.getValueSizeInBits();
EVT ExVT = EVT::getVectorVT(*DAG.getContext(), CEltT, ExEltNum);
ResCC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ExVT, ResCC,
DAG.getConstant(0, MVT::i64, false));
ResCC = DAG.getNode(ISD::BITCAST, dl, CondVT, ResCC);
}
SDValue VSelect = DAG.getNode(ISD::VSELECT, dl, IfTrue.getValueType(),
ResCC, IfTrue, IfFalse);
return VSelect;
}
// Here we handle the case that LHS & RHS are integer and IfTrue & IfFalse are
// vectors.
A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
CondCode = FPCCToA64CC(CC, Alternative);
SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
DAG.getCondCode(CC));
EVT SEVT = MVT::i32;
if (IfTrue.getValueType().getVectorElementType().getSizeInBits() > 32)
SEVT = MVT::i64;
SDValue AllOne = DAG.getConstant(-1, SEVT);
SDValue AllZero = DAG.getConstant(0, SEVT);
SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, SEVT, SetCC,
AllOne, AllZero, A64cc);
if (Alternative != A64CC::Invalid) {
A64cc = DAG.getConstant(Alternative, MVT::i32);
A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
SetCC, AllOne, A64SELECT_CC, A64cc);
}
SDValue VDup;
if (IfTrue.getValueType().getVectorNumElements() == 1)
VDup = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, CondVT, A64SELECT_CC);
else
VDup = DAG.getNode(AArch64ISD::NEON_VDUP, dl, CondVT, A64SELECT_CC);
SDValue VSelect = DAG.getNode(ISD::VSELECT, dl, IfTrue.getValueType(),
VDup, IfTrue, IfFalse);
return VSelect;
}
// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
SDValue
AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue IfTrue = Op.getOperand(2);
SDValue IfFalse = Op.getOperand(3);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
if (IfTrue.getValueType().isVector())
return LowerVectorSELECT_CC(Op, DAG);
if (LHS.getValueType() == MVT::f128) {
// f128 comparisons are lowered to libcalls, but slot in nicely here
// afterwards.
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
// If softenSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (RHS.getNode() == 0) {
RHS = DAG.getConstant(0, LHS.getValueType());
CC = ISD::SETNE;
}
}
if (LHS.getValueType().isInteger()) {
SDValue A64cc;
// Integers are handled in a separate function because the combinations of
// immediates and tests can get hairy and we may want to fiddle things.
SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), CmpOp,
IfTrue, IfFalse, A64cc);
}
// Note that some LLVM floating-point CondCodes can't be lowered to a single
// conditional branch, hence FPCCToA64CC can set a second test, where either
// passing is sufficient.
A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
CondCode = FPCCToA64CC(CC, Alternative);
SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
DAG.getCondCode(CC));
SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
Op.getValueType(),
SetCC, IfTrue, IfFalse, A64cc);
if (Alternative != A64CC::Invalid) {
A64cc = DAG.getConstant(Alternative, MVT::i32);
A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
SetCC, IfTrue, A64SELECT_CC, A64cc);
}
return A64SELECT_CC;
}
SDValue
AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
// We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
// rather than just 8.
return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op),
Op.getOperand(1), Op.getOperand(2),
DAG.getConstant(32, MVT::i32), 8, false, false,
MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
}
SDValue
AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
// The layout of the va_list struct is specified in the AArch64 Procedure Call
// Standard, section B.3.
MachineFunction &MF = DAG.getMachineFunction();
AArch64MachineFunctionInfo *FuncInfo
= MF.getInfo<AArch64MachineFunctionInfo>();
SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
SDValue VAList = Op.getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
SmallVector<SDValue, 4> MemOps;
// void *__stack at offset 0
SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
getPointerTy());
MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
MachinePointerInfo(SV), false, false, 0));
// void *__gr_top at offset 8
int GPRSize = FuncInfo->getVariadicGPRSize();
if (GPRSize > 0) {
SDValue GRTop, GRTopAddr;
GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
DAG.getConstant(8, getPointerTy()));
GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
DAG.getConstant(GPRSize, getPointerTy()));
MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
MachinePointerInfo(SV, 8),
false, false, 0));
}
// void *__vr_top at offset 16
int FPRSize = FuncInfo->getVariadicFPRSize();
if (FPRSize > 0) {
SDValue VRTop, VRTopAddr;
VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
DAG.getConstant(16, getPointerTy()));
VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
DAG.getConstant(FPRSize, getPointerTy()));
MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
MachinePointerInfo(SV, 16),
false, false, 0));
}
// int __gr_offs at offset 24
SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
DAG.getConstant(24, getPointerTy()));
MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
GROffsAddr, MachinePointerInfo(SV, 24),
false, false, 0));
// int __vr_offs at offset 28
SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
DAG.getConstant(28, getPointerTy()));
MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
VROffsAddr, MachinePointerInfo(SV, 28),
false, false, 0));
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
MemOps.size());
}
SDValue
AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Don't know how to custom lower this!");
case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
case ISD::SRL_PARTS:
case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::VACOPY: return LowerVACOPY(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::BUILD_VECTOR:
return LowerBUILD_VECTOR(Op, DAG, getSubtarget());
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
}
return SDValue();
}
/// Check if the specified splat value corresponds to a valid vector constant
/// for a Neon instruction with a "modified immediate" operand (e.g., MOVI). If
/// so, return the encoded 8-bit immediate and the OpCmode instruction fields
/// values.
static bool isNeonModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
unsigned SplatBitSize, SelectionDAG &DAG,
bool is128Bits, NeonModImmType type, EVT &VT,
unsigned &Imm, unsigned &OpCmode) {
switch (SplatBitSize) {
default:
llvm_unreachable("unexpected size for isNeonModifiedImm");
case 8: {
if (type != Neon_Mov_Imm)
return false;
assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
// Neon movi per byte: Op=0, Cmode=1110.
OpCmode = 0xe;
Imm = SplatBits;
VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
break;
}
case 16: {
// Neon move inst per halfword
VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
if ((SplatBits & ~0xff) == 0) {
// Value = 0x00nn is 0x00nn LSL 0
// movi: Op=0, Cmode=1000; mvni: Op=1, Cmode=1000
// bic: Op=1, Cmode=1001; orr: Op=0, Cmode=1001
// Op=x, Cmode=100y
Imm = SplatBits;
OpCmode = 0x8;
break;
}
if ((SplatBits & ~0xff00) == 0) {
// Value = 0xnn00 is 0x00nn LSL 8
// movi: Op=0, Cmode=1010; mvni: Op=1, Cmode=1010
// bic: Op=1, Cmode=1011; orr: Op=0, Cmode=1011
// Op=x, Cmode=101x
Imm = SplatBits >> 8;
OpCmode = 0xa;
break;
}
// can't handle any other
return false;
}
case 32: {
// First the LSL variants (MSL is unusable by some interested instructions).
// Neon move instr per word, shift zeros
VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
if ((SplatBits & ~0xff) == 0) {
// Value = 0x000000nn is 0x000000nn LSL 0
// movi: Op=0, Cmode= 0000; mvni: Op=1, Cmode= 0000
// bic: Op=1, Cmode= 0001; orr: Op=0, Cmode= 0001
// Op=x, Cmode=000x
Imm = SplatBits;
OpCmode = 0;
break;
}
if ((SplatBits & ~0xff00) == 0) {
// Value = 0x0000nn00 is 0x000000nn LSL 8
// movi: Op=0, Cmode= 0010; mvni: Op=1, Cmode= 0010
// bic: Op=1, Cmode= 0011; orr : Op=0, Cmode= 0011
// Op=x, Cmode=001x
Imm = SplatBits >> 8;
OpCmode = 0x2;
break;
}
if ((SplatBits & ~0xff0000) == 0) {
// Value = 0x00nn0000 is 0x000000nn LSL 16
// movi: Op=0, Cmode= 0100; mvni: Op=1, Cmode= 0100
// bic: Op=1, Cmode= 0101; orr: Op=0, Cmode= 0101
// Op=x, Cmode=010x
Imm = SplatBits >> 16;
OpCmode = 0x4;
break;
}
if ((SplatBits & ~0xff000000) == 0) {
// Value = 0xnn000000 is 0x000000nn LSL 24
// movi: Op=0, Cmode= 0110; mvni: Op=1, Cmode= 0110
// bic: Op=1, Cmode= 0111; orr: Op=0, Cmode= 0111
// Op=x, Cmode=011x
Imm = SplatBits >> 24;
OpCmode = 0x6;
break;
}
// Now the MSL immediates.
// Neon move instr per word, shift ones
if ((SplatBits & ~0xffff) == 0 &&
((SplatBits | SplatUndef) & 0xff) == 0xff) {
// Value = 0x0000nnff is 0x000000nn MSL 8
// movi: Op=0, Cmode= 1100; mvni: Op=1, Cmode= 1100
// Op=x, Cmode=1100
Imm = SplatBits >> 8;
OpCmode = 0xc;
break;
}
if ((SplatBits & ~0xffffff) == 0 &&
((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
// Value = 0x00nnffff is 0x000000nn MSL 16
// movi: Op=1, Cmode= 1101; mvni: Op=1, Cmode= 1101
// Op=x, Cmode=1101
Imm = SplatBits >> 16;
OpCmode = 0xd;
break;
}
// can't handle any other
return false;
}
case 64: {
if (type != Neon_Mov_Imm)
return false;
// Neon move instr bytemask, where each byte is either 0x00 or 0xff.
// movi Op=1, Cmode=1110.
OpCmode = 0x1e;
uint64_t BitMask = 0xff;
uint64_t Val = 0;
unsigned ImmMask = 1;
Imm = 0;
for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
Val |= BitMask;
Imm |= ImmMask;
} else if ((SplatBits & BitMask) != 0) {
return false;
}
BitMask <<= 8;
ImmMask <<= 1;
}
SplatBits = Val;
VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
break;
}
}
return true;
}
static SDValue PerformANDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
EVT VT = N->getValueType(0);
// We're looking for an SRA/SHL pair which form an SBFX.
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
if (!isa<ConstantSDNode>(N->getOperand(1)))
return SDValue();
uint64_t TruncMask = N->getConstantOperandVal(1);
if (!isMask_64(TruncMask))
return SDValue();
uint64_t Width = CountPopulation_64(TruncMask);
SDValue Shift = N->getOperand(0);
if (Shift.getOpcode() != ISD::SRL)
return SDValue();
if (!isa<ConstantSDNode>(Shift->getOperand(1)))
return SDValue();
uint64_t LSB = Shift->getConstantOperandVal(1);
if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
return SDValue();
return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
DAG.getConstant(LSB, MVT::i64),
DAG.getConstant(LSB + Width - 1, MVT::i64));
}
/// For a true bitfield insert, the bits getting into that contiguous mask
/// should come from the low part of an existing value: they must be formed from
/// a compatible SHL operation (unless they're already low). This function
/// checks that condition and returns the least-significant bit that's
/// intended. If the operation not a field preparation, -1 is returned.
static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT,
SDValue &MaskedVal, uint64_t Mask) {
if (!isShiftedMask_64(Mask))
return -1;
// Now we need to alter MaskedVal so that it is an appropriate input for a BFI
// instruction. BFI will do a left-shift by LSB before applying the mask we've
// spotted, so in general we should pre-emptively "undo" that by making sure
// the incoming bits have had a right-shift applied to them.
//
// This right shift, however, will combine with existing left/right shifts. In
// the simplest case of a completely straight bitfield operation, it will be
// expected to completely cancel out with an existing SHL. More complicated
// cases (e.g. bitfield to bitfield copy) may still need a real shift before
// the BFI.
uint64_t LSB = countTrailingZeros(Mask);
int64_t ShiftRightRequired = LSB;
if (MaskedVal.getOpcode() == ISD::SHL &&
isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
MaskedVal = MaskedVal.getOperand(0);
} else if (MaskedVal.getOpcode() == ISD::SRL &&
isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
MaskedVal = MaskedVal.getOperand(0);
}
if (ShiftRightRequired > 0)
MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
DAG.getConstant(ShiftRightRequired, MVT::i64));
else if (ShiftRightRequired < 0) {
// We could actually end up with a residual left shift, for example with
// "struc.bitfield = val << 1".
MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
DAG.getConstant(-ShiftRightRequired, MVT::i64));
}
return LSB;
}
/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
/// a mask and an extension. Returns true if a BFI was found and provides
/// information on its surroundings.
static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
bool &Extended) {
Extended = false;
if (N.getOpcode() == ISD::ZERO_EXTEND) {
Extended = true;
N = N.getOperand(0);
}
if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
Mask = N->getConstantOperandVal(1);
N = N.getOperand(0);
} else {
// Mask is the whole width.
Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
}
if (N.getOpcode() == AArch64ISD::BFI) {
BFI = N;
return true;
}
return false;
}
/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
/// can often be further combined with a larger mask. Ultimately, we want mask
/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
static SDValue tryCombineToBFI(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
EVT VT = N->getValueType(0);
assert(N->getOpcode() == ISD::OR && "Unexpected root");
// We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
// abandon the effort.
SDValue LHS = N->getOperand(0);
if (LHS.getOpcode() != ISD::AND)
return SDValue();
uint64_t LHSMask;
if (isa<ConstantSDNode>(LHS.getOperand(1)))
LHSMask = LHS->getConstantOperandVal(1);
else
return SDValue();
// We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
// is or abandon the effort.
SDValue RHS = N->getOperand(1);
if (RHS.getOpcode() != ISD::AND)
return SDValue();
uint64_t RHSMask;
if (isa<ConstantSDNode>(RHS.getOperand(1)))
RHSMask = RHS->getConstantOperandVal(1);
else
return SDValue();
// Can't do anything if the masks are incompatible.
if (LHSMask & RHSMask)
return SDValue();
// Now we need one of the masks to be a contiguous field. Without loss of
// generality that should be the RHS one.
SDValue Bitfield = LHS.getOperand(0);
if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
// We know that LHS is a candidate new value, and RHS isn't already a better
// one.
std::swap(LHS, RHS);
std::swap(LHSMask, RHSMask);
}
// We've done our best to put the right operands in the right places, all we
// can do now is check whether a BFI exists.
Bitfield = RHS.getOperand(0);
int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
if (LSB == -1)
return SDValue();
uint32_t Width = CountPopulation_64(RHSMask);
assert(Width && "Expected non-zero bitfield width");
SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
LHS.getOperand(0), Bitfield,
DAG.getConstant(LSB, MVT::i64),
DAG.getConstant(Width, MVT::i64));
// Mask is trivial
if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
return BFI;
return DAG.getNode(ISD::AND, DL, VT, BFI,
DAG.getConstant(LHSMask | RHSMask, VT));
}
/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
/// original input. This is surprisingly common because SROA splits things up
/// into i8 chunks, so the originally detected MaskedBFI may actually only act
/// on the low (say) byte of a word. This is then orred into the rest of the
/// word afterwards.
///
/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
///
/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
/// involved.
static SDValue tryCombineToLargerBFI(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
EVT VT = N->getValueType(0);
// First job is to hunt for a MaskedBFI on either the left or right. Swap
// operands if it's actually on the right.
SDValue BFI;
SDValue PossExtraMask;
uint64_t ExistingMask = 0;
bool Extended = false;
if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
PossExtraMask = N->getOperand(1);
else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
PossExtraMask = N->getOperand(0);
else
return SDValue();
// We can only combine a BFI with another compatible mask.
if (PossExtraMask.getOpcode() != ISD::AND ||
!isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
return SDValue();
uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
// Masks must be compatible.
if (ExtraMask & ExistingMask)
return SDValue();
SDValue OldBFIVal = BFI.getOperand(0);
SDValue NewBFIVal = BFI.getOperand(1);
if (Extended) {
// We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
// 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
// need to be made compatible.
assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
&& "Invalid types for BFI");
OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
}
// We need the MaskedBFI to be combined with a mask of the *same* value.
if (PossExtraMask.getOperand(0) != OldBFIVal)
return SDValue();
BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
OldBFIVal, NewBFIVal,
BFI.getOperand(2), BFI.getOperand(3));
// If the masking is trivial, we don't need to create it.
if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
return BFI;
return DAG.getNode(ISD::AND, DL, VT, BFI,
DAG.getConstant(ExtraMask | ExistingMask, VT));
}
/// An EXTR instruction is made up of two shifts, ORed together. This helper
/// searches for and classifies those shifts.
static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
bool &FromHi) {
if (N.getOpcode() == ISD::SHL)
FromHi = false;
else if (N.getOpcode() == ISD::SRL)
FromHi = true;
else
return false;
if (!isa<ConstantSDNode>(N.getOperand(1)))
return false;
ShiftAmount = N->getConstantOperandVal(1);
Src = N->getOperand(0);
return true;
}
/// EXTR instruction extracts a contiguous chunk of bits from two existing
/// registers viewed as a high/low pair. This function looks for the pattern:
/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
/// EXTR. Can't quite be done in TableGen because the two immediates aren't
/// independent.
static SDValue tryCombineToEXTR(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
EVT VT = N->getValueType(0);
assert(N->getOpcode() == ISD::OR && "Unexpected root");
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
SDValue LHS;
uint32_t ShiftLHS = 0;
bool LHSFromHi = 0;
if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
return SDValue();
SDValue RHS;
uint32_t ShiftRHS = 0;
bool RHSFromHi = 0;
if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
return SDValue();
// If they're both trying to come from the high part of the register, they're
// not really an EXTR.
if (LHSFromHi == RHSFromHi)
return SDValue();
if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
return SDValue();
if (LHSFromHi) {
std::swap(LHS, RHS);
std::swap(ShiftLHS, ShiftRHS);
}
return DAG.getNode(AArch64ISD::EXTR, DL, VT,
LHS, RHS,
DAG.getConstant(ShiftRHS, MVT::i64));
}
/// Target-specific dag combine xforms for ISD::OR
static SDValue PerformORCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
EVT VT = N->getValueType(0);
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
// Attempt to recognise bitfield-insert operations.
SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
if (Res.getNode())
return Res;
// Attempt to combine an existing MaskedBFI operation into one with a larger
// mask.
Res = tryCombineToLargerBFI(N, DCI, Subtarget);
if (Res.getNode())
return Res;
Res = tryCombineToEXTR(N, DCI);
if (Res.getNode())
return Res;
if (!Subtarget->hasNEON())
return SDValue();
// Attempt to use vector immediate-form BSL
// (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
SDValue N0 = N->getOperand(0);
if (N0.getOpcode() != ISD::AND)
return SDValue();
SDValue N1 = N->getOperand(1);
if (N1.getOpcode() != ISD::AND)
return SDValue();
if (VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
APInt SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
APInt SplatBits0;
if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
HasAnyUndefs) &&
!HasAnyUndefs) {
BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
APInt SplatBits1;
if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
HasAnyUndefs) && !HasAnyUndefs &&
SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
SplatBits0 == ~SplatBits1) {
return DAG.getNode(ISD::VSELECT, DL, VT, N0->getOperand(1),
N0->getOperand(0), N1->getOperand(0));
}
}
}
return SDValue();
}
/// Target-specific dag combine xforms for ISD::SRA
static SDValue PerformSRACombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
EVT VT = N->getValueType(0);
// We're looking for an SRA/SHL pair which form an SBFX.
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
if (!isa<ConstantSDNode>(N->getOperand(1)))
return SDValue();
uint64_t ExtraSignBits = N->getConstantOperandVal(1);
SDValue Shift = N->getOperand(0);
if (Shift.getOpcode() != ISD::SHL)
return SDValue();
if (!isa<ConstantSDNode>(Shift->getOperand(1)))
return SDValue();
uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
return SDValue();
return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
DAG.getConstant(LSB, MVT::i64),
DAG.getConstant(LSB + Width - 1, MVT::i64));
}
/// Check if this is a valid build_vector for the immediate operand of
/// a vector shift operation, where all the elements of the build_vector
/// must have the same constant integer value.
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
// Ignore bit_converts.
while (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
HasAnyUndefs, ElementBits) ||
SplatBitSize > ElementBits)
return false;
Cnt = SplatBits.getSExtValue();
return true;
}
/// Check if this is a valid build_vector for the immediate operand of
/// a vector shift left operation. That value must be in the range:
/// 0 <= Value < ElementBits
static bool isVShiftLImm(SDValue Op, EVT VT, int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
if (!getVShiftImm(Op, ElementBits, Cnt))
return false;
return (Cnt >= 0 && Cnt < ElementBits);
}
/// Check if this is a valid build_vector for the immediate operand of a
/// vector shift right operation. The value must be in the range:
/// 1 <= Value <= ElementBits
static bool isVShiftRImm(SDValue Op, EVT VT, int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
if (!getVShiftImm(Op, ElementBits, Cnt))
return false;
return (Cnt >= 1 && Cnt <= ElementBits);
}
static SDValue GenForSextInreg(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
EVT SrcVT, EVT DestVT, EVT SubRegVT,
const int *Mask, SDValue Src) {
SelectionDAG &DAG = DCI.DAG;
SDValue Bitcast
= DAG.getNode(ISD::BITCAST, SDLoc(N), SrcVT, Src);
SDValue Sext
= DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), DestVT, Bitcast);
SDValue ShuffleVec
= DAG.getVectorShuffle(DestVT, SDLoc(N), Sext, DAG.getUNDEF(DestVT), Mask);
SDValue ExtractSubreg
= SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, SDLoc(N),
SubRegVT, ShuffleVec,
DAG.getTargetConstant(AArch64::sub_64, MVT::i32)), 0);
return ExtractSubreg;
}
/// Checks for vector shifts and lowers them.
static SDValue PerformShiftCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *ST) {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
if (N->getOpcode() == ISD::SRA && (VT == MVT::i32 || VT == MVT::i64))
return PerformSRACombine(N, DCI);
// We're looking for an SRA/SHL pair to help generating instruction
// sshll v0.8h, v0.8b, #0
// The instruction STXL is also the alias of this instruction.
//
// For example, for DAG like below,
// v2i32 = sra (v2i32 (shl v2i32, 16)), 16
// we can transform it into
// v2i32 = EXTRACT_SUBREG
// (v4i32 (suffle_vector
// (v4i32 (sext (v4i16 (bitcast v2i32))),
// undef, (0, 2, u, u)),
// sub_64
//
// With this transformation we expect to generate "SSHLL + UZIP1"
// Sometimes UZIP1 can be optimized away by combining with other context.
int64_t ShrCnt, ShlCnt;
if (N->getOpcode() == ISD::SRA
&& (VT == MVT::v2i32 || VT == MVT::v4i16)
&& isVShiftRImm(N->getOperand(1), VT, ShrCnt)
&& N->getOperand(0).getOpcode() == ISD::SHL
&& isVShiftRImm(N->getOperand(0).getOperand(1), VT, ShlCnt)) {
SDValue Src = N->getOperand(0).getOperand(0);
if (VT == MVT::v2i32 && ShrCnt == 16 && ShlCnt == 16) {
// sext_inreg(v2i32, v2i16)
// We essentially only care the Mask {0, 2, u, u}
int Mask[4] = {0, 2, 4, 6};
return GenForSextInreg(N, DCI, MVT::v4i16, MVT::v4i32, MVT::v2i32,
Mask, Src);
}
else if (VT == MVT::v2i32 && ShrCnt == 24 && ShlCnt == 24) {
// sext_inreg(v2i16, v2i8)
// We essentially only care the Mask {0, u, 4, u, u, u, u, u, u, u, u, u}
int Mask[8] = {0, 2, 4, 6, 8, 10, 12, 14};
return GenForSextInreg(N, DCI, MVT::v8i8, MVT::v8i16, MVT::v2i32,
Mask, Src);
}
else if (VT == MVT::v4i16 && ShrCnt == 8 && ShlCnt == 8) {
// sext_inreg(v4i16, v4i8)
// We essentially only care the Mask {0, 2, 4, 6, u, u, u, u, u, u, u, u}
int Mask[8] = {0, 2, 4, 6, 8, 10, 12, 14};
return GenForSextInreg(N, DCI, MVT::v8i8, MVT::v8i16, MVT::v4i16,
Mask, Src);
}
}
// Nothing to be done for scalar shifts.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!VT.isVector() || !TLI.isTypeLegal(VT))
return SDValue();
assert(ST->hasNEON() && "unexpected vector shift");
int64_t Cnt;
switch (N->getOpcode()) {
default:
llvm_unreachable("unexpected shift opcode");
case ISD::SHL:
if (isVShiftLImm(N->getOperand(1), VT, Cnt)) {
SDValue RHS =
DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
DAG.getConstant(Cnt, MVT::i32));
return DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), RHS);
}
break;
case ISD::SRA:
case ISD::SRL:
if (isVShiftRImm(N->getOperand(1), VT, Cnt)) {
SDValue RHS =
DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
DAG.getConstant(Cnt, MVT::i32));
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N->getOperand(0), RHS);
}
break;
}
return SDValue();
}
/// ARM-specific DAG combining for intrinsics.
static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
switch (IntNo) {
default:
// Don't do anything for most intrinsics.
break;
case Intrinsic::arm_neon_vqshifts:
case Intrinsic::arm_neon_vqshiftu:
EVT VT = N->getOperand(1).getValueType();
int64_t Cnt;
if (!isVShiftLImm(N->getOperand(2), VT, Cnt))
break;
unsigned VShiftOpc = (IntNo == Intrinsic::arm_neon_vqshifts)
? AArch64ISD::NEON_QSHLs
: AArch64ISD::NEON_QSHLu;
return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
}
return SDValue();
}
/// Target-specific DAG combine function for NEON load/store intrinsics
/// to merge base address updates.
static SDValue CombineBaseUpdate(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
SDValue Addr = N->getOperand(AddrOpIdx);
// Search for a use of the address operand that is an increment.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (User->getOpcode() != ISD::ADD ||
UI.getUse().getResNo() != Addr.getResNo())
continue;
// Check that the add is independent of the load/store. Otherwise, folding
// it would create a cycle.
if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
continue;
// Find the new opcode for the updating load/store.
bool isLoad = true;
bool isLaneOp = false;
unsigned NewOpc = 0;
unsigned NumVecs = 0;
if (isIntrinsic) {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
switch (IntNo) {
default: llvm_unreachable("unexpected intrinsic for Neon base update");
case Intrinsic::arm_neon_vld1: NewOpc = AArch64ISD::NEON_LD1_UPD;
NumVecs = 1; break;
case Intrinsic::arm_neon_vld2: NewOpc = AArch64ISD::NEON_LD2_UPD;
NumVecs = 2; break;
case Intrinsic::arm_neon_vld3: NewOpc = AArch64ISD::NEON_LD3_UPD;
NumVecs = 3; break;
case Intrinsic::arm_neon_vld4: NewOpc = AArch64ISD::NEON_LD4_UPD;
NumVecs = 4; break;
case Intrinsic::arm_neon_vst1: NewOpc = AArch64ISD::NEON_ST1_UPD;
NumVecs = 1; isLoad = false; break;
case Intrinsic::arm_neon_vst2: NewOpc = AArch64ISD::NEON_ST2_UPD;
NumVecs = 2; isLoad = false; break;
case Intrinsic::arm_neon_vst3: NewOpc = AArch64ISD::NEON_ST3_UPD;
NumVecs = 3; isLoad = false; break;
case Intrinsic::arm_neon_vst4: NewOpc = AArch64ISD::NEON_ST4_UPD;
NumVecs = 4; isLoad = false; break;
case Intrinsic::aarch64_neon_vld1x2: NewOpc = AArch64ISD::NEON_LD1x2_UPD;
NumVecs = 2; break;
case Intrinsic::aarch64_neon_vld1x3: NewOpc = AArch64ISD::NEON_LD1x3_UPD;
NumVecs = 3; break;
case Intrinsic::aarch64_neon_vld1x4: NewOpc = AArch64ISD::NEON_LD1x4_UPD;
NumVecs = 4; break;
case Intrinsic::aarch64_neon_vst1x2: NewOpc = AArch64ISD::NEON_ST1x2_UPD;
NumVecs = 2; isLoad = false; break;
case Intrinsic::aarch64_neon_vst1x3: NewOpc = AArch64ISD::NEON_ST1x3_UPD;
NumVecs = 3; isLoad = false; break;
case Intrinsic::aarch64_neon_vst1x4: NewOpc = AArch64ISD::NEON_ST1x4_UPD;
NumVecs = 4; isLoad = false; break;
case Intrinsic::arm_neon_vld2lane: NewOpc = AArch64ISD::NEON_LD2LN_UPD;
NumVecs = 2; isLaneOp = true; break;
case Intrinsic::arm_neon_vld3lane: NewOpc = AArch64ISD::NEON_LD3LN_UPD;
NumVecs = 3; isLaneOp = true; break;
case Intrinsic::arm_neon_vld4lane: NewOpc = AArch64ISD::NEON_LD4LN_UPD;
NumVecs = 4; isLaneOp = true; break;
case Intrinsic::arm_neon_vst2lane: NewOpc = AArch64ISD::NEON_ST2LN_UPD;
NumVecs = 2; isLoad = false; isLaneOp = true; break;
case Intrinsic::arm_neon_vst3lane: NewOpc = AArch64ISD::NEON_ST3LN_UPD;
NumVecs = 3; isLoad = false; isLaneOp = true; break;
case Intrinsic::arm_neon_vst4lane: NewOpc = AArch64ISD::NEON_ST4LN_UPD;
NumVecs = 4; isLoad = false; isLaneOp = true; break;
}
} else {
isLaneOp = true;
switch (N->getOpcode()) {
default: llvm_unreachable("unexpected opcode for Neon base update");
case AArch64ISD::NEON_LD2DUP: NewOpc = AArch64ISD::NEON_LD2DUP_UPD;
NumVecs = 2; break;
case AArch64ISD::NEON_LD3DUP: NewOpc = AArch64ISD::NEON_LD3DUP_UPD;
NumVecs = 3; break;
case AArch64ISD::NEON_LD4DUP: NewOpc = AArch64ISD::NEON_LD4DUP_UPD;
NumVecs = 4; break;
}
}
// Find the size of memory referenced by the load/store.
EVT VecTy;
if (isLoad)
VecTy = N->getValueType(0);
else
VecTy = N->getOperand(AddrOpIdx + 1).getValueType();
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
if (isLaneOp)
NumBytes /= VecTy.getVectorNumElements();
// If the increment is a constant, it must match the memory ref size.
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
uint32_t IncVal = CInc->getZExtValue();
if (IncVal != NumBytes)
continue;
Inc = DAG.getTargetConstant(IncVal, MVT::i32);
}
// Create the new updating load/store node.
EVT Tys[6];
unsigned NumResultVecs = (isLoad ? NumVecs : 0);
unsigned n;
for (n = 0; n < NumResultVecs; ++n)
Tys[n] = VecTy;
Tys[n++] = MVT::i64;
Tys[n] = MVT::Other;
SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2));
SmallVector<SDValue, 8> Ops;
Ops.push_back(N->getOperand(0)); // incoming chain
Ops.push_back(N->getOperand(AddrOpIdx));
Ops.push_back(Inc);
for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
Ops.push_back(N->getOperand(i));
}
MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
Ops.data(), Ops.size(),
MemInt->getMemoryVT(),
MemInt->getMemOperand());
// Update the uses.
std::vector<SDValue> NewResults;
for (unsigned i = 0; i < NumResultVecs; ++i) {
NewResults.push_back(SDValue(UpdN.getNode(), i));
}
NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
DCI.CombineTo(N, NewResults);
DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
break;
}
return SDValue();
}
/// For a VDUPLANE node N, check if its source operand is a vldN-lane (N > 1)
/// intrinsic, and if all the other uses of that intrinsic are also VDUPLANEs.
/// If so, combine them to a vldN-dup operation and return true.
static SDValue CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
// Check if the VDUPLANE operand is a vldN-dup intrinsic.
SDNode *VLD = N->getOperand(0).getNode();
if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
return SDValue();
unsigned NumVecs = 0;
unsigned NewOpc = 0;
unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
if (IntNo == Intrinsic::arm_neon_vld2lane) {
NumVecs = 2;
NewOpc = AArch64ISD::NEON_LD2DUP;
} else if (IntNo == Intrinsic::arm_neon_vld3lane) {
NumVecs = 3;
NewOpc = AArch64ISD::NEON_LD3DUP;
} else if (IntNo == Intrinsic::arm_neon_vld4lane) {
NumVecs = 4;
NewOpc = AArch64ISD::NEON_LD4DUP;
} else {
return SDValue();
}
// First check that all the vldN-lane uses are VDUPLANEs and that the lane
// numbers match the load.
unsigned VLDLaneNo =
cast<ConstantSDNode>(VLD->getOperand(NumVecs + 3))->getZExtValue();
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
UI != UE; ++UI) {
// Ignore uses of the chain result.
if (UI.getUse().getResNo() == NumVecs)
continue;
SDNode *User = *UI;
if (User->getOpcode() != AArch64ISD::NEON_VDUPLANE ||
VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
return SDValue();
}
// Create the vldN-dup node.
EVT Tys[5];
unsigned n;
for (n = 0; n < NumVecs; ++n)
Tys[n] = VT;
Tys[n] = MVT::Other;
SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumVecs + 1));
SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, Ops, 2,
VLDMemInt->getMemoryVT(),
VLDMemInt->getMemOperand());
// Update the uses.
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
UI != UE; ++UI) {
unsigned ResNo = UI.getUse().getResNo();
// Ignore uses of the chain result.
if (ResNo == NumVecs)
continue;
SDNode *User = *UI;
DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
}
// Now the vldN-lane intrinsic is dead except for its chain result.
// Update uses of the chain.
std::vector<SDValue> VLDDupResults;
for (unsigned n = 0; n < NumVecs; ++n)
VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
DCI.CombineTo(VLD, VLDDupResults);
return SDValue(N, 0);
}
// vselect (v1i1 setcc) ->
// vselect (v1iXX setcc) (XX is the size of the compared operand type)
// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
// such VSELECT.
static SDValue PerformVSelectCombine(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
EVT CCVT = N0.getValueType();
if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
CCVT.getVectorElementType() != MVT::i1)
return SDValue();
EVT ResVT = N->getValueType(0);
EVT CmpVT = N0.getOperand(0).getValueType();
// Only combine when the result type is of the same size as the compared
// operands.
if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
return SDValue();
SDValue IfTrue = N->getOperand(1);
SDValue IfFalse = N->getOperand(2);
SDValue SetCC =
DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
N0.getOperand(0), N0.getOperand(1),
cast<CondCodeSDNode>(N0.getOperand(2))->get());
return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
IfTrue, IfFalse);
}
// sign_extend (extract_vector_elt (v1i1 setcc)) ->
// extract_vector_elt (v1iXX setcc)
// (XX is the size of the compared operand type)
static SDValue PerformSignExtendCombine(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue Vec = N0.getOperand(0);
if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Vec.getOpcode() != ISD::SETCC)
return SDValue();
EVT ResVT = N->getValueType(0);
EVT CmpVT = Vec.getOperand(0).getValueType();
// Only optimize when the result type is of the same size as the element
// type of the compared operand.
if (ResVT.getSizeInBits() != CmpVT.getVectorElementType().getSizeInBits())
return SDValue();
SDValue Lane = N0.getOperand(1);
SDValue SetCC =
DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
Vec.getOperand(0), Vec.getOperand(1),
cast<CondCodeSDNode>(Vec.getOperand(2))->get());
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ResVT,
SetCC, Lane);
}
SDValue
AArch64TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
switch (N->getOpcode()) {
default: break;
case ISD::AND: return PerformANDCombine(N, DCI);
case ISD::OR: return PerformORCombine(N, DCI, getSubtarget());
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
return PerformShiftCombine(N, DCI, getSubtarget());
case ISD::VSELECT: return PerformVSelectCombine(N, DCI.DAG);
case ISD::SIGN_EXTEND: return PerformSignExtendCombine(N, DCI.DAG);
case ISD::INTRINSIC_WO_CHAIN:
return PerformIntrinsicCombine(N, DCI.DAG);
case AArch64ISD::NEON_VDUPLANE:
return CombineVLDDUP(N, DCI);
case AArch64ISD::NEON_LD2DUP:
case AArch64ISD::NEON_LD3DUP:
case AArch64ISD::NEON_LD4DUP:
return CombineBaseUpdate(N, DCI);
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN:
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
case Intrinsic::arm_neon_vld1:
case Intrinsic::arm_neon_vld2:
case Intrinsic::arm_neon_vld3:
case Intrinsic::arm_neon_vld4:
case Intrinsic::arm_neon_vst1:
case Intrinsic::arm_neon_vst2:
case Intrinsic::arm_neon_vst3:
case Intrinsic::arm_neon_vst4:
case Intrinsic::arm_neon_vld2lane:
case Intrinsic::arm_neon_vld3lane:
case Intrinsic::arm_neon_vld4lane:
case Intrinsic::aarch64_neon_vld1x2:
case Intrinsic::aarch64_neon_vld1x3:
case Intrinsic::aarch64_neon_vld1x4:
case Intrinsic::aarch64_neon_vst1x2:
case Intrinsic::aarch64_neon_vst1x3:
case Intrinsic::aarch64_neon_vst1x4:
case Intrinsic::arm_neon_vst2lane:
case Intrinsic::arm_neon_vst3lane:
case Intrinsic::arm_neon_vst4lane:
return CombineBaseUpdate(N, DCI);
default:
break;
}
}
return SDValue();
}
bool
AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f16:
case MVT::f32:
case MVT::f64:
return true;
case MVT::f128:
return false;
default:
break;
}
return false;
}
bool AArch64TargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
unsigned AddrSpace,
bool *Fast) const {
const AArch64Subtarget *Subtarget = getSubtarget();
// The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
switch (VT.getSimpleVT().SimpleTy) {
default:
return false;
// Scalar types
case MVT::i8: case MVT::i16:
case MVT::i32: case MVT::i64:
case MVT::f32: case MVT::f64: {
// Unaligned access can use (for example) LRDB, LRDH, LDRW
if (AllowsUnaligned) {
if (Fast)
*Fast = true;
return true;
}
return false;
}
// 64-bit vector types
case MVT::v8i8: case MVT::v4i16:
case MVT::v2i32: case MVT::v1i64:
case MVT::v2f32: case MVT::v1f64:
// 128-bit vector types
case MVT::v16i8: case MVT::v8i16:
case MVT::v4i32: case MVT::v2i64:
case MVT::v4f32: case MVT::v2f64: {
// For any little-endian targets with neon, we can support unaligned
// load/store of V registers using ld1/st1.
// A big-endian target may also explicitly support unaligned accesses
if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
if (Fast)
*Fast = true;
return true;
}
return false;
}
}
}
// Check whether a shuffle_vector could be presented as concat_vector.
bool AArch64TargetLowering::isConcatVector(SDValue Op, SelectionDAG &DAG,
SDValue V0, SDValue V1,
const int *Mask,
SDValue &Res) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
if (VT.getSizeInBits() != 128)
return false;
if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
VT.getVectorElementType() != V1.getValueType().getVectorElementType())
return false;
unsigned NumElts = VT.getVectorNumElements();
bool isContactVector = true;
bool splitV0 = false;
if (V0.getValueType().getSizeInBits() == 128)
splitV0 = true;
for (int I = 0, E = NumElts / 2; I != E; I++) {
if (Mask[I] != I) {
isContactVector = false;
break;
}
}
if (isContactVector) {
int offset = NumElts / 2;
for (int I = NumElts / 2, E = NumElts; I != E; I++) {
if (Mask[I] != I + splitV0 * offset) {
isContactVector = false;
break;
}
}
}
if (isContactVector) {
EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
NumElts / 2);
if (splitV0) {
V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
DAG.getConstant(0, MVT::i64));
}
if (V1.getValueType().getSizeInBits() == 128) {
V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
DAG.getConstant(0, MVT::i64));
}
Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
return true;
}
return false;
}
// Check whether a Build Vector could be presented as Shuffle Vector.
// This Shuffle Vector maybe not legalized, so the length of its operand and
// the length of result may not equal.
bool AArch64TargetLowering::isKnownShuffleVector(SDValue Op, SelectionDAG &DAG,
SDValue &V0, SDValue &V1,
int *Mask) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
unsigned NumElts = VT.getVectorNumElements();
unsigned V0NumElts = 0;
// Check if all elements are extracted from less than 3 vectors.
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Elt = Op.getOperand(i);
if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Elt.getOperand(0).getValueType().getVectorElementType() !=
VT.getVectorElementType())
return false;
if (V0.getNode() == 0) {
V0 = Elt.getOperand(0);
V0NumElts = V0.getValueType().getVectorNumElements();
}
if (Elt.getOperand(0) == V0) {
Mask[i] = (cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue());
continue;
} else if (V1.getNode() == 0) {
V1 = Elt.getOperand(0);
}
if (Elt.getOperand(0) == V1) {
unsigned Lane = cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue();
Mask[i] = (Lane + V0NumElts);
continue;
} else {
return false;
}
}
return true;
}
// LowerShiftRightParts - Lower SRL_PARTS and SRA_PARTS, which returns two
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a quad-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
DAG.getConstant(VTBits, MVT::i64), ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
DAG.getConstant(VTBits, MVT::i64));
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
SDValue Tmp3 = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
SDValue A64cc;
SDValue CmpOp = getSelectableIntSetCC(ExtraShAmt,
DAG.getConstant(0, MVT::i64),
ISD::SETGE, A64cc,
DAG, dl);
SDValue Hi = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
DAG.getConstant(0, Tmp3.getValueType()), Tmp3,
A64cc);
SDValue Lo = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
TrueVal, FalseVal, A64cc);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, 2, dl);
}
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a quad-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
assert(Op.getOpcode() == ISD::SHL_PARTS);
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
DAG.getConstant(VTBits, MVT::i64), ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
DAG.getConstant(VTBits, MVT::i64));
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue Tmp4 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
SDValue A64cc;
SDValue CmpOp = getSelectableIntSetCC(ExtraShAmt,
DAG.getConstant(0, MVT::i64),
ISD::SETGE, A64cc,
DAG, dl);
SDValue Lo = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
DAG.getConstant(0, Tmp4.getValueType()), Tmp4,
A64cc);
SDValue Hi = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
Tmp3, FalseVal, A64cc);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, 2, dl);
}
// If this is a case we can't handle, return null and let the default
// expansion code take care of it.
SDValue
AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
const AArch64Subtarget *ST) const {
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
SDLoc DL(Op);
EVT VT = Op.getValueType();
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
unsigned UseNeonMov = VT.getSizeInBits() >= 64;
// Note we favor lowering MOVI over MVNI.
// This has implications on the definition of patterns in TableGen to select
// BIC immediate instructions but not ORR immediate instructions.
// If this lowering order is changed, TableGen patterns for BIC immediate and
// ORR immediate instructions have to be updated.
if (UseNeonMov &&
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
if (SplatBitSize <= 64) {
// First attempt to use vector immediate-form MOVI
EVT NeonMovVT;
unsigned Imm = 0;
unsigned OpCmode = 0;
if (isNeonModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
SplatBitSize, DAG, VT.is128BitVector(),
Neon_Mov_Imm, NeonMovVT, Imm, OpCmode)) {
SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
if (ImmVal.getNode() && OpCmodeVal.getNode()) {
SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MOVIMM, DL, NeonMovVT,
ImmVal, OpCmodeVal);
return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
}
}
// Then attempt to use vector immediate-form MVNI
uint64_t NegatedImm = (~SplatBits).getZExtValue();
if (isNeonModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
DAG, VT.is128BitVector(), Neon_Mvn_Imm, NeonMovVT,
Imm, OpCmode)) {
SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
if (ImmVal.getNode() && OpCmodeVal.getNode()) {
SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MVNIMM, DL, NeonMovVT,
ImmVal, OpCmodeVal);
return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
}
}
// Attempt to use vector immediate-form FMOV
if (((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) ||
(VT == MVT::v2f64 && SplatBitSize == 64)) {
APFloat RealVal(
SplatBitSize == 32 ? APFloat::IEEEsingle : APFloat::IEEEdouble,
SplatBits);
uint32_t ImmVal;
if (A64Imms::isFPImm(RealVal, ImmVal)) {
SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
return DAG.getNode(AArch64ISD::NEON_FMOVIMM, DL, VT, Val);
}
}
}
}
unsigned NumElts = VT.getVectorNumElements();
bool isOnlyLowElement = true;
bool usesOnlyOneValue = true;
bool hasDominantValue = false;
bool isConstant = true;
// Map of the number of times a particular SDValue appears in the
// element list.
DenseMap<SDValue, unsigned> ValueCounts;
SDValue Value;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.getOpcode() == ISD::UNDEF)
continue;
if (i > 0)
isOnlyLowElement = false;
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
isConstant = false;
ValueCounts.insert(std::make_pair(V, 0));
unsigned &Count = ValueCounts[V];
// Is this value dominant? (takes up more than half of the lanes)
if (++Count > (NumElts / 2)) {
hasDominantValue = true;
Value = V;
}
}
if (ValueCounts.size() != 1)
usesOnlyOneValue = false;
if (!Value.getNode() && ValueCounts.size() > 0)
Value = ValueCounts.begin()->first;
if (ValueCounts.size() == 0)
return DAG.getUNDEF(VT);
if (isOnlyLowElement)
return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
if (hasDominantValue && EltSize <= 64) {
// Use VDUP for non-constant splats.
if (!isConstant) {
SDValue N;
// If we are DUPing a value that comes directly from a vector, we could
// just use DUPLANE. We can only do this if the lane being extracted
// is at a constant index, as the DUP from lane instructions only have
// constant-index forms.
//
// If there is a TRUNCATE between EXTRACT_VECTOR_ELT and DUP, we can
// remove TRUNCATE for DUPLANE by apdating the source vector to
// appropriate vector type and lane index.
//
// FIXME: for now we have v1i8, v1i16, v1i32 legal vector types, if they
// are not legal any more, no need to check the type size in bits should
// be large than 64.
SDValue V = Value;
if (Value->getOpcode() == ISD::TRUNCATE)
V = Value->getOperand(0);
if (V->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
isa<ConstantSDNode>(V->getOperand(1)) &&
V->getOperand(0).getValueType().getSizeInBits() >= 64) {
// If the element size of source vector is larger than DUPLANE
// element size, we can do transformation by,
// 1) bitcasting source register to smaller element vector
// 2) mutiplying the lane index by SrcEltSize/ResEltSize
// For example, we can lower
// "v8i16 vdup_lane(v4i32, 1)"
// to be
// "v8i16 vdup_lane(v8i16 bitcast(v4i32), 2)".
SDValue SrcVec = V->getOperand(0);
unsigned SrcEltSize =
SrcVec.getValueType().getVectorElementType().getSizeInBits();
unsigned ResEltSize = VT.getVectorElementType().getSizeInBits();
if (SrcEltSize > ResEltSize) {
assert((SrcEltSize % ResEltSize == 0) && "Invalid element size");
SDValue BitCast;
unsigned SrcSize = SrcVec.getValueType().getSizeInBits();
unsigned ResSize = VT.getSizeInBits();
if (SrcSize > ResSize) {
assert((SrcSize % ResSize == 0) && "Invalid vector size");
EVT CastVT =
EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
SrcSize / ResEltSize);
BitCast = DAG.getNode(ISD::BITCAST, DL, CastVT, SrcVec);
} else {
assert((SrcSize == ResSize) && "Invalid vector size of source vec");
BitCast = DAG.getNode(ISD::BITCAST, DL, VT, SrcVec);
}
unsigned LaneIdx = V->getConstantOperandVal(1);
SDValue Lane =
DAG.getConstant((SrcEltSize / ResEltSize) * LaneIdx, MVT::i64);
N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, BitCast, Lane);
} else {
assert((SrcEltSize == ResEltSize) &&
"Invalid element size of source vec");
N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, V->getOperand(0),
V->getOperand(1));
}
} else
N = DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
if (!usesOnlyOneValue) {
// The dominant value was splatted as 'N', but we now have to insert
// all differing elements.
for (unsigned I = 0; I < NumElts; ++I) {
if (Op.getOperand(I) == Value)
continue;
SmallVector<SDValue, 3> Ops;
Ops.push_back(N);
Ops.push_back(Op.getOperand(I));
Ops.push_back(DAG.getConstant(I, MVT::i64));
N = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, &Ops[0], 3);
}
}
return N;
}
if (usesOnlyOneValue && isConstant) {
return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
}
}
// If all elements are constants and the case above didn't get hit, fall back
// to the default expansion, which will generate a load from the constant
// pool.
if (isConstant)
return SDValue();
// Try to lower this in lowering ShuffleVector way.
SDValue V0, V1;
int Mask[16];
if (isKnownShuffleVector(Op, DAG, V0, V1, Mask)) {
unsigned V0NumElts = V0.getValueType().getVectorNumElements();
if (!V1.getNode() && V0NumElts == NumElts * 2) {
V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
DAG.getConstant(NumElts, MVT::i64));
V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
DAG.getConstant(0, MVT::i64));
V0NumElts = V0.getValueType().getVectorNumElements();
}
if (V1.getNode() && NumElts == V0NumElts &&
V0NumElts == V1.getValueType().getVectorNumElements()) {
SDValue Shuffle = DAG.getVectorShuffle(VT, DL, V0, V1, Mask);
if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE)
return Shuffle;
else
return LowerVECTOR_SHUFFLE(Shuffle, DAG);
} else {
SDValue Res;
if (isConcatVector(Op, DAG, V0, V1, Mask, Res))
return Res;
}
}
// If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
// know the default expansion would otherwise fall back on something even
// worse. For a vector with one or two non-undef values, that's
// scalar_to_vector for the elements followed by a shuffle (provided the
// shuffle is valid for the target) and materialization element by element
// on the stack followed by a load for everything else.
if (!isConstant && !usesOnlyOneValue) {
SDValue Vec = DAG.getUNDEF(VT);
for (unsigned i = 0 ; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.getOpcode() == ISD::UNDEF)
continue;
SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, LaneIdx);
}
return Vec;
}
return SDValue();
}
/// isREVMask - Check if a vector shuffle corresponds to a REV
/// instruction with the specified blocksize. (The order of the elements
/// within each block of the vector is reversed.)
static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
"Only possible block sizes for REV are: 16, 32, 64");
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
unsigned BlockElts = M[0] + 1;
// If the first shuffle index is UNDEF, be optimistic.
if (M[0] < 0)
BlockElts = BlockSize / EltSz;
if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
return false;
for (unsigned i = 0; i < NumElts; ++i) {
if (M[i] < 0)
continue; // ignore UNDEF indices
if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
return false;
}
return true;
}
// isPermuteMask - Check whether the vector shuffle matches to UZP, ZIP and
// TRN instruction.
static unsigned isPermuteMask(ArrayRef<int> M, EVT VT, bool isV2undef) {
unsigned NumElts = VT.getVectorNumElements();
if (NumElts < 4)
return 0;
bool ismatch = true;
// Check UZP1
for (unsigned i = 0; i < NumElts; ++i) {
unsigned answer = i * 2;
if (isV2undef && answer >= NumElts)
answer -= NumElts;
if (M[i] != -1 && (unsigned)M[i] != answer) {
ismatch = false;
break;
}
}
if (ismatch)
return AArch64ISD::NEON_UZP1;
// Check UZP2
ismatch = true;
for (unsigned i = 0; i < NumElts; ++i) {
unsigned answer = i * 2 + 1;
if (isV2undef && answer >= NumElts)
answer -= NumElts;
if (M[i] != -1 && (unsigned)M[i] != answer) {
ismatch = false;
break;
}
}
if (ismatch)
return AArch64ISD::NEON_UZP2;
// Check ZIP1
ismatch = true;
for (unsigned i = 0; i < NumElts; ++i) {
unsigned answer = i / 2 + NumElts * (i % 2);
if (isV2undef && answer >= NumElts)
answer -= NumElts;
if (M[i] != -1 && (unsigned)M[i] != answer) {
ismatch = false;
break;
}
}
if (ismatch)
return AArch64ISD::NEON_ZIP1;
// Check ZIP2
ismatch = true;
for (unsigned i = 0; i < NumElts; ++i) {
unsigned answer = (NumElts + i) / 2 + NumElts * (i % 2);
if (isV2undef && answer >= NumElts)
answer -= NumElts;
if (M[i] != -1 && (unsigned)M[i] != answer) {
ismatch = false;
break;
}
}
if (ismatch)
return AArch64ISD::NEON_ZIP2;
// Check TRN1
ismatch = true;
for (unsigned i = 0; i < NumElts; ++i) {
unsigned answer = i + (NumElts - 1) * (i % 2);
if (isV2undef && answer >= NumElts)
answer -= NumElts;
if (M[i] != -1 && (unsigned)M[i] != answer) {
ismatch = false;
break;
}
}
if (ismatch)
return AArch64ISD::NEON_TRN1;
// Check TRN2
ismatch = true;
for (unsigned i = 0; i < NumElts; ++i) {
unsigned answer = 1 + i + (NumElts - 1) * (i % 2);
if (isV2undef && answer >= NumElts)
answer -= NumElts;
if (M[i] != -1 && (unsigned)M[i] != answer) {
ismatch = false;
break;
}
}
if (ismatch)
return AArch64ISD::NEON_TRN2;
return 0;
}
SDValue
AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
SelectionDAG &DAG) const {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDLoc dl(Op);
EVT VT = Op.getValueType();
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
// Convert shuffles that are directly supported on NEON to target-specific
// DAG nodes, instead of keeping them as shuffles and matching them again
// during code selection. This is more efficient and avoids the possibility
// of inconsistencies between legalization and selection.
ArrayRef<int> ShuffleMask = SVN->getMask();
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
if (EltSize > 64)
return SDValue();
if (isREVMask(ShuffleMask, VT, 64))
return DAG.getNode(AArch64ISD::NEON_REV64, dl, VT, V1);
if (isREVMask(ShuffleMask, VT, 32))
return DAG.getNode(AArch64ISD::NEON_REV32, dl, VT, V1);
if (isREVMask(ShuffleMask, VT, 16))
return DAG.getNode(AArch64ISD::NEON_REV16, dl, VT, V1);
unsigned ISDNo;
if (V2.getOpcode() == ISD::UNDEF)
ISDNo = isPermuteMask(ShuffleMask, VT, true);
else
ISDNo = isPermuteMask(ShuffleMask, VT, false);
if (ISDNo) {
if (V2.getOpcode() == ISD::UNDEF)
return DAG.getNode(ISDNo, dl, VT, V1, V1);
else
return DAG.getNode(ISDNo, dl, VT, V1, V2);
}
SDValue Res;
if (isConcatVector(Op, DAG, V1, V2, &ShuffleMask[0], Res))
return Res;
// If the element of shuffle mask are all the same constant, we can
// transform it into either NEON_VDUP or NEON_VDUPLANE
if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
int Lane = SVN->getSplatIndex();
// If this is undef splat, generate it via "just" vdup, if possible.
if (Lane == -1) Lane = 0;
// Test if V1 is a SCALAR_TO_VECTOR.
if (V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT, V1.getOperand(0));
}
// Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR.
if (V1.getOpcode() == ISD::BUILD_VECTOR) {
bool IsScalarToVector = true;
for (unsigned i = 0, e = V1.getNumOperands(); i != e; ++i)
if (V1.getOperand(i).getOpcode() != ISD::UNDEF &&
i != (unsigned)Lane) {
IsScalarToVector = false;
break;
}
if (IsScalarToVector)
return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT,
V1.getOperand(Lane));
}
// Test if V1 is a EXTRACT_SUBVECTOR.
if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
int ExtLane = cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1.getOperand(0),
DAG.getConstant(Lane + ExtLane, MVT::i64));
}
// Test if V1 is a CONCAT_VECTORS.
if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
V1.getOperand(1).getOpcode() == ISD::UNDEF) {
SDValue Op0 = V1.getOperand(0);
assert((unsigned)Lane < Op0.getValueType().getVectorNumElements() &&
"Invalid vector lane access");
return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, Op0,
DAG.getConstant(Lane, MVT::i64));
}
return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1,
DAG.getConstant(Lane, MVT::i64));
}
int Length = ShuffleMask.size();
int V1EltNum = V1.getValueType().getVectorNumElements();
// If the number of v1 elements is the same as the number of shuffle mask
// element and the shuffle masks are sequential values, we can transform
// it into NEON_VEXTRACT.
if (V1EltNum == Length) {
// Check if the shuffle mask is sequential.
int SkipUndef = 0;
while (ShuffleMask[SkipUndef] == -1) {
SkipUndef++;
}
int CurMask = ShuffleMask[SkipUndef];
if (CurMask >= SkipUndef) {
bool IsSequential = true;
for (int I = SkipUndef; I < Length; ++I) {
if (ShuffleMask[I] != -1 && ShuffleMask[I] != CurMask) {
IsSequential = false;
break;
}
CurMask++;
}
if (IsSequential) {
assert((EltSize % 8 == 0) && "Bitsize of vector element is incorrect");
unsigned VecSize = EltSize * V1EltNum;
unsigned Index = (EltSize / 8) * (ShuffleMask[SkipUndef] - SkipUndef);
if (VecSize == 64 || VecSize == 128)
return DAG.getNode(AArch64ISD::NEON_VEXTRACT, dl, VT, V1, V2,
DAG.getConstant(Index, MVT::i64));
}
}
}
// For shuffle mask like "0, 1, 2, 3, 4, 5, 13, 7", try to generate insert
// by element from V2 to V1 .
// If shuffle mask is like "0, 1, 10, 11, 12, 13, 14, 15", V2 would be a
// better choice to be inserted than V1 as less insert needed, so we count
// element to be inserted for both V1 and V2, and select less one as insert
// target.
// Collect elements need to be inserted and their index.
SmallVector<int, 8> NV1Elt;
SmallVector<int, 8> N1Index;
SmallVector<int, 8> NV2Elt;
SmallVector<int, 8> N2Index;
for (int I = 0; I != Length; ++I) {
if (ShuffleMask[I] != I) {
NV1Elt.push_back(ShuffleMask[I]);
N1Index.push_back(I);
}
}
for (int I = 0; I != Length; ++I) {
if (ShuffleMask[I] != (I + V1EltNum)) {
NV2Elt.push_back(ShuffleMask[I]);
N2Index.push_back(I);
}
}
// Decide which to be inserted. If all lanes mismatch, neither V1 nor V2
// will be inserted.
SDValue InsV = V1;
SmallVector<int, 8> InsMasks = NV1Elt;
SmallVector<int, 8> InsIndex = N1Index;
if ((int)NV1Elt.size() != Length || (int)NV2Elt.size() != Length) {
if (NV1Elt.size() > NV2Elt.size()) {
InsV = V2;
InsMasks = NV2Elt;
InsIndex = N2Index;
}
} else {
InsV = DAG.getNode(ISD::UNDEF, dl, VT);
}
for (int I = 0, E = InsMasks.size(); I != E; ++I) {
SDValue ExtV = V1;
int Mask = InsMasks[I];
if (Mask >= V1EltNum) {
ExtV = V2;
Mask -= V1EltNum;
}
// Any value type smaller than i32 is illegal in AArch64, and this lower
// function is called after legalize pass, so we need to legalize
// the result here.
EVT EltVT;
if (VT.getVectorElementType().isFloatingPoint())
EltVT = (EltSize == 64) ? MVT::f64 : MVT::f32;
else
EltVT = (EltSize == 64) ? MVT::i64 : MVT::i32;
if (Mask >= 0) {
ExtV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ExtV,
DAG.getConstant(Mask, MVT::i64));
InsV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, InsV, ExtV,
DAG.getConstant(InsIndex[I], MVT::i64));
}
}
return InsV;
}
AArch64TargetLowering::ConstraintType
AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 'w': // An FP/SIMD vector register
return C_RegisterClass;
case 'I': // Constant that can be used with an ADD instruction
case 'J': // Constant that can be used with a SUB instruction
case 'K': // Constant that can be used with a 32-bit logical instruction
case 'L': // Constant that can be used with a 64-bit logical instruction
case 'M': // Constant that can be used as a 32-bit MOV immediate
case 'N': // Constant that can be used as a 64-bit MOV immediate
case 'Y': // Floating point constant zero
case 'Z': // Integer constant zero
return C_Other;
case 'Q': // A memory reference with base register and no offset
return C_Memory;
case 'S': // A symbolic address
return C_Other;
}
}
// FIXME: Ump, Utf, Usa, Ush
// Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
// whatever they may be
// Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
// Usa: An absolute symbolic address
// Ush: The high part (bits 32:12) of a pc-relative symbolic address
assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
&& Constraint != "Ush" && "Unimplemented constraints");
return TargetLowering::getConstraintType(Constraint);
}
TargetLowering::ConstraintWeight
AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
const char *Constraint) const {
llvm_unreachable("Constraint weight unimplemented");
}
void
AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
SDValue Result(0, 0);
// Only length 1 constraints are C_Other.
if (Constraint.size() != 1) return;
// Only C_Other constraints get lowered like this. That means constants for us
// so return early if there's no hope the constraint can be lowered.
switch(Constraint[0]) {
default: break;
case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'Z': {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C)
return;
uint64_t CVal = C->getZExtValue();
uint32_t Bits;
switch (Constraint[0]) {
default:
// FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
// is a peculiarly useless SUB constraint.
llvm_unreachable("Unimplemented C_Other constraint");
case 'I':
if (CVal <= 0xfff)
break;
return;
case 'K':
if (A64Imms::isLogicalImm(32, CVal, Bits))
break;
return;
case 'L':
if (A64Imms::isLogicalImm(64, CVal, Bits))
break;
return;
case 'Z':
if (CVal == 0)
break;
return;
}
Result = DAG.getTargetConstant(CVal, Op.getValueType());
break;
}
case 'S': {
// An absolute symbolic address or label reference.
if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
GA->getValueType(0));
} else if (const BlockAddressSDNode *BA
= dyn_cast<BlockAddressSDNode>(Op)) {
Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
BA->getValueType(0));
} else if (const ExternalSymbolSDNode *ES
= dyn_cast<ExternalSymbolSDNode>(Op)) {
Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
ES->getValueType(0));
} else
return;
break;
}
case 'Y':
if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
if (CFP->isExactlyValue(0.0)) {
Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
break;
}
}
return;
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
// It's an unknown constraint for us. Let generic code have a go.
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
std::pair<unsigned, const TargetRegisterClass*>
AArch64TargetLowering::getRegForInlineAsmConstraint(
const std::string &Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
if (VT.getSizeInBits() <= 32)
return std::make_pair(0U, &AArch64::GPR32RegClass);
else if (VT == MVT::i64)
return std::make_pair(0U, &AArch64::GPR64RegClass);
break;
case 'w':
if (VT == MVT::f16)
return std::make_pair(0U, &AArch64::FPR16RegClass);
else if (VT == MVT::f32)
return std::make_pair(0U, &AArch64::FPR32RegClass);
else if (VT.getSizeInBits() == 64)
return std::make_pair(0U, &AArch64::FPR64RegClass);
else if (VT.getSizeInBits() == 128)
return std::make_pair(0U, &AArch64::FPR128RegClass);
break;
}
}
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
/// Represent NEON load and store intrinsics as MemIntrinsicNodes.
/// The associated MachineMemOperands record the alignment specified
/// in the intrinsic calls.
bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
unsigned Intrinsic) const {
switch (Intrinsic) {
case Intrinsic::arm_neon_vld1:
case Intrinsic::arm_neon_vld2:
case Intrinsic::arm_neon_vld3:
case Intrinsic::arm_neon_vld4:
case Intrinsic::aarch64_neon_vld1x2:
case Intrinsic::aarch64_neon_vld1x3:
case Intrinsic::aarch64_neon_vld1x4:
case Intrinsic::arm_neon_vld2lane:
case Intrinsic::arm_neon_vld3lane:
case Intrinsic::arm_neon_vld4lane: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
// Conservatively set memVT to the entire set of vectors loaded.
uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
Info.vol = false; // volatile loads with NEON intrinsics not supported
Info.readMem = true;
Info.writeMem = false;
return true;
}
case Intrinsic::arm_neon_vst1:
case Intrinsic::arm_neon_vst2:
case Intrinsic::arm_neon_vst3:
case Intrinsic::arm_neon_vst4:
case Intrinsic::aarch64_neon_vst1x2:
case Intrinsic::aarch64_neon_vst1x3:
case Intrinsic::aarch64_neon_vst1x4:
case Intrinsic::arm_neon_vst2lane:
case Intrinsic::arm_neon_vst3lane:
case Intrinsic::arm_neon_vst4lane: {
Info.opc = ISD::INTRINSIC_VOID;
// Conservatively set memVT to the entire set of vectors stored.
unsigned NumElts = 0;
for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
Type *ArgTy = I.getArgOperand(ArgI)->getType();
if (!ArgTy->isVectorTy())
break;
NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
}
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
Info.vol = false; // volatile stores with NEON intrinsics not supported
Info.readMem = false;
Info.writeMem = true;
return true;
}
default:
break;
}
return false;
}
// Truncations from 64-bit GPR to 32-bit GPR is free.
bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
if (NumBits1 <= NumBits2)
return false;
return true;
}
bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (!VT1.isInteger() || !VT2.isInteger())
return false;
unsigned NumBits1 = VT1.getSizeInBits();
unsigned NumBits2 = VT2.getSizeInBits();
if (NumBits1 <= NumBits2)
return false;
return true;
}
// All 32-bit GPR operations implicitly zero the high-half of the corresponding
// 64-bit GPR.
bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
if (NumBits1 == 32 && NumBits2 == 64)
return true;
return false;
}
bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
if (!VT1.isInteger() || !VT2.isInteger())
return false;
unsigned NumBits1 = VT1.getSizeInBits();
unsigned NumBits2 = VT2.getSizeInBits();
if (NumBits1 == 32 && NumBits2 == 64)
return true;
return false;
}
bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
EVT VT1 = Val.getValueType();
if (isZExtFree(VT1, VT2)) {
return true;
}
if (Val.getOpcode() != ISD::LOAD)
return false;
// 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
return (VT1.isSimple() && VT1.isInteger() && VT2.isSimple() &&
VT2.isInteger() && VT1.getSizeInBits() <= 32);
}
// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
Type *Ty) const {
// AArch64 has five basic addressing modes:
// reg
// reg + 9-bit signed offset
// reg + SIZE_IN_BYTES * 12-bit unsigned offset
// reg1 + reg2
// reg + SIZE_IN_BYTES * reg
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
// No reg+reg+imm addressing.
if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
return false;
// check reg + imm case:
// i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
uint64_t NumBytes = 0;
if (Ty->isSized()) {
uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
NumBytes = NumBits / 8;
if (!isPowerOf2_64(NumBits))
NumBytes = 0;
}
if (!AM.Scale) {
int64_t Offset = AM.BaseOffs;
// 9-bit signed offset
if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
return true;
// 12-bit unsigned offset
unsigned shift = Log2_64(NumBytes);
if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
// Must be a multiple of NumBytes (NumBytes is a power of 2)
(Offset >> shift) << shift == Offset)
return true;
return false;
}
if (!AM.Scale || AM.Scale == 1 ||
(AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
return true;
return false;
}
int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
Type *Ty) const {
// Scaling factors are not free at all.
// Operands | Rt Latency
// -------------------------------------------
// Rt, [Xn, Xm] | 4
// -------------------------------------------
// Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
// Rt, [Xn, Wm, <extend> #imm] |
if (isLegalAddressingMode(AM, Ty))
// Scale represents reg2 * scale, thus account for 1 if
// it is not equal to 0 or 1.
return AM.Scale != 0 && AM.Scale != 1;
return -1;
}