llvm-6502/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
2015-03-02 16:45:08 +00:00

6935 lines
254 KiB
C++

//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAG class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "SDNodeDbgValue.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSelectionDAGInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <cmath>
using namespace llvm;
/// makeVTList - Return an instance of the SDVTList struct initialized with the
/// specified members.
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
SDVTList Res = {VTs, NumVTs};
return Res;
}
// Default null implementations of the callbacks.
void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
//===----------------------------------------------------------------------===//
// ConstantFPSDNode Class
//===----------------------------------------------------------------------===//
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
return getValueAPF().bitwiseIsEqual(V);
}
bool ConstantFPSDNode::isValueValidForType(EVT VT,
const APFloat& Val) {
assert(VT.isFloatingPoint() && "Can only convert between FP types");
// convert modifies in place, so make a copy.
APFloat Val2 = APFloat(Val);
bool losesInfo;
(void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven,
&losesInfo);
return !losesInfo;
}
//===----------------------------------------------------------------------===//
// ISD Namespace
//===----------------------------------------------------------------------===//
/// isBuildVectorAllOnes - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are ~0 or undef.
bool ISD::isBuildVectorAllOnes(const SDNode *N) {
// Look through a bit convert.
while (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0).getNode();
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
unsigned i = 0, e = N->getNumOperands();
// Skip over all of the undef values.
while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
++i;
// Do not accept an all-undef vector.
if (i == e) return false;
// Do not accept build_vectors that aren't all constants or which have non-~0
// elements. We have to be a bit careful here, as the type of the constant
// may not be the same as the type of the vector elements due to type
// legalization (the elements are promoted to a legal type for the target and
// a vector of a type may be legal when the base element type is not).
// We only want to check enough bits to cover the vector elements, because
// we care if the resultant vector is all ones, not whether the individual
// constants are.
SDValue NotZero = N->getOperand(i);
unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
if (CN->getAPIntValue().countTrailingOnes() < EltSize)
return false;
} else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
return false;
} else
return false;
// Okay, we have at least one ~0 value, check to see if the rest match or are
// undefs. Even with the above element type twiddling, this should be OK, as
// the same type legalization should have applied to all the elements.
for (++i; i != e; ++i)
if (N->getOperand(i) != NotZero &&
N->getOperand(i).getOpcode() != ISD::UNDEF)
return false;
return true;
}
/// isBuildVectorAllZeros - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are 0 or undef.
bool ISD::isBuildVectorAllZeros(const SDNode *N) {
// Look through a bit convert.
while (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0).getNode();
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
bool IsAllUndef = true;
for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF)
continue;
IsAllUndef = false;
// Do not accept build_vectors that aren't all constants or which have non-0
// elements. We have to be a bit careful here, as the type of the constant
// may not be the same as the type of the vector elements due to type
// legalization (the elements are promoted to a legal type for the target
// and a vector of a type may be legal when the base element type is not).
// We only want to check enough bits to cover the vector elements, because
// we care if the resultant vector is all zeros, not whether the individual
// constants are.
SDValue Zero = N->getOperand(i);
unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Zero)) {
if (CN->getAPIntValue().countTrailingZeros() < EltSize)
return false;
} else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Zero)) {
if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
return false;
} else
return false;
}
// Do not accept an all-undef vector.
if (IsAllUndef)
return false;
return true;
}
/// \brief Return true if the specified node is a BUILD_VECTOR node of
/// all ConstantSDNode or undef.
bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDValue Op = N->getOperand(i);
if (Op.getOpcode() == ISD::UNDEF)
continue;
if (!isa<ConstantSDNode>(Op))
return false;
}
return true;
}
/// isScalarToVector - Return true if the specified node is a
/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
/// element is not an undef.
bool ISD::isScalarToVector(const SDNode *N) {
if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
return true;
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
if (N->getOperand(0).getOpcode() == ISD::UNDEF)
return false;
unsigned NumElems = N->getNumOperands();
if (NumElems == 1)
return false;
for (unsigned i = 1; i < NumElems; ++i) {
SDValue V = N->getOperand(i);
if (V.getOpcode() != ISD::UNDEF)
return false;
}
return true;
}
/// allOperandsUndef - Return true if the node has at least one operand
/// and all operands of the specified node are ISD::UNDEF.
bool ISD::allOperandsUndef(const SDNode *N) {
// Return false if the node has no operands.
// This is "logically inconsistent" with the definition of "all" but
// is probably the desired behavior.
if (N->getNumOperands() == 0)
return false;
for (unsigned i = 0, e = N->getNumOperands(); i != e ; ++i)
if (N->getOperand(i).getOpcode() != ISD::UNDEF)
return false;
return true;
}
ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
switch (ExtType) {
case ISD::EXTLOAD:
return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
case ISD::SEXTLOAD:
return ISD::SIGN_EXTEND;
case ISD::ZEXTLOAD:
return ISD::ZERO_EXTEND;
default:
break;
}
llvm_unreachable("Invalid LoadExtType");
}
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
/// when given the operation for (X op Y).
ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
// To perform this operation, we just need to swap the L and G bits of the
// operation.
unsigned OldL = (Operation >> 2) & 1;
unsigned OldG = (Operation >> 1) & 1;
return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
(OldL << 1) | // New G bit
(OldG << 2)); // New L bit.
}
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
/// 'op' is a valid SetCC operation.
ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
unsigned Operation = Op;
if (isInteger)
Operation ^= 7; // Flip L, G, E bits, but not U.
else
Operation ^= 15; // Flip all of the condition bits.
if (Operation > ISD::SETTRUE2)
Operation &= ~8; // Don't let N and U bits get set.
return ISD::CondCode(Operation);
}
/// isSignedOp - For an integer comparison, return 1 if the comparison is a
/// signed operation and 2 if the result is an unsigned comparison. Return zero
/// if the operation does not depend on the sign of the input (setne and seteq).
static int isSignedOp(ISD::CondCode Opcode) {
switch (Opcode) {
default: llvm_unreachable("Illegal integer setcc operation!");
case ISD::SETEQ:
case ISD::SETNE: return 0;
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETGT:
case ISD::SETGE: return 1;
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE: return 2;
}
}
/// getSetCCOrOperation - Return the result of a logical OR between different
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
/// returns SETCC_INVALID if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
bool isInteger) {
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
// Cannot fold a signed integer setcc with an unsigned integer setcc.
return ISD::SETCC_INVALID;
unsigned Op = Op1 | Op2; // Combine all of the condition bits.
// If the N and U bits get set then the resultant comparison DOES suddenly
// care about orderedness, and is true when ordered.
if (Op > ISD::SETTRUE2)
Op &= ~16; // Clear the U bit if the N bit is set.
// Canonicalize illegal integer setcc's.
if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
Op = ISD::SETNE;
return ISD::CondCode(Op);
}
/// getSetCCAndOperation - Return the result of a logical AND between different
/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
/// function returns zero if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
bool isInteger) {
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
// Cannot fold a signed setcc with an unsigned setcc.
return ISD::SETCC_INVALID;
// Combine all of the condition bits.
ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
// Canonicalize illegal integer setcc's.
if (isInteger) {
switch (Result) {
default: break;
case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
case ISD::SETOEQ: // SETEQ & SETU[LG]E
case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
}
}
return Result;
}
//===----------------------------------------------------------------------===//
// SDNode Profile Support
//===----------------------------------------------------------------------===//
/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
///
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
ID.AddInteger(OpC);
}
/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
/// solely with their pointer.
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
ID.AddPointer(VTList.VTs);
}
/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
///
static void AddNodeIDOperands(FoldingSetNodeID &ID,
ArrayRef<SDValue> Ops) {
for (auto& Op : Ops) {
ID.AddPointer(Op.getNode());
ID.AddInteger(Op.getResNo());
}
}
/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
///
static void AddNodeIDOperands(FoldingSetNodeID &ID,
ArrayRef<SDUse> Ops) {
for (auto& Op : Ops) {
ID.AddPointer(Op.getNode());
ID.AddInteger(Op.getResNo());
}
}
static void AddBinaryNodeIDCustom(FoldingSetNodeID &ID, bool nuw, bool nsw,
bool exact) {
ID.AddBoolean(nuw);
ID.AddBoolean(nsw);
ID.AddBoolean(exact);
}
/// AddBinaryNodeIDCustom - Add BinarySDNodes special infos
static void AddBinaryNodeIDCustom(FoldingSetNodeID &ID, unsigned Opcode,
bool nuw, bool nsw, bool exact) {
if (isBinOpWithFlags(Opcode))
AddBinaryNodeIDCustom(ID, nuw, nsw, exact);
}
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
SDVTList VTList, ArrayRef<SDValue> OpList) {
AddNodeIDOpcode(ID, OpC);
AddNodeIDValueTypes(ID, VTList);
AddNodeIDOperands(ID, OpList);
}
/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
/// the NodeID data.
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
switch (N->getOpcode()) {
case ISD::TargetExternalSymbol:
case ISD::ExternalSymbol:
llvm_unreachable("Should only be used on nodes with operands");
default: break; // Normal nodes don't need extra info.
case ISD::TargetConstant:
case ISD::Constant: {
const ConstantSDNode *C = cast<ConstantSDNode>(N);
ID.AddPointer(C->getConstantIntValue());
ID.AddBoolean(C->isOpaque());
break;
}
case ISD::TargetConstantFP:
case ISD::ConstantFP: {
ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
break;
}
case ISD::TargetGlobalAddress:
case ISD::GlobalAddress:
case ISD::TargetGlobalTLSAddress:
case ISD::GlobalTLSAddress: {
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
ID.AddPointer(GA->getGlobal());
ID.AddInteger(GA->getOffset());
ID.AddInteger(GA->getTargetFlags());
ID.AddInteger(GA->getAddressSpace());
break;
}
case ISD::BasicBlock:
ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
break;
case ISD::Register:
ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
break;
case ISD::RegisterMask:
ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
break;
case ISD::SRCVALUE:
ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
break;
case ISD::FrameIndex:
case ISD::TargetFrameIndex:
ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
break;
case ISD::JumpTable:
case ISD::TargetJumpTable:
ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
break;
case ISD::ConstantPool:
case ISD::TargetConstantPool: {
const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
ID.AddInteger(CP->getAlignment());
ID.AddInteger(CP->getOffset());
if (CP->isMachineConstantPoolEntry())
CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
else
ID.AddPointer(CP->getConstVal());
ID.AddInteger(CP->getTargetFlags());
break;
}
case ISD::TargetIndex: {
const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
ID.AddInteger(TI->getIndex());
ID.AddInteger(TI->getOffset());
ID.AddInteger(TI->getTargetFlags());
break;
}
case ISD::LOAD: {
const LoadSDNode *LD = cast<LoadSDNode>(N);
ID.AddInteger(LD->getMemoryVT().getRawBits());
ID.AddInteger(LD->getRawSubclassData());
ID.AddInteger(LD->getPointerInfo().getAddrSpace());
break;
}
case ISD::STORE: {
const StoreSDNode *ST = cast<StoreSDNode>(N);
ID.AddInteger(ST->getMemoryVT().getRawBits());
ID.AddInteger(ST->getRawSubclassData());
ID.AddInteger(ST->getPointerInfo().getAddrSpace());
break;
}
case ISD::SDIV:
case ISD::UDIV:
case ISD::SRA:
case ISD::SRL:
case ISD::MUL:
case ISD::ADD:
case ISD::SUB:
case ISD::SHL: {
const BinaryWithFlagsSDNode *BinNode = cast<BinaryWithFlagsSDNode>(N);
AddBinaryNodeIDCustom(ID, N->getOpcode(), BinNode->hasNoUnsignedWrap(),
BinNode->hasNoSignedWrap(), BinNode->isExact());
break;
}
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE: {
const AtomicSDNode *AT = cast<AtomicSDNode>(N);
ID.AddInteger(AT->getMemoryVT().getRawBits());
ID.AddInteger(AT->getRawSubclassData());
ID.AddInteger(AT->getPointerInfo().getAddrSpace());
break;
}
case ISD::PREFETCH: {
const MemSDNode *PF = cast<MemSDNode>(N);
ID.AddInteger(PF->getPointerInfo().getAddrSpace());
break;
}
case ISD::VECTOR_SHUFFLE: {
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
i != e; ++i)
ID.AddInteger(SVN->getMaskElt(i));
break;
}
case ISD::TargetBlockAddress:
case ISD::BlockAddress: {
const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
ID.AddPointer(BA->getBlockAddress());
ID.AddInteger(BA->getOffset());
ID.AddInteger(BA->getTargetFlags());
break;
}
} // end switch (N->getOpcode())
// Target specific memory nodes could also have address spaces to check.
if (N->isTargetMemoryOpcode())
ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
}
/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
/// data.
static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
AddNodeIDOpcode(ID, N->getOpcode());
// Add the return value info.
AddNodeIDValueTypes(ID, N->getVTList());
// Add the operand info.
AddNodeIDOperands(ID, N->ops());
// Handle SDNode leafs with special info.
AddNodeIDCustom(ID, N);
}
/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
/// the CSE map that carries volatility, temporalness, indexing mode, and
/// extension/truncation information.
///
static inline unsigned
encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
bool isNonTemporal, bool isInvariant) {
assert((ConvType & 3) == ConvType &&
"ConvType may not require more than 2 bits!");
assert((AM & 7) == AM &&
"AM may not require more than 3 bits!");
return ConvType |
(AM << 2) |
(isVolatile << 5) |
(isNonTemporal << 6) |
(isInvariant << 7);
}
//===----------------------------------------------------------------------===//
// SelectionDAG Class
//===----------------------------------------------------------------------===//
/// doNotCSE - Return true if CSE should not be performed for this node.
static bool doNotCSE(SDNode *N) {
if (N->getValueType(0) == MVT::Glue)
return true; // Never CSE anything that produces a flag.
switch (N->getOpcode()) {
default: break;
case ISD::HANDLENODE:
case ISD::EH_LABEL:
return true; // Never CSE these nodes.
}
// Check that remaining values produced are not flags.
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
if (N->getValueType(i) == MVT::Glue)
return true; // Never CSE anything that produces a flag.
return false;
}
/// RemoveDeadNodes - This method deletes all unreachable nodes in the
/// SelectionDAG.
void SelectionDAG::RemoveDeadNodes() {
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted.
HandleSDNode Dummy(getRoot());
SmallVector<SDNode*, 128> DeadNodes;
// Add all obviously-dead nodes to the DeadNodes worklist.
for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
if (I->use_empty())
DeadNodes.push_back(I);
RemoveDeadNodes(DeadNodes);
// If the root changed (e.g. it was a dead load, update the root).
setRoot(Dummy.getValue());
}
/// RemoveDeadNodes - This method deletes the unreachable nodes in the
/// given list, and any nodes that become unreachable as a result.
void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
// Process the worklist, deleting the nodes and adding their uses to the
// worklist.
while (!DeadNodes.empty()) {
SDNode *N = DeadNodes.pop_back_val();
for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
DUL->NodeDeleted(N, nullptr);
// Take the node out of the appropriate CSE map.
RemoveNodeFromCSEMaps(N);
// Next, brutally remove the operand list. This is safe to do, as there are
// no cycles in the graph.
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
SDUse &Use = *I++;
SDNode *Operand = Use.getNode();
Use.set(SDValue());
// Now that we removed this operand, see if there are no uses of it left.
if (Operand->use_empty())
DeadNodes.push_back(Operand);
}
DeallocateNode(N);
}
}
void SelectionDAG::RemoveDeadNode(SDNode *N){
SmallVector<SDNode*, 16> DeadNodes(1, N);
// Create a dummy node that adds a reference to the root node, preventing
// it from being deleted. (This matters if the root is an operand of the
// dead node.)
HandleSDNode Dummy(getRoot());
RemoveDeadNodes(DeadNodes);
}
void SelectionDAG::DeleteNode(SDNode *N) {
// First take this out of the appropriate CSE map.
RemoveNodeFromCSEMaps(N);
// Finally, remove uses due to operands of this node, remove from the
// AllNodes list, and delete the node.
DeleteNodeNotInCSEMaps(N);
}
void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
assert(N != AllNodes.begin() && "Cannot delete the entry node!");
assert(N->use_empty() && "Cannot delete a node that is not dead!");
// Drop all of the operands and decrement used node's use counts.
N->DropOperands();
DeallocateNode(N);
}
void SDDbgInfo::erase(const SDNode *Node) {
DbgValMapType::iterator I = DbgValMap.find(Node);
if (I == DbgValMap.end())
return;
for (auto &Val: I->second)
Val->setIsInvalidated();
DbgValMap.erase(I);
}
void SelectionDAG::DeallocateNode(SDNode *N) {
if (N->OperandsNeedDelete)
delete[] N->OperandList;
// Set the opcode to DELETED_NODE to help catch bugs when node
// memory is reallocated.
N->NodeType = ISD::DELETED_NODE;
NodeAllocator.Deallocate(AllNodes.remove(N));
// If any of the SDDbgValue nodes refer to this SDNode, invalidate
// them and forget about that node.
DbgInfo->erase(N);
}
#ifndef NDEBUG
/// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
static void VerifySDNode(SDNode *N) {
switch (N->getOpcode()) {
default:
break;
case ISD::BUILD_PAIR: {
EVT VT = N->getValueType(0);
assert(N->getNumValues() == 1 && "Too many results!");
assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
"Wrong return type!");
assert(N->getNumOperands() == 2 && "Wrong number of operands!");
assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
"Mismatched operand types!");
assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
"Wrong operand type!");
assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
"Wrong return type size");
break;
}
case ISD::BUILD_VECTOR: {
assert(N->getNumValues() == 1 && "Too many results!");
assert(N->getValueType(0).isVector() && "Wrong return type!");
assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
"Wrong number of operands!");
EVT EltVT = N->getValueType(0).getVectorElementType();
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
assert((I->getValueType() == EltVT ||
(EltVT.isInteger() && I->getValueType().isInteger() &&
EltVT.bitsLE(I->getValueType()))) &&
"Wrong operand type!");
assert(I->getValueType() == N->getOperand(0).getValueType() &&
"Operands must all have the same type");
}
break;
}
}
}
#endif // NDEBUG
/// \brief Insert a newly allocated node into the DAG.
///
/// Handles insertion into the all nodes list and CSE map, as well as
/// verification and other common operations when a new node is allocated.
void SelectionDAG::InsertNode(SDNode *N) {
AllNodes.push_back(N);
#ifndef NDEBUG
VerifySDNode(N);
#endif
}
/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
/// correspond to it. This is useful when we're about to delete or repurpose
/// the node. We don't want future request for structurally identical nodes
/// to return N anymore.
bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
bool Erased = false;
switch (N->getOpcode()) {
case ISD::HANDLENODE: return false; // noop.
case ISD::CONDCODE:
assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
"Cond code doesn't exist!");
Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
break;
case ISD::ExternalSymbol:
Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
break;
case ISD::TargetExternalSymbol: {
ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
Erased = TargetExternalSymbols.erase(
std::pair<std::string,unsigned char>(ESN->getSymbol(),
ESN->getTargetFlags()));
break;
}
case ISD::VALUETYPE: {
EVT VT = cast<VTSDNode>(N)->getVT();
if (VT.isExtended()) {
Erased = ExtendedValueTypeNodes.erase(VT);
} else {
Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
}
break;
}
default:
// Remove it from the CSE Map.
assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
Erased = CSEMap.RemoveNode(N);
break;
}
#ifndef NDEBUG
// Verify that the node was actually in one of the CSE maps, unless it has a
// flag result (which cannot be CSE'd) or is one of the special cases that are
// not subject to CSE.
if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
!N->isMachineOpcode() && !doNotCSE(N)) {
N->dump(this);
dbgs() << "\n";
llvm_unreachable("Node is not in map!");
}
#endif
return Erased;
}
/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
/// maps and modified in place. Add it back to the CSE maps, unless an identical
/// node already exists, in which case transfer all its users to the existing
/// node. This transfer can potentially trigger recursive merging.
///
void
SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
// For node types that aren't CSE'd, just act as if no identical node
// already exists.
if (!doNotCSE(N)) {
SDNode *Existing = CSEMap.GetOrInsertNode(N);
if (Existing != N) {
// If there was already an existing matching node, use ReplaceAllUsesWith
// to replace the dead one with the existing one. This can cause
// recursive merging of other unrelated nodes down the line.
ReplaceAllUsesWith(N, Existing);
// N is now dead. Inform the listeners and delete it.
for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
DUL->NodeDeleted(N, Existing);
DeleteNodeNotInCSEMaps(N);
return;
}
}
// If the node doesn't already exist, we updated it. Inform listeners.
for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
DUL->NodeUpdated(N);
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
void *&InsertPos) {
if (doNotCSE(N))
return nullptr;
SDValue Ops[] = { Op };
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
return Node;
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
SDValue Op1, SDValue Op2,
void *&InsertPos) {
if (doNotCSE(N))
return nullptr;
SDValue Ops[] = { Op1, Op2 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
return Node;
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
void *&InsertPos) {
if (doNotCSE(N))
return nullptr;
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
return Node;
}
/// getEVTAlignment - Compute the default alignment value for the
/// given type.
///
unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
Type *Ty = VT == MVT::iPTR ?
PointerType::get(Type::getInt8Ty(*getContext()), 0) :
VT.getTypeForEVT(*getContext());
return TLI->getDataLayout()->getABITypeAlignment(Ty);
}
// EntryNode could meaningfully have debug info if we can find it...
SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
: TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL),
EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
Root(getEntryNode()), NewNodesMustHaveLegalTypes(false),
UpdateListeners(nullptr) {
AllNodes.push_back(&EntryNode);
DbgInfo = new SDDbgInfo();
}
void SelectionDAG::init(MachineFunction &mf) {
MF = &mf;
TLI = getSubtarget().getTargetLowering();
TSI = getSubtarget().getSelectionDAGInfo();
Context = &mf.getFunction()->getContext();
}
SelectionDAG::~SelectionDAG() {
assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
allnodes_clear();
delete DbgInfo;
}
void SelectionDAG::allnodes_clear() {
assert(&*AllNodes.begin() == &EntryNode);
AllNodes.remove(AllNodes.begin());
while (!AllNodes.empty())
DeallocateNode(AllNodes.begin());
}
BinarySDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, SDLoc DL,
SDVTList VTs, SDValue N1,
SDValue N2, bool nuw, bool nsw,
bool exact) {
if (isBinOpWithFlags(Opcode)) {
BinaryWithFlagsSDNode *FN = new (NodeAllocator) BinaryWithFlagsSDNode(
Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, N1, N2);
FN->setHasNoUnsignedWrap(nuw);
FN->setHasNoSignedWrap(nsw);
FN->setIsExact(exact);
return FN;
}
BinarySDNode *N = new (NodeAllocator)
BinarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, N1, N2);
return N;
}
void SelectionDAG::clear() {
allnodes_clear();
OperandAllocator.Reset();
CSEMap.clear();
ExtendedValueTypeNodes.clear();
ExternalSymbols.clear();
TargetExternalSymbols.clear();
std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
static_cast<CondCodeSDNode*>(nullptr));
std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
static_cast<SDNode*>(nullptr));
EntryNode.UseList = nullptr;
AllNodes.push_back(&EntryNode);
Root = getEntryNode();
DbgInfo->clear();
}
SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) {
return VT.bitsGT(Op.getValueType()) ?
getNode(ISD::ANY_EXTEND, DL, VT, Op) :
getNode(ISD::TRUNCATE, DL, VT, Op);
}
SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) {
return VT.bitsGT(Op.getValueType()) ?
getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
getNode(ISD::TRUNCATE, DL, VT, Op);
}
SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) {
return VT.bitsGT(Op.getValueType()) ?
getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
getNode(ISD::TRUNCATE, DL, VT, Op);
}
SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, SDLoc SL, EVT VT,
EVT OpVT) {
if (VT.bitsLE(Op.getValueType()))
return getNode(ISD::TRUNCATE, SL, VT, Op);
TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
}
SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, SDLoc DL, EVT VT) {
assert(!VT.isVector() &&
"getZeroExtendInReg should use the vector element type instead of "
"the vector type!");
if (Op.getValueType() == VT) return Op;
unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
APInt Imm = APInt::getLowBitsSet(BitWidth,
VT.getSizeInBits());
return getNode(ISD::AND, DL, Op.getValueType(), Op,
getConstant(Imm, Op.getValueType()));
}
SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT) {
assert(VT.isVector() && "This DAG node is restricted to vector types.");
assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
"The sizes of the input and result must match in order to perform the "
"extend in-register.");
assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
"The destination vector type must have fewer lanes than the input.");
return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
}
SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT) {
assert(VT.isVector() && "This DAG node is restricted to vector types.");
assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
"The sizes of the input and result must match in order to perform the "
"extend in-register.");
assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
"The destination vector type must have fewer lanes than the input.");
return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
}
SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT) {
assert(VT.isVector() && "This DAG node is restricted to vector types.");
assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
"The sizes of the input and result must match in order to perform the "
"extend in-register.");
assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
"The destination vector type must have fewer lanes than the input.");
return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
}
/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
///
SDValue SelectionDAG::getNOT(SDLoc DL, SDValue Val, EVT VT) {
EVT EltVT = VT.getScalarType();
SDValue NegOne =
getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
return getNode(ISD::XOR, DL, VT, Val, NegOne);
}
SDValue SelectionDAG::getLogicalNOT(SDLoc DL, SDValue Val, EVT VT) {
EVT EltVT = VT.getScalarType();
SDValue TrueValue;
switch (TLI->getBooleanContents(VT)) {
case TargetLowering::ZeroOrOneBooleanContent:
case TargetLowering::UndefinedBooleanContent:
TrueValue = getConstant(1, VT);
break;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()),
VT);
break;
}
return getNode(ISD::XOR, DL, VT, Val, TrueValue);
}
SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT, bool isO) {
EVT EltVT = VT.getScalarType();
assert((EltVT.getSizeInBits() >= 64 ||
(uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
"getConstant with a uint64_t value that doesn't fit in the type!");
return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT, isO);
}
SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT, bool isO)
{
return getConstant(*ConstantInt::get(*Context, Val), VT, isT, isO);
}
SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT,
bool isO) {
assert(VT.isInteger() && "Cannot create FP integer constant!");
EVT EltVT = VT.getScalarType();
const ConstantInt *Elt = &Val;
// In some cases the vector type is legal but the element type is illegal and
// needs to be promoted, for example v8i8 on ARM. In this case, promote the
// inserted value (the type does not need to match the vector element type).
// Any extra bits introduced will be truncated away.
if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
TargetLowering::TypePromoteInteger) {
EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
Elt = ConstantInt::get(*getContext(), NewVal);
}
// In other cases the element type is illegal and needs to be expanded, for
// example v2i64 on MIPS32. In this case, find the nearest legal type, split
// the value into n parts and use a vector type with n-times the elements.
// Then bitcast to the type requested.
// Legalizing constants too early makes the DAGCombiner's job harder so we
// only legalize if the DAG tells us we must produce legal types.
else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
TLI->getTypeAction(*getContext(), EltVT) ==
TargetLowering::TypeExpandInteger) {
APInt NewVal = Elt->getValue();
EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
// Check the temporary vector is the correct size. If this fails then
// getTypeToTransformTo() probably returned a type whose size (in bits)
// isn't a power-of-2 factor of the requested type size.
assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
SmallVector<SDValue, 2> EltParts;
for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
.trunc(ViaEltSizeInBits),
ViaEltVT, isT, isO));
}
// EltParts is currently in little endian order. If we actually want
// big-endian order then reverse it now.
if (TLI->isBigEndian())
std::reverse(EltParts.begin(), EltParts.end());
// The elements must be reversed when the element order is different
// to the endianness of the elements (because the BITCAST is itself a
// vector shuffle in this situation). However, we do not need any code to
// perform this reversal because getConstant() is producing a vector
// splat.
// This situation occurs in MIPS MSA.
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < VT.getVectorNumElements(); ++i)
Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
SDValue Result = getNode(ISD::BITCAST, SDLoc(), VT,
getNode(ISD::BUILD_VECTOR, SDLoc(), ViaVecVT,
Ops));
return Result;
}
assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
"APInt size does not match type size!");
unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
ID.AddPointer(Elt);
ID.AddBoolean(isO);
void *IP = nullptr;
SDNode *N = nullptr;
if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
if (!VT.isVector())
return SDValue(N, 0);
if (!N) {
N = new (NodeAllocator) ConstantSDNode(isT, isO, Elt, EltVT);
CSEMap.InsertNode(N, IP);
InsertNode(N);
}
SDValue Result(N, 0);
if (VT.isVector()) {
SmallVector<SDValue, 8> Ops;
Ops.assign(VT.getVectorNumElements(), Result);
Result = getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Ops);
}
return Result;
}
SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
return getConstant(Val, TLI->getPointerTy(), isTarget);
}
SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
}
SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
EVT EltVT = VT.getScalarType();
// Do the map lookup using the actual bit pattern for the floating point
// value, so that we don't have problems with 0.0 comparing equal to -0.0, and
// we don't have issues with SNANs.
unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
ID.AddPointer(&V);
void *IP = nullptr;
SDNode *N = nullptr;
if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
if (!VT.isVector())
return SDValue(N, 0);
if (!N) {
N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
CSEMap.InsertNode(N, IP);
InsertNode(N);
}
SDValue Result(N, 0);
if (VT.isVector()) {
SmallVector<SDValue, 8> Ops;
Ops.assign(VT.getVectorNumElements(), Result);
// FIXME SDLoc info might be appropriate here
Result = getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Ops);
}
return Result;
}
SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
EVT EltVT = VT.getScalarType();
if (EltVT==MVT::f32)
return getConstantFP(APFloat((float)Val), VT, isTarget);
else if (EltVT==MVT::f64)
return getConstantFP(APFloat(Val), VT, isTarget);
else if (EltVT==MVT::f80 || EltVT==MVT::f128 || EltVT==MVT::ppcf128 ||
EltVT==MVT::f16) {
bool ignored;
APFloat apf = APFloat(Val);
apf.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
&ignored);
return getConstantFP(apf, VT, isTarget);
} else
llvm_unreachable("Unsupported type in getConstantFP");
}
SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, SDLoc DL,
EVT VT, int64_t Offset,
bool isTargetGA,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTargetGA) &&
"Cannot set target flags on target-independent globals");
// Truncate (with sign-extension) the offset value to the pointer size.
unsigned BitWidth = TLI->getPointerTypeSizeInBits(GV->getType());
if (BitWidth < 64)
Offset = SignExtend64(Offset, BitWidth);
unsigned Opc;
if (GV->isThreadLocal())
Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
else
Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddPointer(GV);
ID.AddInteger(Offset);
ID.AddInteger(TargetFlags);
ID.AddInteger(GV->getType()->getAddressSpace());
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL.getIROrder(),
DL.getDebugLoc(), GV, VT,
Offset, TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddInteger(FI);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent jump tables");
unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddInteger(JTI);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
unsigned Alignment, int Offset,
bool isTarget,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
if (Alignment == 0)
Alignment = TLI->getDataLayout()->getPrefTypeAlignment(C->getType());
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddInteger(Alignment);
ID.AddInteger(Offset);
ID.AddPointer(C);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
Alignment, TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
unsigned Alignment, int Offset,
bool isTarget,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
if (Alignment == 0)
Alignment = TLI->getDataLayout()->getPrefTypeAlignment(C->getType());
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddInteger(Alignment);
ID.AddInteger(Offset);
C->addSelectionDAGCSEId(ID);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
Alignment, TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
unsigned char TargetFlags) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
ID.AddInteger(Index);
ID.AddInteger(Offset);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) TargetIndexSDNode(Index, VT, Offset,
TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
ID.AddPointer(MBB);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getValueType(EVT VT) {
if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
ValueTypeNodes.size())
ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
SDNode *&N = VT.isExtended() ?
ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
if (N) return SDValue(N, 0);
N = new (NodeAllocator) VTSDNode(VT);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
SDNode *&N = ExternalSymbols[Sym];
if (N) return SDValue(N, 0);
N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
unsigned char TargetFlags) {
SDNode *&N =
TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
TargetFlags)];
if (N) return SDValue(N, 0);
N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
if ((unsigned)Cond >= CondCodeNodes.size())
CondCodeNodes.resize(Cond+1);
if (!CondCodeNodes[Cond]) {
CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
CondCodeNodes[Cond] = N;
InsertNode(N);
}
return SDValue(CondCodeNodes[Cond], 0);
}
// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
// the shuffle mask M that point at N1 to point at N2, and indices that point
// N2 to point at N1.
static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
std::swap(N1, N2);
int NElts = M.size();
for (int i = 0; i != NElts; ++i) {
if (M[i] >= NElts)
M[i] -= NElts;
else if (M[i] >= 0)
M[i] += NElts;
}
}
SDValue SelectionDAG::getVectorShuffle(EVT VT, SDLoc dl, SDValue N1,
SDValue N2, const int *Mask) {
assert(VT == N1.getValueType() && VT == N2.getValueType() &&
"Invalid VECTOR_SHUFFLE");
// Canonicalize shuffle undef, undef -> undef
if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
return getUNDEF(VT);
// Validate that all indices in Mask are within the range of the elements
// input to the shuffle.
unsigned NElts = VT.getVectorNumElements();
SmallVector<int, 8> MaskVec;
for (unsigned i = 0; i != NElts; ++i) {
assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
MaskVec.push_back(Mask[i]);
}
// Canonicalize shuffle v, v -> v, undef
if (N1 == N2) {
N2 = getUNDEF(VT);
for (unsigned i = 0; i != NElts; ++i)
if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
}
// Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
if (N1.getOpcode() == ISD::UNDEF)
commuteShuffle(N1, N2, MaskVec);
// If shuffling a splat, try to blend the splat instead. We do this here so
// that even when this arises during lowering we don't have to re-handle it.
auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
BitVector UndefElements;
SDValue Splat = BV->getSplatValue(&UndefElements);
if (!Splat)
return;
for (int i = 0; i < (int)NElts; ++i) {
if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + (int)NElts))
continue;
// If this input comes from undef, mark it as such.
if (UndefElements[MaskVec[i] - Offset]) {
MaskVec[i] = -1;
continue;
}
// If we can blend a non-undef lane, use that instead.
if (!UndefElements[i])
MaskVec[i] = i + Offset;
}
};
if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
BlendSplat(N1BV, 0);
if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
BlendSplat(N2BV, NElts);
// Canonicalize all index into lhs, -> shuffle lhs, undef
// Canonicalize all index into rhs, -> shuffle rhs, undef
bool AllLHS = true, AllRHS = true;
bool N2Undef = N2.getOpcode() == ISD::UNDEF;
for (unsigned i = 0; i != NElts; ++i) {
if (MaskVec[i] >= (int)NElts) {
if (N2Undef)
MaskVec[i] = -1;
else
AllLHS = false;
} else if (MaskVec[i] >= 0) {
AllRHS = false;
}
}
if (AllLHS && AllRHS)
return getUNDEF(VT);
if (AllLHS && !N2Undef)
N2 = getUNDEF(VT);
if (AllRHS) {
N1 = getUNDEF(VT);
commuteShuffle(N1, N2, MaskVec);
}
// Reset our undef status after accounting for the mask.
N2Undef = N2.getOpcode() == ISD::UNDEF;
// Re-check whether both sides ended up undef.
if (N1.getOpcode() == ISD::UNDEF && N2Undef)
return getUNDEF(VT);
// If Identity shuffle return that node.
bool Identity = true, AllSame = true;
for (unsigned i = 0; i != NElts; ++i) {
if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
if (MaskVec[i] != MaskVec[0]) AllSame = false;
}
if (Identity && NElts)
return N1;
// Shuffling a constant splat doesn't change the result.
if (N2Undef) {
SDValue V = N1;
// Look through any bitcasts. We check that these don't change the number
// (and size) of elements and just changes their types.
while (V.getOpcode() == ISD::BITCAST)
V = V->getOperand(0);
// A splat should always show up as a build vector node.
if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
BitVector UndefElements;
SDValue Splat = BV->getSplatValue(&UndefElements);
// If this is a splat of an undef, shuffling it is also undef.
if (Splat && Splat.getOpcode() == ISD::UNDEF)
return getUNDEF(VT);
bool SameNumElts =
V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
// We only have a splat which can skip shuffles if there is a splatted
// value and no undef lanes rearranged by the shuffle.
if (Splat && UndefElements.none()) {
// Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
// number of elements match or the value splatted is a zero constant.
if (SameNumElts)
return N1;
if (auto *C = dyn_cast<ConstantSDNode>(Splat))
if (C->isNullValue())
return N1;
}
// If the shuffle itself creates a splat, build the vector directly.
if (AllSame && SameNumElts) {
const SDValue &Splatted = BV->getOperand(MaskVec[0]);
SmallVector<SDValue, 8> Ops(NElts, Splatted);
EVT BuildVT = BV->getValueType(0);
SDValue NewBV = getNode(ISD::BUILD_VECTOR, dl, BuildVT, Ops);
// We may have jumped through bitcasts, so the type of the
// BUILD_VECTOR may not match the type of the shuffle.
if (BuildVT != VT)
NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
return NewBV;
}
}
}
FoldingSetNodeID ID;
SDValue Ops[2] = { N1, N2 };
AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
for (unsigned i = 0; i != NElts; ++i)
ID.AddInteger(MaskVec[i]);
void* IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
// Allocate the mask array for the node out of the BumpPtrAllocator, since
// SDNode doesn't have access to it. This memory will be "leaked" when
// the node is deallocated, but recovered when the NodeAllocator is released.
int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
ShuffleVectorSDNode *N =
new (NodeAllocator) ShuffleVectorSDNode(VT, dl.getIROrder(),
dl.getDebugLoc(), N1, N2,
MaskAlloc);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
MVT VT = SV.getSimpleValueType(0);
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> MaskVec;
for (unsigned i = 0; i != NumElems; ++i) {
int Idx = SV.getMaskElt(i);
if (Idx >= 0) {
if (Idx < (int)NumElems)
Idx += NumElems;
else
Idx -= NumElems;
}
MaskVec.push_back(Idx);
}
SDValue Op0 = SV.getOperand(0);
SDValue Op1 = SV.getOperand(1);
return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, &MaskVec[0]);
}
SDValue SelectionDAG::getConvertRndSat(EVT VT, SDLoc dl,
SDValue Val, SDValue DTy,
SDValue STy, SDValue Rnd, SDValue Sat,
ISD::CvtCode Code) {
// If the src and dest types are the same and the conversion is between
// integer types of the same sign or two floats, no conversion is necessary.
if (DTy == STy &&
(Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
return Val;
FoldingSetNodeID ID;
SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), Ops);
void* IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl.getIROrder(),
dl.getDebugLoc(),
Ops, Code);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
ID.AddInteger(RegNo);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
ID.AddPointer(RegMask);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) RegisterMaskSDNode(RegMask);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getEHLabel(SDLoc dl, SDValue Root, MCSymbol *Label) {
FoldingSetNodeID ID;
SDValue Ops[] = { Root };
AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops);
ID.AddPointer(Label);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) EHLabelSDNode(dl.getIROrder(),
dl.getDebugLoc(), Root, Label);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
int64_t Offset,
bool isTarget,
unsigned char TargetFlags) {
unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
ID.AddPointer(BA);
ID.AddInteger(Offset);
ID.AddInteger(TargetFlags);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, Offset,
TargetFlags);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getSrcValue(const Value *V) {
assert((!V || V->getType()->isPointerTy()) &&
"SrcValue is not a pointer?");
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
ID.AddPointer(V);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
SDValue SelectionDAG::getMDNode(const MDNode *MD) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
ID.AddPointer(MD);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
/// getAddrSpaceCast - Return an AddrSpaceCastSDNode.
SDValue SelectionDAG::getAddrSpaceCast(SDLoc dl, EVT VT, SDValue Ptr,
unsigned SrcAS, unsigned DestAS) {
SDValue Ops[] = {Ptr};
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
ID.AddInteger(SrcAS);
ID.AddInteger(DestAS);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) AddrSpaceCastSDNode(dl.getIROrder(),
dl.getDebugLoc(),
VT, Ptr, SrcAS, DestAS);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
/// getShiftAmountOperand - Return the specified value casted to
/// the target's desired shift amount type.
SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
EVT OpTy = Op.getValueType();
EVT ShTy = TLI->getShiftAmountTy(LHSTy);
if (OpTy == ShTy || OpTy.isVector()) return Op;
ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
return getNode(Opcode, SDLoc(Op), ShTy, Op);
}
/// CreateStackTemporary - Create a stack temporary, suitable for holding the
/// specified value type.
SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
unsigned ByteSize = VT.getStoreSize();
Type *Ty = VT.getTypeForEVT(*getContext());
unsigned StackAlign =
std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), minAlign);
int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
return getFrameIndex(FrameIdx, TLI->getPointerTy());
}
/// CreateStackTemporary - Create a stack temporary suitable for holding
/// either of the specified value types.
SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
VT2.getStoreSizeInBits())/8;
Type *Ty1 = VT1.getTypeForEVT(*getContext());
Type *Ty2 = VT2.getTypeForEVT(*getContext());
const DataLayout *TD = TLI->getDataLayout();
unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
TD->getPrefTypeAlignment(Ty2));
MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
return getFrameIndex(FrameIdx, TLI->getPointerTy());
}
SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
SDValue N2, ISD::CondCode Cond, SDLoc dl) {
// These setcc operations always fold.
switch (Cond) {
default: break;
case ISD::SETFALSE:
case ISD::SETFALSE2: return getConstant(0, VT);
case ISD::SETTRUE:
case ISD::SETTRUE2: {
TargetLowering::BooleanContent Cnt =
TLI->getBooleanContents(N1->getValueType(0));
return getConstant(
Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
}
case ISD::SETOEQ:
case ISD::SETOGT:
case ISD::SETOGE:
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETONE:
case ISD::SETO:
case ISD::SETUO:
case ISD::SETUEQ:
case ISD::SETUNE:
assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
break;
}
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
const APInt &C2 = N2C->getAPIntValue();
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
const APInt &C1 = N1C->getAPIntValue();
switch (Cond) {
default: llvm_unreachable("Unknown integer setcc!");
case ISD::SETEQ: return getConstant(C1 == C2, VT);
case ISD::SETNE: return getConstant(C1 != C2, VT);
case ISD::SETULT: return getConstant(C1.ult(C2), VT);
case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
case ISD::SETULE: return getConstant(C1.ule(C2), VT);
case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
case ISD::SETLT: return getConstant(C1.slt(C2), VT);
case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
case ISD::SETLE: return getConstant(C1.sle(C2), VT);
case ISD::SETGE: return getConstant(C1.sge(C2), VT);
}
}
}
if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
switch (Cond) {
default: break;
case ISD::SETEQ: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
// fall through
case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
case ISD::SETNE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
// fall through
case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpLessThan, VT);
case ISD::SETLT: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
// fall through
case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
case ISD::SETGT: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
// fall through
case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
case ISD::SETLE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
// fall through
case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
R==APFloat::cmpEqual, VT);
case ISD::SETGE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
// fall through
case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpEqual, VT);
case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
R==APFloat::cmpEqual, VT);
case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
R==APFloat::cmpLessThan, VT);
case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpUnordered, VT);
case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
}
} else {
// Ensure that the constant occurs on the RHS.
ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
MVT CompVT = N1.getValueType().getSimpleVT();
if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
return SDValue();
return getSetCC(dl, VT, N2, N1, SwappedCond);
}
}
// Could not fold it.
return SDValue();
}
/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
/// use this predicate to simplify operations downstream.
bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
// This predicate is not safe for vector operations.
if (Op.getValueType().isVector())
return false;
unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
}
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Mask is known to be zero
/// for bits that V cannot have.
bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
unsigned Depth) const {
APInt KnownZero, KnownOne;
computeKnownBits(Op, KnownZero, KnownOne, Depth);
return (KnownZero & Mask) == Mask;
}
/// Determine which bits of Op are known to be either zero or one and return
/// them in the KnownZero/KnownOne bitsets.
void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
APInt &KnownOne, unsigned Depth) const {
unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
if (Depth == 6)
return; // Limit search depth.
APInt KnownZero2, KnownOne2;
switch (Op.getOpcode()) {
case ISD::Constant:
// We know all of the bits for a constant!
KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
KnownZero = ~KnownOne;
break;
case ISD::AND:
// If either the LHS or the RHS are Zero, the result is zero.
computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
break;
case ISD::OR:
computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
break;
case ISD::XOR: {
computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
KnownZero = KnownZeroOut;
break;
}
case ISD::MUL: {
computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
// If low bits are zero in either operand, output low known-0 bits.
// Also compute a conserative estimate for high known-0 bits.
// More trickiness is possible, but this is sufficient for the
// interesting case of alignment computation.
KnownOne.clearAllBits();
unsigned TrailZ = KnownZero.countTrailingOnes() +
KnownZero2.countTrailingOnes();
unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
KnownZero2.countLeadingOnes(),
BitWidth) - BitWidth;
TrailZ = std::min(TrailZ, BitWidth);
LeadZ = std::min(LeadZ, BitWidth);
KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
APInt::getHighBitsSet(BitWidth, LeadZ);
break;
}
case ISD::UDIV: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
unsigned LeadZ = KnownZero2.countLeadingOnes();
KnownOne2.clearAllBits();
KnownZero2.clearAllBits();
computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
break;
}
case ISD::SELECT:
computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
break;
case ISD::SELECT_CC:
computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
break;
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
case ISD::USUBO:
case ISD::SMULO:
case ISD::UMULO:
if (Op.getResNo() != 1)
break;
// The boolean result conforms to getBooleanContents.
// If we know the result of a setcc has the top bits zero, use this info.
// We know that we have an integer-based boolean since these operations
// are only available for integer.
if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
break;
case ISD::SETCC:
// If we know the result of a setcc has the top bits zero, use this info.
if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
break;
case ISD::SHL:
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned ShAmt = SA->getZExtValue();
// If the shift count is an invalid immediate, don't do anything.
if (ShAmt >= BitWidth)
break;
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
KnownZero <<= ShAmt;
KnownOne <<= ShAmt;
// low bits known zero.
KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
}
break;
case ISD::SRL:
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned ShAmt = SA->getZExtValue();
// If the shift count is an invalid immediate, don't do anything.
if (ShAmt >= BitWidth)
break;
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
KnownZero = KnownZero.lshr(ShAmt);
KnownOne = KnownOne.lshr(ShAmt);
APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
KnownZero |= HighBits; // High bits known zero.
}
break;
case ISD::SRA:
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned ShAmt = SA->getZExtValue();
// If the shift count is an invalid immediate, don't do anything.
if (ShAmt >= BitWidth)
break;
// If any of the demanded bits are produced by the sign extension, we also
// demand the input sign bit.
APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
KnownZero = KnownZero.lshr(ShAmt);
KnownOne = KnownOne.lshr(ShAmt);
// Handle the sign bits.
APInt SignBit = APInt::getSignBit(BitWidth);
SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
if (KnownZero.intersects(SignBit)) {
KnownZero |= HighBits; // New bits are known zero.
} else if (KnownOne.intersects(SignBit)) {
KnownOne |= HighBits; // New bits are known one.
}
}
break;
case ISD::SIGN_EXTEND_INREG: {
EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
unsigned EBits = EVT.getScalarType().getSizeInBits();
// Sign extension. Compute the demanded bits in the result that are not
// present in the input.
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
APInt InSignBit = APInt::getSignBit(EBits);
APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
// If the sign extended bits are demanded, we know that the sign
// bit is demanded.
InSignBit = InSignBit.zext(BitWidth);
if (NewBits.getBoolValue())
InputDemandedBits |= InSignBit;
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
KnownOne &= InputDemandedBits;
KnownZero &= InputDemandedBits;
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
KnownZero |= NewBits;
KnownOne &= ~NewBits;
} else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
KnownOne |= NewBits;
KnownZero &= ~NewBits;
} else { // Input sign bit unknown
KnownZero &= ~NewBits;
KnownOne &= ~NewBits;
}
break;
}
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTPOP: {
unsigned LowBits = Log2_32(BitWidth)+1;
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
KnownOne.clearAllBits();
break;
}
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Op);
// If this is a ZEXTLoad and we are looking at the loaded value.
if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
EVT VT = LD->getMemoryVT();
unsigned MemBits = VT.getScalarType().getSizeInBits();
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
} else if (const MDNode *Ranges = LD->getRanges()) {
computeKnownBitsFromRangeMetadata(*Ranges, KnownZero);
}
break;
}
case ISD::ZERO_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarType().getSizeInBits();
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
KnownZero = KnownZero.trunc(InBits);
KnownOne = KnownOne.trunc(InBits);
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
KnownZero |= NewBits;
break;
}
case ISD::SIGN_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarType().getSizeInBits();
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
KnownZero = KnownZero.trunc(InBits);
KnownOne = KnownOne.trunc(InBits);
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
// Note if the sign bit is known to be zero or one.
bool SignBitKnownZero = KnownZero.isNegative();
bool SignBitKnownOne = KnownOne.isNegative();
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
// If the sign bit is known zero or one, the top bits match.
if (SignBitKnownZero)
KnownZero |= NewBits;
else if (SignBitKnownOne)
KnownOne |= NewBits;
break;
}
case ISD::ANY_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarType().getSizeInBits();
KnownZero = KnownZero.trunc(InBits);
KnownOne = KnownOne.trunc(InBits);
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
break;
}
case ISD::TRUNCATE: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarType().getSizeInBits();
KnownZero = KnownZero.zext(InBits);
KnownOne = KnownOne.zext(InBits);
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
KnownZero = KnownZero.trunc(BitWidth);
KnownOne = KnownOne.trunc(BitWidth);
break;
}
case ISD::AssertZext: {
EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
KnownZero |= (~InMask);
KnownOne &= (~KnownZero);
break;
}
case ISD::FGETSIGN:
// All bits are zero except the low bit.
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
break;
case ISD::SUB: {
if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
// We know that the top bits of C-X are clear if X contains less bits
// than C (i.e. no wrap-around can happen). For example, 20-X is
// positive if we can prove that X is >= 0 and < 16.
if (CLHS->getAPIntValue().isNonNegative()) {
unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
// from [0-C].
if ((KnownZero2 & MaskV) == MaskV) {
unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
// Top bits known zero.
KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
}
}
}
}
// fall through
case ISD::ADD:
case ISD::ADDE: {
// Output known-0 bits are known if clear or set in both the low clear bits
// common to both LHS & RHS. For example, 8+(X<<3) is known to have the
// low 3 bits clear.
computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
KnownZeroOut = std::min(KnownZeroOut,
KnownZero2.countTrailingOnes());
if (Op.getOpcode() == ISD::ADD) {
KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
break;
}
// With ADDE, a carry bit may be added in, so we can only use this
// information if we know (at least) that the low two bits are clear. We
// then return to the caller that the low bit is unknown but that other bits
// are known zero.
if (KnownZeroOut >= 2) // ADDE
KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
break;
}
case ISD::SREM:
if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
const APInt &RA = Rem->getAPIntValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
computeKnownBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);
// The low bits of the first operand are unchanged by the srem.
KnownZero = KnownZero2 & LowBits;
KnownOne = KnownOne2 & LowBits;
// If the first operand is non-negative or has all low bits zero, then
// the upper bits are all zero.
if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
KnownZero |= ~LowBits;
// If the first operand is negative and not all low bits are zero, then
// the upper bits are all one.
if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
KnownOne |= ~LowBits;
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
}
}
break;
case ISD::UREM: {
if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
const APInt &RA = Rem->getAPIntValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth + 1);
// The upper bits are all zero, the lower ones are unchanged.
KnownZero = KnownZero2 | ~LowBits;
KnownOne = KnownOne2 & LowBits;
break;
}
}
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
KnownOne.clearAllBits();
KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
break;
}
case ISD::EXTRACT_ELEMENT: {
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
const unsigned Index =
cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
const unsigned BitWidth = Op.getValueType().getSizeInBits();
// Remove low part of known bits mask
KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth);
KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth);
// Remove high part of known bit mask
KnownZero = KnownZero.trunc(BitWidth);
KnownOne = KnownOne.trunc(BitWidth);
break;
}
case ISD::FrameIndex:
case ISD::TargetFrameIndex:
if (unsigned Align = InferPtrAlignment(Op)) {
// The low bits are known zero if the pointer is aligned.
KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
break;
}
break;
default:
if (Op.getOpcode() < ISD::BUILTIN_OP_END)
break;
// Fallthrough
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_VOID:
// Allow the target to implement this method for its nodes.
TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
break;
}
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
}
/// ComputeNumSignBits - Return the number of times the sign bit of the
/// register is replicated into the other bits. We know that at least 1 bit
/// is always equal to the sign bit (itself), but other cases can give us
/// information. For example, immediately after an "SRA X, 2", we know that
/// the top 3 bits are all equal to each other, so we return 3.
unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
EVT VT = Op.getValueType();
assert(VT.isInteger() && "Invalid VT!");
unsigned VTBits = VT.getScalarType().getSizeInBits();
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
if (Depth == 6)
return 1; // Limit search depth.
switch (Op.getOpcode()) {
default: break;
case ISD::AssertSext:
Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
return VTBits-Tmp+1;
case ISD::AssertZext:
Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
return VTBits-Tmp;
case ISD::Constant: {
const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
return Val.getNumSignBits();
}
case ISD::SIGN_EXTEND:
Tmp =
VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
case ISD::SIGN_EXTEND_INREG:
// Max of the input and what this extends.
Tmp =
cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
Tmp = VTBits-Tmp+1;
Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
return std::max(Tmp, Tmp2);
case ISD::SRA:
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
// SRA X, C -> adds C sign bits.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Tmp += C->getZExtValue();
if (Tmp > VTBits) Tmp = VTBits;
}
return Tmp;
case ISD::SHL:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
// shl destroys sign bits.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (C->getZExtValue() >= VTBits || // Bad shift.
C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
return Tmp - C->getZExtValue();
}
break;
case ISD::AND:
case ISD::OR:
case ISD::XOR: // NOT is handled here.
// Logical binary ops preserve the number of sign bits at the worst.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp != 1) {
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
FirstAnswer = std::min(Tmp, Tmp2);
// We computed what we know about the sign bits as our first
// answer. Now proceed to the generic code that uses
// computeKnownBits, and pick whichever answer is better.
}
break;
case ISD::SELECT:
Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
if (Tmp == 1) return 1; // Early out.
Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
return std::min(Tmp, Tmp2);
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
case ISD::USUBO:
case ISD::SMULO:
case ISD::UMULO:
if (Op.getResNo() != 1)
break;
// The boolean result conforms to getBooleanContents. Fall through.
// If setcc returns 0/-1, all bits are sign bits.
// We know that we have an integer-based boolean since these operations
// are only available for integer.
if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
TargetLowering::ZeroOrNegativeOneBooleanContent)
return VTBits;
break;
case ISD::SETCC:
// If setcc returns 0/-1, all bits are sign bits.
if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrNegativeOneBooleanContent)
return VTBits;
break;
case ISD::ROTL:
case ISD::ROTR:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned RotAmt = C->getZExtValue() & (VTBits-1);
// Handle rotate right by N like a rotate left by 32-N.
if (Op.getOpcode() == ISD::ROTR)
RotAmt = (VTBits-RotAmt) & (VTBits-1);
// If we aren't rotating out all of the known-in sign bits, return the
// number that are left. This handles rotl(sext(x), 1) for example.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp > RotAmt+1) return Tmp-RotAmt;
}
break;
case ISD::ADD:
// Add can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp == 1) return 1; // Early out.
// Special case decrementing a value (ADD X, -1):
if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
if (CRHS->isAllOnesValue()) {
APInt KnownZero, KnownOne;
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
return VTBits;
// If we are subtracting one from a positive number, there is no carry
// out of the result.
if (KnownZero.isNegative())
return Tmp;
}
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
if (Tmp2 == 1) return 1;
return std::min(Tmp, Tmp2)-1;
case ISD::SUB:
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
if (Tmp2 == 1) return 1;
// Handle NEG.
if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
if (CLHS->isNullValue()) {
APInt KnownZero, KnownOne;
computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
return VTBits;
// If the input is known to be positive (the sign bit is known clear),
// the output of the NEG has the same number of sign bits as the input.
if (KnownZero.isNegative())
return Tmp2;
// Otherwise, we treat this like a SUB.
}
// Sub can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp == 1) return 1; // Early out.
return std::min(Tmp, Tmp2)-1;
case ISD::TRUNCATE:
// FIXME: it's tricky to do anything useful for this, but it is an important
// case for targets like X86.
break;
case ISD::EXTRACT_ELEMENT: {
const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
const int BitWidth = Op.getValueType().getSizeInBits();
const int Items =
Op.getOperand(0).getValueType().getSizeInBits() / BitWidth;
// Get reverse index (starting from 1), Op1 value indexes elements from
// little end. Sign starts at big end.
const int rIndex = Items - 1 -
cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
// If the sign portion ends in our element the substraction gives correct
// result. Otherwise it gives either negative or > bitwidth result
return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
}
}
// If we are looking at the loaded value of the SDNode.
if (Op.getResNo() == 0) {
// Handle LOADX separately here. EXTLOAD case will fallthrough.
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
unsigned ExtType = LD->getExtensionType();
switch (ExtType) {
default: break;
case ISD::SEXTLOAD: // '17' bits known
Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
return VTBits-Tmp+1;
case ISD::ZEXTLOAD: // '16' bits known
Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
return VTBits-Tmp;
}
}
}
// Allow the target to implement this method for its nodes.
if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_VOID) {
unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth);
if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
}
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
APInt KnownZero, KnownOne;
computeKnownBits(Op, KnownZero, KnownOne, Depth);
APInt Mask;
if (KnownZero.isNegative()) { // sign bit is 0
Mask = KnownZero;
} else if (KnownOne.isNegative()) { // sign bit is 1;
Mask = KnownOne;
} else {
// Nothing known.
return FirstAnswer;
}
// Okay, we know that the sign bit in Mask is set. Use CLZ to determine
// the number of identical bits in the top of the input value.
Mask = ~Mask;
Mask <<= Mask.getBitWidth()-VTBits;
// Return # leading zeros. We use 'min' here in case Val was zero before
// shifting. We don't want to return '64' as for an i32 "0".
return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
}
/// isBaseWithConstantOffset - Return true if the specified operand is an
/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
/// semantics as an ADD. This handles the equivalence:
/// X|Cst == X+Cst iff X&Cst = 0.
bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
!isa<ConstantSDNode>(Op.getOperand(1)))
return false;
if (Op.getOpcode() == ISD::OR &&
!MaskedValueIsZero(Op.getOperand(0),
cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
return false;
return true;
}
bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
// If we're told that NaNs won't happen, assume they won't.
if (getTarget().Options.NoNaNsFPMath)
return true;
// If the value is a constant, we can obviously see if it is a NaN or not.
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
return !C->getValueAPF().isNaN();
// TODO: Recognize more cases here.
return false;
}
bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
// If the value is a constant, we can obviously see if it is a zero or not.
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
return !C->isZero();
// TODO: Recognize more cases here.
switch (Op.getOpcode()) {
default: break;
case ISD::OR:
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
return !C->isNullValue();
break;
}
return false;
}
bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
// Check the obvious case.
if (A == B) return true;
// For for negative and positive zero.
if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
if (CA->isZero() && CB->isZero()) return true;
// Otherwise they may not be equal.
return false;
}
/// getNode - Gets or creates the specified node.
///
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, getVTList(VT), None);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(),
DL.getDebugLoc(), getVTList(VT));
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
EVT VT, SDValue Operand) {
// Constant fold unary operations with an integer constant operand. Even
// opaque constant will be folded, because the folding of unary operations
// doesn't create new constants with different values. Nevertheless, the
// opaque flag is preserved during folding to prevent future folding with
// other constants.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
const APInt &Val = C->getAPIntValue();
switch (Opcode) {
default: break;
case ISD::SIGN_EXTEND:
return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT,
C->isTargetOpcode(), C->isOpaque());
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::TRUNCATE:
return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT,
C->isTargetOpcode(), C->isOpaque());
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP: {
APFloat apf(EVTToAPFloatSemantics(VT),
APInt::getNullValue(VT.getSizeInBits()));
(void)apf.convertFromAPInt(Val,
Opcode==ISD::SINT_TO_FP,
APFloat::rmNearestTiesToEven);
return getConstantFP(apf, VT);
}
case ISD::BITCAST:
if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
return getConstantFP(APFloat(APFloat::IEEEhalf, Val), VT);
if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
return getConstantFP(APFloat(APFloat::IEEEsingle, Val), VT);
else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
return getConstantFP(APFloat(APFloat::IEEEdouble, Val), VT);
break;
case ISD::BSWAP:
return getConstant(Val.byteSwap(), VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::CTPOP:
return getConstant(Val.countPopulation(), VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
return getConstant(Val.countLeadingZeros(), VT, C->isTargetOpcode(),
C->isOpaque());
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
return getConstant(Val.countTrailingZeros(), VT, C->isTargetOpcode(),
C->isOpaque());
}
}
// Constant fold unary operations with a floating point constant operand.
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
APFloat V = C->getValueAPF(); // make copy
switch (Opcode) {
case ISD::FNEG:
V.changeSign();
return getConstantFP(V, VT);
case ISD::FABS:
V.clearSign();
return getConstantFP(V, VT);
case ISD::FCEIL: {
APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
if (fs == APFloat::opOK || fs == APFloat::opInexact)
return getConstantFP(V, VT);
break;
}
case ISD::FTRUNC: {
APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
if (fs == APFloat::opOK || fs == APFloat::opInexact)
return getConstantFP(V, VT);
break;
}
case ISD::FFLOOR: {
APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
if (fs == APFloat::opOK || fs == APFloat::opInexact)
return getConstantFP(V, VT);
break;
}
case ISD::FP_EXTEND: {
bool ignored;
// This can return overflow, underflow, or inexact; we don't care.
// FIXME need to be more flexible about rounding mode.
(void)V.convert(EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven, &ignored);
return getConstantFP(V, VT);
}
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: {
integerPart x[2];
bool ignored;
static_assert(integerPartWidth >= 64, "APFloat parts too small!");
// FIXME need to be more flexible about rounding mode.
APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
Opcode==ISD::FP_TO_SINT,
APFloat::rmTowardZero, &ignored);
if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
break;
APInt api(VT.getSizeInBits(), x);
return getConstant(api, VT);
}
case ISD::BITCAST:
if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), VT);
else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
break;
}
}
// Constant fold unary operations with a vector integer operand.
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand.getNode())) {
if (BV->isConstant()) {
switch (Opcode) {
default:
// FIXME: Entirely reasonable to perform folding of other unary
// operations here as the need arises.
break;
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP: {
SmallVector<SDValue, 8> Ops;
for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
SDValue OpN = BV->getOperand(i);
// Let the above scalar folding handle the conversion of each
// element.
OpN = getNode(ISD::SINT_TO_FP, DL, VT.getVectorElementType(),
OpN);
Ops.push_back(OpN);
}
return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
}
}
}
}
unsigned OpOpcode = Operand.getNode()->getOpcode();
switch (Opcode) {
case ISD::TokenFactor:
case ISD::MERGE_VALUES:
case ISD::CONCAT_VECTORS:
return Operand; // Factor, merge or concat of one node? No need.
case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
case ISD::FP_EXTEND:
assert(VT.isFloatingPoint() &&
Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
if (Operand.getValueType() == VT) return Operand; // noop conversion.
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
if (Operand.getOpcode() == ISD::UNDEF)
return getUNDEF(VT);
break;
case ISD::SIGN_EXTEND:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid SIGN_EXTEND!");
if (Operand.getValueType() == VT) return Operand; // noop extension
assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
"Invalid sext node, dst < src!");
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
else if (OpOpcode == ISD::UNDEF)
// sext(undef) = 0, because the top bits will all be the same.
return getConstant(0, VT);
break;
case ISD::ZERO_EXTEND:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid ZERO_EXTEND!");
if (Operand.getValueType() == VT) return Operand; // noop extension
assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
"Invalid zext node, dst < src!");
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
return getNode(ISD::ZERO_EXTEND, DL, VT,
Operand.getNode()->getOperand(0));
else if (OpOpcode == ISD::UNDEF)
// zext(undef) = 0, because the top bits will be zero.
return getConstant(0, VT);
break;
case ISD::ANY_EXTEND:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid ANY_EXTEND!");
if (Operand.getValueType() == VT) return Operand; // noop extension
assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
"Invalid anyext node, dst < src!");
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
OpOpcode == ISD::ANY_EXTEND)
// (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
else if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
// (ext (trunx x)) -> x
if (OpOpcode == ISD::TRUNCATE) {
SDValue OpOp = Operand.getNode()->getOperand(0);
if (OpOp.getValueType() == VT)
return OpOp;
}
break;
case ISD::TRUNCATE:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid TRUNCATE!");
if (Operand.getValueType() == VT) return Operand; // noop truncate
assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
"Invalid truncate node, src < dst!");
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
if (OpOpcode == ISD::TRUNCATE)
return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
OpOpcode == ISD::ANY_EXTEND) {
// If the source is smaller than the dest, we still need an extend.
if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
.bitsLT(VT.getScalarType()))
return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
return Operand.getNode()->getOperand(0);
}
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
break;
case ISD::BITCAST:
// Basic sanity checking.
assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
&& "Cannot BITCAST between types of different sizes!");
if (VT == Operand.getValueType()) return Operand; // noop conversion.
if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
break;
case ISD::SCALAR_TO_VECTOR:
assert(VT.isVector() && !Operand.getValueType().isVector() &&
(VT.getVectorElementType() == Operand.getValueType() ||
(VT.getVectorElementType().isInteger() &&
Operand.getValueType().isInteger() &&
VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
"Illegal SCALAR_TO_VECTOR node!");
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
// scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
isa<ConstantSDNode>(Operand.getOperand(1)) &&
Operand.getConstantOperandVal(1) == 0 &&
Operand.getOperand(0).getValueType() == VT)
return Operand.getOperand(0);
break;
case ISD::FNEG:
// -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
Operand.getNode()->getOperand(0));
if (OpOpcode == ISD::FNEG) // --X -> X
return Operand.getNode()->getOperand(0);
break;
case ISD::FABS:
if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
break;
}
SDNode *N;
SDVTList VTs = getVTList(VT);
if (VT != MVT::Glue) { // Don't CSE flag producing nodes
FoldingSetNodeID ID;
SDValue Ops[1] = { Operand };
AddNodeIDNode(ID, Opcode, VTs, Ops);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
DL.getDebugLoc(), VTs, Operand);
CSEMap.InsertNode(N, IP);
} else {
N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
DL.getDebugLoc(), VTs, Operand);
}
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, EVT VT,
SDNode *Cst1, SDNode *Cst2) {
// If the opcode is a target-specific ISD node, there's nothing we can
// do here and the operand rules may not line up with the below, so
// bail early.
if (Opcode >= ISD::BUILTIN_OP_END)
return SDValue();
SmallVector<std::pair<ConstantSDNode *, ConstantSDNode *>, 4> Inputs;
SmallVector<SDValue, 4> Outputs;
EVT SVT = VT.getScalarType();
ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1);
ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2);
if (Scalar1 && Scalar2 && (Scalar1->isOpaque() || Scalar2->isOpaque()))
return SDValue();
if (Scalar1 && Scalar2)
// Scalar instruction.
Inputs.push_back(std::make_pair(Scalar1, Scalar2));
else {
// For vectors extract each constant element into Inputs so we can constant
// fold them individually.
BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
if (!BV1 || !BV2)
return SDValue();
assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I));
ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I));
if (!V1 || !V2) // Not a constant, bail.
return SDValue();
if (V1->isOpaque() || V2->isOpaque())
return SDValue();
// Avoid BUILD_VECTOR nodes that perform implicit truncation.
// FIXME: This is valid and could be handled by truncating the APInts.
if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
return SDValue();
Inputs.push_back(std::make_pair(V1, V2));
}
}
// We have a number of constant values, constant fold them element by element.
for (unsigned I = 0, E = Inputs.size(); I != E; ++I) {
const APInt &C1 = Inputs[I].first->getAPIntValue();
const APInt &C2 = Inputs[I].second->getAPIntValue();
switch (Opcode) {
case ISD::ADD:
Outputs.push_back(getConstant(C1 + C2, SVT));
break;
case ISD::SUB:
Outputs.push_back(getConstant(C1 - C2, SVT));
break;
case ISD::MUL:
Outputs.push_back(getConstant(C1 * C2, SVT));
break;
case ISD::UDIV:
if (!C2.getBoolValue())
return SDValue();
Outputs.push_back(getConstant(C1.udiv(C2), SVT));
break;
case ISD::UREM:
if (!C2.getBoolValue())
return SDValue();
Outputs.push_back(getConstant(C1.urem(C2), SVT));
break;
case ISD::SDIV:
if (!C2.getBoolValue())
return SDValue();
Outputs.push_back(getConstant(C1.sdiv(C2), SVT));
break;
case ISD::SREM:
if (!C2.getBoolValue())
return SDValue();
Outputs.push_back(getConstant(C1.srem(C2), SVT));
break;
case ISD::AND:
Outputs.push_back(getConstant(C1 & C2, SVT));
break;
case ISD::OR:
Outputs.push_back(getConstant(C1 | C2, SVT));
break;
case ISD::XOR:
Outputs.push_back(getConstant(C1 ^ C2, SVT));
break;
case ISD::SHL:
Outputs.push_back(getConstant(C1 << C2, SVT));
break;
case ISD::SRL:
Outputs.push_back(getConstant(C1.lshr(C2), SVT));
break;
case ISD::SRA:
Outputs.push_back(getConstant(C1.ashr(C2), SVT));
break;
case ISD::ROTL:
Outputs.push_back(getConstant(C1.rotl(C2), SVT));
break;
case ISD::ROTR:
Outputs.push_back(getConstant(C1.rotr(C2), SVT));
break;
default:
return SDValue();
}
}
assert((Scalar1 && Scalar2) || (VT.getVectorNumElements() == Outputs.size() &&
"Expected a scalar or vector!"));
// Handle the scalar case first.
if (!VT.isVector())
return Outputs.back();
// We may have a vector type but a scalar result. Create a splat.
Outputs.resize(VT.getVectorNumElements(), Outputs.back());
// Build a big vector out of the scalar elements we generated.
return getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Outputs);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1,
SDValue N2, bool nuw, bool nsw, bool exact) {
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
switch (Opcode) {
default: break;
case ISD::TokenFactor:
assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
N2.getValueType() == MVT::Other && "Invalid token factor!");
// Fold trivial token factors.
if (N1.getOpcode() == ISD::EntryToken) return N2;
if (N2.getOpcode() == ISD::EntryToken) return N1;
if (N1 == N2) return N1;
break;
case ISD::CONCAT_VECTORS:
// Concat of UNDEFs is UNDEF.
if (N1.getOpcode() == ISD::UNDEF &&
N2.getOpcode() == ISD::UNDEF)
return getUNDEF(VT);
// A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
// one big BUILD_VECTOR.
if (N1.getOpcode() == ISD::BUILD_VECTOR &&
N2.getOpcode() == ISD::BUILD_VECTOR) {
SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
N1.getNode()->op_end());
Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
return getNode(ISD::BUILD_VECTOR, DL, VT, Elts);
}
break;
case ISD::AND:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
// (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
// worth handling here.
if (N2C && N2C->isNullValue())
return N2;
if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
return N1;
break;
case ISD::OR:
case ISD::XOR:
case ISD::ADD:
case ISD::SUB:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
// (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
// it's worth handling here.
if (N2C && N2C->isNullValue())
return N1;
break;
case ISD::UDIV:
case ISD::UREM:
case ISD::MULHU:
case ISD::MULHS:
case ISD::MUL:
case ISD::SDIV:
case ISD::SREM:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
break;
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
if (getTarget().Options.UnsafeFPMath) {
if (Opcode == ISD::FADD) {
// 0+x --> x
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
if (CFP->getValueAPF().isZero())
return N2;
// x+0 --> x
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
if (CFP->getValueAPF().isZero())
return N1;
} else if (Opcode == ISD::FSUB) {
// x-0 --> x
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
if (CFP->getValueAPF().isZero())
return N1;
} else if (Opcode == ISD::FMUL) {
ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1);
SDValue V = N2;
// If the first operand isn't the constant, try the second
if (!CFP) {
CFP = dyn_cast<ConstantFPSDNode>(N2);
V = N1;
}
if (CFP) {
// 0*x --> 0
if (CFP->isZero())
return SDValue(CFP,0);
// 1*x --> x
if (CFP->isExactlyValue(1.0))
return V;
}
}
}
assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
break;
case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
assert(N1.getValueType() == VT &&
N1.getValueType().isFloatingPoint() &&
N2.getValueType().isFloatingPoint() &&
"Invalid FCOPYSIGN!");
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR:
assert(VT == N1.getValueType() &&
"Shift operators return type must be the same as their first arg");
assert(VT.isInteger() && N2.getValueType().isInteger() &&
"Shifts only work on integers");
assert((!VT.isVector() || VT == N2.getValueType()) &&
"Vector shift amounts must be in the same as their first arg");
// Verify that the shift amount VT is bit enough to hold valid shift
// amounts. This catches things like trying to shift an i1024 value by an
// i8, which is easy to fall into in generic code that uses
// TLI.getShiftAmount().
assert(N2.getValueType().getSizeInBits() >=
Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
"Invalid use of small shift amount with oversized value!");
// Always fold shifts of i1 values so the code generator doesn't need to
// handle them. Since we know the size of the shift has to be less than the
// size of the value, the shift/rotate count is guaranteed to be zero.
if (VT == MVT::i1)
return N1;
if (N2C && N2C->isNullValue())
return N1;
break;
case ISD::FP_ROUND_INREG: {
EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg round!");
assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
"Cannot FP_ROUND_INREG integer types");
assert(EVT.isVector() == VT.isVector() &&
"FP_ROUND_INREG type should be vector iff the operand "
"type is vector!");
assert((!EVT.isVector() ||
EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
"Vector element counts must match in FP_ROUND_INREG");
assert(EVT.bitsLE(VT) && "Not rounding down!");
(void)EVT;
if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
break;
}
case ISD::FP_ROUND:
assert(VT.isFloatingPoint() &&
N1.getValueType().isFloatingPoint() &&
VT.bitsLE(N1.getValueType()) &&
isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
if (N1.getValueType() == VT) return N1; // noop conversion.
break;
case ISD::AssertSext:
case ISD::AssertZext: {
EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(VT.isInteger() && EVT.isInteger() &&
"Cannot *_EXTEND_INREG FP types");
assert(!EVT.isVector() &&
"AssertSExt/AssertZExt type should be the vector element type "
"rather than the vector type!");
assert(EVT.bitsLE(VT) && "Not extending!");
if (VT == EVT) return N1; // noop assertion.
break;
}
case ISD::SIGN_EXTEND_INREG: {
EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(VT.isInteger() && EVT.isInteger() &&
"Cannot *_EXTEND_INREG FP types");
assert(EVT.isVector() == VT.isVector() &&
"SIGN_EXTEND_INREG type should be vector iff the operand "
"type is vector!");
assert((!EVT.isVector() ||
EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
"Vector element counts must match in SIGN_EXTEND_INREG");
assert(EVT.bitsLE(VT) && "Not extending!");
if (EVT == VT) return N1; // Not actually extending
if (N1C) {
APInt Val = N1C->getAPIntValue();
unsigned FromBits = EVT.getScalarType().getSizeInBits();
Val <<= Val.getBitWidth()-FromBits;
Val = Val.ashr(Val.getBitWidth()-FromBits);
return getConstant(Val, VT);
}
break;
}
case ISD::EXTRACT_VECTOR_ELT:
// EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
if (N1.getOpcode() == ISD::UNDEF)
return getUNDEF(VT);
// EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
// expanding copies of large vectors from registers.
if (N2C &&
N1.getOpcode() == ISD::CONCAT_VECTORS &&
N1.getNumOperands() > 0) {
unsigned Factor =
N1.getOperand(0).getValueType().getVectorNumElements();
return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
N1.getOperand(N2C->getZExtValue() / Factor),
getConstant(N2C->getZExtValue() % Factor,
N2.getValueType()));
}
// EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
// expanding large vector constants.
if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
SDValue Elt = N1.getOperand(N2C->getZExtValue());
if (VT != Elt.getValueType())
// If the vector element type is not legal, the BUILD_VECTOR operands
// are promoted and implicitly truncated, and the result implicitly
// extended. Make that explicit here.
Elt = getAnyExtOrTrunc(Elt, DL, VT);
return Elt;
}
// EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
// operations are lowered to scalars.
if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
// If the indices are the same, return the inserted element else
// if the indices are known different, extract the element from
// the original vector.
SDValue N1Op2 = N1.getOperand(2);
ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
if (N1Op2C && N2C) {
if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
if (VT == N1.getOperand(1).getValueType())
return N1.getOperand(1);
else
return getSExtOrTrunc(N1.getOperand(1), DL, VT);
}
return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
}
}
break;
case ISD::EXTRACT_ELEMENT:
assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
assert(!N1.getValueType().isVector() && !VT.isVector() &&
(N1.getValueType().isInteger() == VT.isInteger()) &&
N1.getValueType() != VT &&
"Wrong types for EXTRACT_ELEMENT!");
// EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
// 64-bit integers into 32-bit parts. Instead of building the extract of
// the BUILD_PAIR, only to have legalize rip it apart, just do it now.
if (N1.getOpcode() == ISD::BUILD_PAIR)
return N1.getOperand(N2C->getZExtValue());
// EXTRACT_ELEMENT of a constant int is also very common.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
unsigned ElementSize = VT.getSizeInBits();
unsigned Shift = ElementSize * N2C->getZExtValue();
APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
return getConstant(ShiftedVal.trunc(ElementSize), VT);
}
break;
case ISD::EXTRACT_SUBVECTOR: {
SDValue Index = N2;
if (VT.isSimple() && N1.getValueType().isSimple()) {
assert(VT.isVector() && N1.getValueType().isVector() &&
"Extract subvector VTs must be a vectors!");
assert(VT.getVectorElementType() ==
N1.getValueType().getVectorElementType() &&
"Extract subvector VTs must have the same element type!");
assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
"Extract subvector must be from larger vector to smaller vector!");
if (isa<ConstantSDNode>(Index.getNode())) {
assert((VT.getVectorNumElements() +
cast<ConstantSDNode>(Index.getNode())->getZExtValue()
<= N1.getValueType().getVectorNumElements())
&& "Extract subvector overflow!");
}
// Trivial extraction.
if (VT.getSimpleVT() == N1.getSimpleValueType())
return N1;
}
break;
}
}
// Perform trivial constant folding.
if (SDValue SV =
FoldConstantArithmetic(Opcode, VT, N1.getNode(), N2.getNode()))
return SV;
// Canonicalize constant to RHS if commutative.
if (N1C && !N2C && isCommutativeBinOp(Opcode)) {
std::swap(N1C, N2C);
std::swap(N1, N2);
}
// Constant fold FP operations.
bool HasFPExceptions = TLI->hasFloatingPointExceptions();
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
if (N1CFP) {
if (!N2CFP && isCommutativeBinOp(Opcode)) {
// Canonicalize constant to RHS if commutative.
std::swap(N1CFP, N2CFP);
std::swap(N1, N2);
} else if (N2CFP) {
APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
APFloat::opStatus s;
switch (Opcode) {
case ISD::FADD:
s = V1.add(V2, APFloat::rmNearestTiesToEven);
if (!HasFPExceptions || s != APFloat::opInvalidOp)
return getConstantFP(V1, VT);
break;
case ISD::FSUB:
s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
if (!HasFPExceptions || s!=APFloat::opInvalidOp)
return getConstantFP(V1, VT);
break;
case ISD::FMUL:
s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
if (!HasFPExceptions || s!=APFloat::opInvalidOp)
return getConstantFP(V1, VT);
break;
case ISD::FDIV:
s = V1.divide(V2, APFloat::rmNearestTiesToEven);
if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
s!=APFloat::opDivByZero)) {
return getConstantFP(V1, VT);
}
break;
case ISD::FREM :
s = V1.mod(V2, APFloat::rmNearestTiesToEven);
if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
s!=APFloat::opDivByZero)) {
return getConstantFP(V1, VT);
}
break;
case ISD::FCOPYSIGN:
V1.copySign(V2);
return getConstantFP(V1, VT);
default: break;
}
}
if (Opcode == ISD::FP_ROUND) {
APFloat V = N1CFP->getValueAPF(); // make copy
bool ignored;
// This can return overflow, underflow, or inexact; we don't care.
// FIXME need to be more flexible about rounding mode.
(void)V.convert(EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven, &ignored);
return getConstantFP(V, VT);
}
}
// Canonicalize an UNDEF to the RHS, even over a constant.
if (N1.getOpcode() == ISD::UNDEF) {
if (isCommutativeBinOp(Opcode)) {
std::swap(N1, N2);
} else {
switch (Opcode) {
case ISD::FP_ROUND_INREG:
case ISD::SIGN_EXTEND_INREG:
case ISD::SUB:
case ISD::FSUB:
case ISD::FDIV:
case ISD::FREM:
case ISD::SRA:
return N1; // fold op(undef, arg2) -> undef
case ISD::UDIV:
case ISD::SDIV:
case ISD::UREM:
case ISD::SREM:
case ISD::SRL:
case ISD::SHL:
if (!VT.isVector())
return getConstant(0, VT); // fold op(undef, arg2) -> 0
// For vectors, we can't easily build an all zero vector, just return
// the LHS.
return N2;
}
}
}
// Fold a bunch of operators when the RHS is undef.
if (N2.getOpcode() == ISD::UNDEF) {
switch (Opcode) {
case ISD::XOR:
if (N1.getOpcode() == ISD::UNDEF)
// Handle undef ^ undef -> 0 special case. This is a common
// idiom (misuse).
return getConstant(0, VT);
// fallthrough
case ISD::ADD:
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUB:
case ISD::UDIV:
case ISD::SDIV:
case ISD::UREM:
case ISD::SREM:
return N2; // fold op(arg1, undef) -> undef
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
if (getTarget().Options.UnsafeFPMath)
return N2;
break;
case ISD::MUL:
case ISD::AND:
case ISD::SRL:
case ISD::SHL:
if (!VT.isVector())
return getConstant(0, VT); // fold op(arg1, undef) -> 0
// For vectors, we can't easily build an all zero vector, just return
// the LHS.
return N1;
case ISD::OR:
if (!VT.isVector())
return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
// For vectors, we can't easily build an all one vector, just return
// the LHS.
return N1;
case ISD::SRA:
return N1;
}
}
// Memoize this node if possible.
BinarySDNode *N;
SDVTList VTs = getVTList(VT);
const bool BinOpHasFlags = isBinOpWithFlags(Opcode);
if (VT != MVT::Glue) {
SDValue Ops[] = {N1, N2};
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
if (BinOpHasFlags)
AddBinaryNodeIDCustom(ID, Opcode, nuw, nsw, exact);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, nuw, nsw, exact);
CSEMap.InsertNode(N, IP);
} else {
N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, nuw, nsw, exact);
}
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3) {
// Perform various simplifications.
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
switch (Opcode) {
case ISD::FMA: {
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
if (N1CFP && N2CFP && N3CFP) {
APFloat V1 = N1CFP->getValueAPF();
const APFloat &V2 = N2CFP->getValueAPF();
const APFloat &V3 = N3CFP->getValueAPF();
APFloat::opStatus s =
V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
return getConstantFP(V1, VT);
}
break;
}
case ISD::CONCAT_VECTORS:
// A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
// one big BUILD_VECTOR.
if (N1.getOpcode() == ISD::BUILD_VECTOR &&
N2.getOpcode() == ISD::BUILD_VECTOR &&
N3.getOpcode() == ISD::BUILD_VECTOR) {
SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
N1.getNode()->op_end());
Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
return getNode(ISD::BUILD_VECTOR, DL, VT, Elts);
}
break;
case ISD::SETCC: {
// Use FoldSetCC to simplify SETCC's.
SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
if (Simp.getNode()) return Simp;
break;
}
case ISD::SELECT:
if (N1C) {
if (N1C->getZExtValue())
return N2; // select true, X, Y -> X
return N3; // select false, X, Y -> Y
}
if (N2 == N3) return N2; // select C, X, X -> X
break;
case ISD::VECTOR_SHUFFLE:
llvm_unreachable("should use getVectorShuffle constructor!");
case ISD::INSERT_SUBVECTOR: {
SDValue Index = N3;
if (VT.isSimple() && N1.getValueType().isSimple()
&& N2.getValueType().isSimple()) {
assert(VT.isVector() && N1.getValueType().isVector() &&
N2.getValueType().isVector() &&
"Insert subvector VTs must be a vectors");
assert(VT == N1.getValueType() &&
"Dest and insert subvector source types must match!");
assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
"Insert subvector must be from smaller vector to larger vector!");
if (isa<ConstantSDNode>(Index.getNode())) {
assert((N2.getValueType().getVectorNumElements() +
cast<ConstantSDNode>(Index.getNode())->getZExtValue()
<= VT.getVectorNumElements())
&& "Insert subvector overflow!");
}
// Trivial insertion.
if (VT.getSimpleVT() == N2.getSimpleValueType())
return N2;
}
break;
}
case ISD::BITCAST:
// Fold bit_convert nodes from a type to themselves.
if (N1.getValueType() == VT)
return N1;
break;
}
// Memoize node if it doesn't produce a flag.
SDNode *N;
SDVTList VTs = getVTList(VT);
if (VT != MVT::Glue) {
SDValue Ops[] = { N1, N2, N3 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
DL.getDebugLoc(), VTs, N1, N2, N3);
CSEMap.InsertNode(N, IP);
} else {
N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
DL.getDebugLoc(), VTs, N1, N2, N3);
}
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3,
SDValue N4) {
SDValue Ops[] = { N1, N2, N3, N4 };
return getNode(Opcode, DL, VT, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3,
SDValue N4, SDValue N5) {
SDValue Ops[] = { N1, N2, N3, N4, N5 };
return getNode(Opcode, DL, VT, Ops);
}
/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
/// the incoming stack arguments to be loaded from the stack.
SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
SmallVector<SDValue, 8> ArgChains;
// Include the original chain at the beginning of the list. When this is
// used by target LowerCall hooks, this helps legalize find the
// CALLSEQ_BEGIN node.
ArgChains.push_back(Chain);
// Add a chain value for each stack argument.
for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
if (FI->getIndex() < 0)
ArgChains.push_back(SDValue(L, 1));
// Build a tokenfactor for all the chains.
return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
}
/// getMemsetValue - Vectorized representation of the memset value
/// operand.
static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
SDLoc dl) {
assert(Value.getOpcode() != ISD::UNDEF);
unsigned NumBits = VT.getScalarType().getSizeInBits();
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
assert(C->getAPIntValue().getBitWidth() == 8);
APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
if (VT.isInteger())
return DAG.getConstant(Val, VT);
return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), VT);
}
Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
if (NumBits > 8) {
// Use a multiplication with 0x010101... to extend the input to the
// required length.
APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
}
return Value;
}
/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
/// used when a memcpy is turned into a memset when the source is a constant
/// string ptr.
static SDValue getMemsetStringVal(EVT VT, SDLoc dl, SelectionDAG &DAG,
const TargetLowering &TLI, StringRef Str) {
// Handle vector with all elements zero.
if (Str.empty()) {
if (VT.isInteger())
return DAG.getConstant(0, VT);
else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
return DAG.getConstantFP(0.0, VT);
else if (VT.isVector()) {
unsigned NumElts = VT.getVectorNumElements();
MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
EltVT, NumElts)));
} else
llvm_unreachable("Expected type!");
}
assert(!VT.isVector() && "Can't handle vector type here!");
unsigned NumVTBits = VT.getSizeInBits();
unsigned NumVTBytes = NumVTBits / 8;
unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
APInt Val(NumVTBits, 0);
if (TLI.isLittleEndian()) {
for (unsigned i = 0; i != NumBytes; ++i)
Val |= (uint64_t)(unsigned char)Str[i] << i*8;
} else {
for (unsigned i = 0; i != NumBytes; ++i)
Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
}
// If the "cost" of materializing the integer immediate is less than the cost
// of a load, then it is cost effective to turn the load into the immediate.
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
return DAG.getConstant(Val, VT);
return SDValue(nullptr, 0);
}
/// getMemBasePlusOffset - Returns base and offset node for the
///
static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, SDLoc dl,
SelectionDAG &DAG) {
EVT VT = Base.getValueType();
return DAG.getNode(ISD::ADD, dl,
VT, Base, DAG.getConstant(Offset, VT));
}
/// isMemSrcFromString - Returns true if memcpy source is a string constant.
///
static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
unsigned SrcDelta = 0;
GlobalAddressSDNode *G = nullptr;
if (Src.getOpcode() == ISD::GlobalAddress)
G = cast<GlobalAddressSDNode>(Src);
else if (Src.getOpcode() == ISD::ADD &&
Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
Src.getOperand(1).getOpcode() == ISD::Constant) {
G = cast<GlobalAddressSDNode>(Src.getOperand(0));
SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
}
if (!G)
return false;
return getConstantStringInfo(G->getGlobal(), Str, SrcDelta, false);
}
/// FindOptimalMemOpLowering - Determines the optimial series memory ops
/// to replace the memset / memcpy. Return true if the number of memory ops
/// is below the threshold. It returns the types of the sequence of
/// memory ops to perform memset / memcpy by reference.
static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
unsigned Limit, uint64_t Size,
unsigned DstAlign, unsigned SrcAlign,
bool IsMemset,
bool ZeroMemset,
bool MemcpyStrSrc,
bool AllowOverlap,
SelectionDAG &DAG,
const TargetLowering &TLI) {
assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
"Expecting memcpy / memset source to meet alignment requirement!");
// If 'SrcAlign' is zero, that means the memory operation does not need to
// load the value, i.e. memset or memcpy from constant string. Otherwise,
// it's the inferred alignment of the source. 'DstAlign', on the other hand,
// is the specified alignment of the memory operation. If it is zero, that
// means it's possible to change the alignment of the destination.
// 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
// not need to be loaded.
EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
IsMemset, ZeroMemset, MemcpyStrSrc,
DAG.getMachineFunction());
if (VT == MVT::Other) {
unsigned AS = 0;
if (DstAlign >= TLI.getDataLayout()->getPointerPrefAlignment(AS) ||
TLI.allowsMisalignedMemoryAccesses(VT, AS, DstAlign)) {
VT = TLI.getPointerTy();
} else {
switch (DstAlign & 7) {
case 0: VT = MVT::i64; break;
case 4: VT = MVT::i32; break;
case 2: VT = MVT::i16; break;
default: VT = MVT::i8; break;
}
}
MVT LVT = MVT::i64;
while (!TLI.isTypeLegal(LVT))
LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
assert(LVT.isInteger());
if (VT.bitsGT(LVT))
VT = LVT;
}
unsigned NumMemOps = 0;
while (Size != 0) {
unsigned VTSize = VT.getSizeInBits() / 8;
while (VTSize > Size) {
// For now, only use non-vector load / store's for the left-over pieces.
EVT NewVT = VT;
unsigned NewVTSize;
bool Found = false;
if (VT.isVector() || VT.isFloatingPoint()) {
NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
TLI.isSafeMemOpType(NewVT.getSimpleVT()))
Found = true;
else if (NewVT == MVT::i64 &&
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
TLI.isSafeMemOpType(MVT::f64)) {
// i64 is usually not legal on 32-bit targets, but f64 may be.
NewVT = MVT::f64;
Found = true;
}
}
if (!Found) {
do {
NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
if (NewVT == MVT::i8)
break;
} while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
}
NewVTSize = NewVT.getSizeInBits() / 8;
// If the new VT cannot cover all of the remaining bits, then consider
// issuing a (or a pair of) unaligned and overlapping load / store.
// FIXME: Only does this for 64-bit or more since we don't have proper
// cost model for unaligned load / store.
bool Fast;
unsigned AS = 0;
if (NumMemOps && AllowOverlap &&
VTSize >= 8 && NewVTSize < Size &&
TLI.allowsMisalignedMemoryAccesses(VT, AS, DstAlign, &Fast) && Fast)
VTSize = Size;
else {
VT = NewVT;
VTSize = NewVTSize;
}
}
if (++NumMemOps > Limit)
return false;
MemOps.push_back(VT);
Size -= VTSize;
}
return true;
}
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, SDLoc dl,
SDValue Chain, SDValue Dst,
SDValue Src, uint64_t Size,
unsigned Align, bool isVol,
bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
// Turn a memcpy of undef to nop.
if (Src.getOpcode() == ISD::UNDEF)
return Chain;
// Expand memcpy to a series of load and store ops if the size operand falls
// below a certain threshold.
// TODO: In the AlwaysInline case, if the size is big then generate a loop
// rather than maybe a humongous number of loads and stores.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
bool OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
unsigned SrcAlign = DAG.InferPtrAlignment(Src);
if (Align > SrcAlign)
SrcAlign = Align;
StringRef Str;
bool CopyFromStr = isMemSrcFromString(Src, Str);
bool isZeroStr = CopyFromStr && Str.empty();
unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
(DstAlignCanChange ? 0 : Align),
(isZeroStr ? 0 : SrcAlign),
false, false, CopyFromStr, true, DAG, TLI))
return SDValue();
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
// Don't promote to an alignment that would require dynamic stack
// realignment.
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!TRI->needsStackRealignment(MF))
while (NewAlign > Align &&
TLI.getDataLayout()->exceedsNaturalStackAlignment(NewAlign))
NewAlign /= 2;
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
MFI->setObjectAlignment(FI->getIndex(), NewAlign);
Align = NewAlign;
}
}
SmallVector<SDValue, 8> OutChains;
unsigned NumMemOps = MemOps.size();
uint64_t SrcOff = 0, DstOff = 0;
for (unsigned i = 0; i != NumMemOps; ++i) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Value, Store;
if (VTSize > Size) {
// Issuing an unaligned load / store pair that overlaps with the previous
// pair. Adjust the offset accordingly.
assert(i == NumMemOps-1 && i != 0);
SrcOff -= VTSize - Size;
DstOff -= VTSize - Size;
}
if (CopyFromStr &&
(isZeroStr || (VT.isInteger() && !VT.isVector()))) {
// It's unlikely a store of a vector immediate can be done in a single
// instruction. It would require a load from a constantpool first.
// We only handle zero vectors here.
// FIXME: Handle other cases where store of vector immediate is done in
// a single instruction.
Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
if (Value.getNode())
Store = DAG.getStore(Chain, dl, Value,
getMemBasePlusOffset(Dst, DstOff, dl, DAG),
DstPtrInfo.getWithOffset(DstOff), isVol,
false, Align);
}
if (!Store.getNode()) {
// The type might not be legal for the target. This should only happen
// if the type is smaller than a legal type, as on PPC, so the right
// thing to do is generate a LoadExt/StoreTrunc pair. These simplify
// to Load/Store if NVT==VT.
// FIXME does the case above also need this?
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
assert(NVT.bitsGE(VT));
Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
getMemBasePlusOffset(Src, SrcOff, dl, DAG),
SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
false, MinAlign(SrcAlign, SrcOff));
Store = DAG.getTruncStore(Chain, dl, Value,
getMemBasePlusOffset(Dst, DstOff, dl, DAG),
DstPtrInfo.getWithOffset(DstOff), VT, isVol,
false, Align);
}
OutChains.push_back(Store);
SrcOff += VTSize;
DstOff += VTSize;
Size -= VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, SDLoc dl,
SDValue Chain, SDValue Dst,
SDValue Src, uint64_t Size,
unsigned Align, bool isVol,
bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
// Turn a memmove of undef to nop.
if (Src.getOpcode() == ISD::UNDEF)
return Chain;
// Expand memmove to a series of load and store ops if the size operand falls
// below a certain threshold.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
bool OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
unsigned SrcAlign = DAG.InferPtrAlignment(Src);
if (Align > SrcAlign)
SrcAlign = Align;
unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
(DstAlignCanChange ? 0 : Align), SrcAlign,
false, false, false, false, DAG, TLI))
return SDValue();
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
MFI->setObjectAlignment(FI->getIndex(), NewAlign);
Align = NewAlign;
}
}
uint64_t SrcOff = 0, DstOff = 0;
SmallVector<SDValue, 8> LoadValues;
SmallVector<SDValue, 8> LoadChains;
SmallVector<SDValue, 8> OutChains;
unsigned NumMemOps = MemOps.size();
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Value;
Value = DAG.getLoad(VT, dl, Chain,
getMemBasePlusOffset(Src, SrcOff, dl, DAG),
SrcPtrInfo.getWithOffset(SrcOff), isVol,
false, false, SrcAlign);
LoadValues.push_back(Value);
LoadChains.push_back(Value.getValue(1));
SrcOff += VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
OutChains.clear();
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Store;
Store = DAG.getStore(Chain, dl, LoadValues[i],
getMemBasePlusOffset(Dst, DstOff, dl, DAG),
DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
OutChains.push_back(Store);
DstOff += VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
/// \brief Lower the call to 'memset' intrinsic function into a series of store
/// operations.
///
/// \param DAG Selection DAG where lowered code is placed.
/// \param dl Link to corresponding IR location.
/// \param Chain Control flow dependency.
/// \param Dst Pointer to destination memory location.
/// \param Src Value of byte to write into the memory.
/// \param Size Number of bytes to write.
/// \param Align Alignment of the destination in bytes.
/// \param isVol True if destination is volatile.
/// \param DstPtrInfo IR information on the memory pointer.
/// \returns New head in the control flow, if lowering was successful, empty
/// SDValue otherwise.
///
/// The function tries to replace 'llvm.memset' intrinsic with several store
/// operations and value calculation code. This is usually profitable for small
/// memory size.
static SDValue getMemsetStores(SelectionDAG &DAG, SDLoc dl,
SDValue Chain, SDValue Dst,
SDValue Src, uint64_t Size,
unsigned Align, bool isVol,
MachinePointerInfo DstPtrInfo) {
// Turn a memset of undef to nop.
if (Src.getOpcode() == ISD::UNDEF)
return Chain;
// Expand memset to a series of load/store ops if the size operand
// falls below a certain threshold.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
bool OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
bool IsZeroVal =
isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
Size, (DstAlignCanChange ? 0 : Align), 0,
true, IsZeroVal, false, true, DAG, TLI))
return SDValue();
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
MFI->setObjectAlignment(FI->getIndex(), NewAlign);
Align = NewAlign;
}
}
SmallVector<SDValue, 8> OutChains;
uint64_t DstOff = 0;
unsigned NumMemOps = MemOps.size();
// Find the largest store and generate the bit pattern for it.
EVT LargestVT = MemOps[0];
for (unsigned i = 1; i < NumMemOps; i++)
if (MemOps[i].bitsGT(LargestVT))
LargestVT = MemOps[i];
SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
if (VTSize > Size) {
// Issuing an unaligned load / store pair that overlaps with the previous
// pair. Adjust the offset accordingly.
assert(i == NumMemOps-1 && i != 0);
DstOff -= VTSize - Size;
}
// If this store is smaller than the largest store see whether we can get
// the smaller value for free with a truncate.
SDValue Value = MemSetValue;
if (VT.bitsLT(LargestVT)) {
if (!LargestVT.isVector() && !VT.isVector() &&
TLI.isTruncateFree(LargestVT, VT))
Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
else
Value = getMemsetValue(Src, VT, DAG, dl);
}
assert(Value.getValueType() == VT && "Value with wrong type.");
SDValue Store = DAG.getStore(Chain, dl, Value,
getMemBasePlusOffset(Dst, DstOff, dl, DAG),
DstPtrInfo.getWithOffset(DstOff),
isVol, false, Align);
OutChains.push_back(Store);
DstOff += VT.getSizeInBits() / 8;
Size -= VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
SDValue SelectionDAG::getMemcpy(SDValue Chain, SDLoc dl, SDValue Dst,
SDValue Src, SDValue Size,
unsigned Align, bool isVol, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
// Check to see if we should lower the memcpy to loads and stores first.
// For cases within the target-specified limits, this is the best choice.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (ConstantSize) {
// Memcpy with size zero? Just return the original chain.
if (ConstantSize->isNullValue())
return Chain;
SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(),Align,
isVol, false, DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
}
// Then check to see if we should lower the memcpy with target-specific
// code. If the target chooses to do this, this is the next best.
if (TSI) {
SDValue Result = TSI->EmitTargetCodeForMemcpy(
*this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
}
// If we really need inline code and the target declined to provide it,
// use a (potentially long) sequence of loads and stores.
if (AlwaysInline) {
assert(ConstantSize && "AlwaysInline requires a constant size!");
return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(), Align, isVol,
true, DstPtrInfo, SrcPtrInfo);
}
// FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
// memcpy is not guaranteed to be safe. libc memcpys aren't required to
// respect volatile, so they may do things like read or write memory
// beyond the given memory regions. But fixing this isn't easy, and most
// people don't care.
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = TLI->getDataLayout()->getIntPtrType(*getContext());
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Node = Size; Args.push_back(Entry);
// FIXME: pass in SDLoc
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl).setChain(Chain)
.setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
Type::getVoidTy(*getContext()),
getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
TLI->getPointerTy()), std::move(Args), 0)
.setDiscardResult();
std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getMemmove(SDValue Chain, SDLoc dl, SDValue Dst,
SDValue Src, SDValue Size,
unsigned Align, bool isVol,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
// Check to see if we should lower the memmove to loads and stores first.
// For cases within the target-specified limits, this is the best choice.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (ConstantSize) {
// Memmove with size zero? Just return the original chain.
if (ConstantSize->isNullValue())
return Chain;
SDValue Result =
getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(), Align, isVol,
false, DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
}
// Then check to see if we should lower the memmove with target-specific
// code. If the target chooses to do this, this is the next best.
if (TSI) {
SDValue Result = TSI->EmitTargetCodeForMemmove(
*this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
}
// FIXME: If the memmove is volatile, lowering it to plain libc memmove may
// not be safe. See memcpy above for more details.
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = TLI->getDataLayout()->getIntPtrType(*getContext());
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Node = Size; Args.push_back(Entry);
// FIXME: pass in SDLoc
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl).setChain(Chain)
.setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
Type::getVoidTy(*getContext()),
getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
TLI->getPointerTy()), std::move(Args), 0)
.setDiscardResult();
std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getMemset(SDValue Chain, SDLoc dl, SDValue Dst,
SDValue Src, SDValue Size,
unsigned Align, bool isVol,
MachinePointerInfo DstPtrInfo) {
assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
// Check to see if we should lower the memset to stores first.
// For cases within the target-specified limits, this is the best choice.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (ConstantSize) {
// Memset with size zero? Just return the original chain.
if (ConstantSize->isNullValue())
return Chain;
SDValue Result =
getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
Align, isVol, DstPtrInfo);
if (Result.getNode())
return Result;
}
// Then check to see if we should lower the memset with target-specific
// code. If the target chooses to do this, this is the next best.
if (TSI) {
SDValue Result = TSI->EmitTargetCodeForMemset(
*this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
if (Result.getNode())
return Result;
}
// Emit a library call.
Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(*getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst; Entry.Ty = IntPtrTy;
Args.push_back(Entry);
Entry.Node = Src;
Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
Args.push_back(Entry);
Entry.Node = Size;
Entry.Ty = IntPtrTy;
Args.push_back(Entry);
// FIXME: pass in SDLoc
TargetLowering::CallLoweringInfo CLI(*this);
CLI.setDebugLoc(dl).setChain(Chain)
.setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
Type::getVoidTy(*getContext()),
getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
TLI->getPointerTy()), std::move(Args), 0)
.setDiscardResult();
std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
SDVTList VTList, ArrayRef<SDValue> Ops,
MachineMemOperand *MMO,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SynchronizationScope SynchScope) {
FoldingSetNodeID ID;
ID.AddInteger(MemVT.getRawBits());
AddNodeIDNode(ID, Opcode, VTList, Ops);
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void* IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<AtomicSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
// Allocate the operands array for the node out of the BumpPtrAllocator, since
// SDNode doesn't have access to it. This memory will be "leaked" when
// the node is deallocated, but recovered when the allocator is released.
// If the number of operands is less than 5 we use AtomicSDNode's internal
// storage.
unsigned NumOps = Ops.size();
SDUse *DynOps = NumOps > 4 ? OperandAllocator.Allocate<SDUse>(NumOps)
: nullptr;
SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl.getIROrder(),
dl.getDebugLoc(), VTList, MemVT,
Ops.data(), DynOps, NumOps, MMO,
SuccessOrdering, FailureOrdering,
SynchScope);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
SDVTList VTList, ArrayRef<SDValue> Ops,
MachineMemOperand *MMO,
AtomicOrdering Ordering,
SynchronizationScope SynchScope) {
return getAtomic(Opcode, dl, MemVT, VTList, Ops, MMO, Ordering,
Ordering, SynchScope);
}
SDValue SelectionDAG::getAtomicCmpSwap(
unsigned Opcode, SDLoc dl, EVT MemVT, SDVTList VTs, SDValue Chain,
SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
unsigned Alignment, AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) {
assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(MemVT);
MachineFunction &MF = getMachineFunction();
// FIXME: Volatile isn't really correct; we should keep track of atomic
// orderings in the memoperand.
unsigned Flags = MachineMemOperand::MOVolatile;
Flags |= MachineMemOperand::MOLoad;
Flags |= MachineMemOperand::MOStore;
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO,
SuccessOrdering, FailureOrdering, SynchScope);
}
SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, SDLoc dl, EVT MemVT,
SDVTList VTs, SDValue Chain, SDValue Ptr,
SDValue Cmp, SDValue Swp,
MachineMemOperand *MMO,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SynchronizationScope SynchScope) {
assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO,
SuccessOrdering, FailureOrdering, SynchScope);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
SDValue Chain,
SDValue Ptr, SDValue Val,
const Value* PtrVal,
unsigned Alignment,
AtomicOrdering Ordering,
SynchronizationScope SynchScope) {
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(MemVT);
MachineFunction &MF = getMachineFunction();
// An atomic store does not load. An atomic load does not store.
// (An atomicrmw obviously both loads and stores.)
// For now, atomics are considered to be volatile always, and they are
// chained as such.
// FIXME: Volatile isn't really correct; we should keep track of atomic
// orderings in the memoperand.
unsigned Flags = MachineMemOperand::MOVolatile;
if (Opcode != ISD::ATOMIC_STORE)
Flags |= MachineMemOperand::MOLoad;
if (Opcode != ISD::ATOMIC_LOAD)
Flags |= MachineMemOperand::MOStore;
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
MemVT.getStoreSize(), Alignment);
return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
Ordering, SynchScope);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
SDValue Chain,
SDValue Ptr, SDValue Val,
MachineMemOperand *MMO,
AtomicOrdering Ordering,
SynchronizationScope SynchScope) {
assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
Opcode == ISD::ATOMIC_LOAD_SUB ||
Opcode == ISD::ATOMIC_LOAD_AND ||
Opcode == ISD::ATOMIC_LOAD_OR ||
Opcode == ISD::ATOMIC_LOAD_XOR ||
Opcode == ISD::ATOMIC_LOAD_NAND ||
Opcode == ISD::ATOMIC_LOAD_MIN ||
Opcode == ISD::ATOMIC_LOAD_MAX ||
Opcode == ISD::ATOMIC_LOAD_UMIN ||
Opcode == ISD::ATOMIC_LOAD_UMAX ||
Opcode == ISD::ATOMIC_SWAP ||
Opcode == ISD::ATOMIC_STORE) &&
"Invalid Atomic Op");
EVT VT = Val.getValueType();
SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
getVTList(VT, MVT::Other);
SDValue Ops[] = {Chain, Ptr, Val};
return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
EVT VT, SDValue Chain,
SDValue Ptr,
MachineMemOperand *MMO,
AtomicOrdering Ordering,
SynchronizationScope SynchScope) {
assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
SDVTList VTs = getVTList(VT, MVT::Other);
SDValue Ops[] = {Chain, Ptr};
return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope);
}
/// getMergeValues - Create a MERGE_VALUES node from the given operands.
SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, SDLoc dl) {
if (Ops.size() == 1)
return Ops[0];
SmallVector<EVT, 4> VTs;
VTs.reserve(Ops.size());
for (unsigned i = 0; i < Ops.size(); ++i)
VTs.push_back(Ops[i].getValueType());
return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
}
SDValue
SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList,
ArrayRef<SDValue> Ops,
EVT MemVT, MachinePointerInfo PtrInfo,
unsigned Align, bool Vol,
bool ReadMem, bool WriteMem, unsigned Size) {
if (Align == 0) // Ensure that codegen never sees alignment 0
Align = getEVTAlignment(MemVT);
MachineFunction &MF = getMachineFunction();
unsigned Flags = 0;
if (WriteMem)
Flags |= MachineMemOperand::MOStore;
if (ReadMem)
Flags |= MachineMemOperand::MOLoad;
if (Vol)
Flags |= MachineMemOperand::MOVolatile;
if (!Size)
Size = MemVT.getStoreSize();
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
}
SDValue
SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList,
ArrayRef<SDValue> Ops, EVT MemVT,
MachineMemOperand *MMO) {
assert((Opcode == ISD::INTRINSIC_VOID ||
Opcode == ISD::INTRINSIC_W_CHAIN ||
Opcode == ISD::PREFETCH ||
Opcode == ISD::LIFETIME_START ||
Opcode == ISD::LIFETIME_END ||
(Opcode <= INT_MAX &&
(int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
"Opcode is not a memory-accessing opcode!");
// Memoize the node unless it returns a flag.
MemIntrinsicSDNode *N;
if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops);
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(),
dl.getDebugLoc(), VTList, Ops,
MemVT, MMO);
CSEMap.InsertNode(N, IP);
} else {
N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(),
dl.getDebugLoc(), VTList, Ops,
MemVT, MMO);
}
InsertNode(N);
return SDValue(N, 0);
}
/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
/// MachinePointerInfo record from it. This is particularly useful because the
/// code generator has many cases where it doesn't bother passing in a
/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
// If this is FI+Offset, we can model it.
if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
// If this is (FI+Offset1)+Offset2, we can model it.
if (Ptr.getOpcode() != ISD::ADD ||
!isa<ConstantSDNode>(Ptr.getOperand(1)) ||
!isa<FrameIndexSDNode>(Ptr.getOperand(0)))
return MachinePointerInfo();
int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
return MachinePointerInfo::getFixedStack(FI, Offset+
cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
}
/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
/// MachinePointerInfo record from it. This is particularly useful because the
/// code generator has many cases where it doesn't bother passing in a
/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
// If the 'Offset' value isn't a constant, we can't handle this.
if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
if (OffsetOp.getOpcode() == ISD::UNDEF)
return InferPointerInfo(Ptr);
return MachinePointerInfo();
}
SDValue
SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
EVT VT, SDLoc dl, SDValue Chain,
SDValue Ptr, SDValue Offset,
MachinePointerInfo PtrInfo, EVT MemVT,
bool isVolatile, bool isNonTemporal, bool isInvariant,
unsigned Alignment, const AAMDNodes &AAInfo,
const MDNode *Ranges) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(VT);
unsigned Flags = MachineMemOperand::MOLoad;
if (isVolatile)
Flags |= MachineMemOperand::MOVolatile;
if (isNonTemporal)
Flags |= MachineMemOperand::MONonTemporal;
if (isInvariant)
Flags |= MachineMemOperand::MOInvariant;
// If we don't have a PtrInfo, infer the trivial frame index case to simplify
// clients.
if (PtrInfo.V.isNull())
PtrInfo = InferPointerInfo(Ptr, Offset);
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
AAInfo, Ranges);
return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
}
SDValue
SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
EVT VT, SDLoc dl, SDValue Chain,
SDValue Ptr, SDValue Offset, EVT MemVT,
MachineMemOperand *MMO) {
if (VT == MemVT) {
ExtType = ISD::NON_EXTLOAD;
} else if (ExtType == ISD::NON_EXTLOAD) {
assert(VT == MemVT && "Non-extending load from different memory type!");
} else {
// Extending load.
assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
"Should only be an extending load, not truncating!");
assert(VT.isInteger() == MemVT.isInteger() &&
"Cannot convert from FP to Int or Int -> FP!");
assert(VT.isVector() == MemVT.isVector() &&
"Cannot use an ext load to convert to or from a vector!");
assert((!VT.isVector() ||
VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
"Cannot use an ext load to change the number of vector elements!");
}
bool Indexed = AM != ISD::UNINDEXED;
assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
"Unindexed load with an offset!");
SDVTList VTs = Indexed ?
getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
SDValue Ops[] = { Chain, Ptr, Offset };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
ID.AddInteger(MemVT.getRawBits());
ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
MMO->isNonTemporal(),
MMO->isInvariant()));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<LoadSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl.getIROrder(),
dl.getDebugLoc(), VTs, AM, ExtType,
MemVT, MMO);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getLoad(EVT VT, SDLoc dl,
SDValue Chain, SDValue Ptr,
MachinePointerInfo PtrInfo,
bool isVolatile, bool isNonTemporal,
bool isInvariant, unsigned Alignment,
const AAMDNodes &AAInfo,
const MDNode *Ranges) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment,
AAInfo, Ranges);
}
SDValue SelectionDAG::getLoad(EVT VT, SDLoc dl,
SDValue Chain, SDValue Ptr,
MachineMemOperand *MMO) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
VT, MMO);
}
SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT,
SDValue Chain, SDValue Ptr,
MachinePointerInfo PtrInfo, EVT MemVT,
bool isVolatile, bool isNonTemporal,
bool isInvariant, unsigned Alignment,
const AAMDNodes &AAInfo) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
PtrInfo, MemVT, isVolatile, isNonTemporal, isInvariant,
Alignment, AAInfo);
}
SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT,
SDValue Chain, SDValue Ptr, EVT MemVT,
MachineMemOperand *MMO) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
MemVT, MMO);
}
SDValue
SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDLoc dl, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM) {
LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
"Load is already a indexed load!");
return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
LD->getChain(), Base, Offset, LD->getPointerInfo(),
LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(),
false, LD->getAlignment());
}
SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val,
SDValue Ptr, MachinePointerInfo PtrInfo,
bool isVolatile, bool isNonTemporal,
unsigned Alignment, const AAMDNodes &AAInfo) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(Val.getValueType());
unsigned Flags = MachineMemOperand::MOStore;
if (isVolatile)
Flags |= MachineMemOperand::MOVolatile;
if (isNonTemporal)
Flags |= MachineMemOperand::MONonTemporal;
if (PtrInfo.V.isNull())
PtrInfo = InferPointerInfo(Ptr);
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags,
Val.getValueType().getStoreSize(), Alignment,
AAInfo);
return getStore(Chain, dl, Val, Ptr, MMO);
}
SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val,
SDValue Ptr, MachineMemOperand *MMO) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
EVT VT = Val.getValueType();
SDVTList VTs = getVTList(MVT::Other);
SDValue Undef = getUNDEF(Ptr.getValueType());
SDValue Ops[] = { Chain, Val, Ptr, Undef };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
MMO->isNonTemporal(), MMO->isInvariant()));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<StoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
dl.getDebugLoc(), VTs,
ISD::UNINDEXED, false, VT, MMO);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val,
SDValue Ptr, MachinePointerInfo PtrInfo,
EVT SVT,bool isVolatile, bool isNonTemporal,
unsigned Alignment,
const AAMDNodes &AAInfo) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(SVT);
unsigned Flags = MachineMemOperand::MOStore;
if (isVolatile)
Flags |= MachineMemOperand::MOVolatile;
if (isNonTemporal)
Flags |= MachineMemOperand::MONonTemporal;
if (PtrInfo.V.isNull())
PtrInfo = InferPointerInfo(Ptr);
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
AAInfo);
return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
}
SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val,
SDValue Ptr, EVT SVT,
MachineMemOperand *MMO) {
EVT VT = Val.getValueType();
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (VT == SVT)
return getStore(Chain, dl, Val, Ptr, MMO);
assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
"Should only be a truncating store, not extending!");
assert(VT.isInteger() == SVT.isInteger() &&
"Can't do FP-INT conversion!");
assert(VT.isVector() == SVT.isVector() &&
"Cannot use trunc store to convert to or from a vector!");
assert((!VT.isVector() ||
VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
"Cannot use trunc store to change the number of vector elements!");
SDVTList VTs = getVTList(MVT::Other);
SDValue Undef = getUNDEF(Ptr.getValueType());
SDValue Ops[] = { Chain, Val, Ptr, Undef };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
ID.AddInteger(SVT.getRawBits());
ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
MMO->isNonTemporal(), MMO->isInvariant()));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<StoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
dl.getDebugLoc(), VTs,
ISD::UNINDEXED, true, SVT, MMO);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue
SelectionDAG::getIndexedStore(SDValue OrigStore, SDLoc dl, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM) {
StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
"Store is already a indexed store!");
SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
ID.AddInteger(ST->getMemoryVT().getRawBits());
ID.AddInteger(ST->getRawSubclassData());
ID.AddInteger(ST->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
dl.getDebugLoc(), VTs, AM,
ST->isTruncatingStore(),
ST->getMemoryVT(),
ST->getMemOperand());
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue
SelectionDAG::getMaskedLoad(EVT VT, SDLoc dl, SDValue Chain,
SDValue Ptr, SDValue Mask, SDValue Src0, EVT MemVT,
MachineMemOperand *MMO, ISD::LoadExtType ExtTy) {
SDVTList VTs = getVTList(VT, MVT::Other);
SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(encodeMemSDNodeFlags(ExtTy, ISD::UNINDEXED,
MMO->isVolatile(),
MMO->isNonTemporal(),
MMO->isInvariant()));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
SDNode *N = new (NodeAllocator) MaskedLoadSDNode(dl.getIROrder(),
dl.getDebugLoc(), Ops, 4, VTs,
ExtTy, MemVT, MMO);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getMaskedStore(SDValue Chain, SDLoc dl, SDValue Val,
SDValue Ptr, SDValue Mask, EVT MemVT,
MachineMemOperand *MMO, bool isTrunc) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
EVT VT = Val.getValueType();
SDVTList VTs = getVTList(MVT::Other);
SDValue Ops[] = { Chain, Ptr, Mask, Val };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
MMO->isNonTemporal(), MMO->isInvariant()));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
SDNode *N = new (NodeAllocator) MaskedStoreSDNode(dl.getIROrder(),
dl.getDebugLoc(), Ops, 4,
VTs, isTrunc, MemVT, MMO);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getVAArg(EVT VT, SDLoc dl,
SDValue Chain, SDValue Ptr,
SDValue SV,
unsigned Align) {
SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
ArrayRef<SDUse> Ops) {
switch (Ops.size()) {
case 0: return getNode(Opcode, DL, VT);
case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
default: break;
}
// Copy from an SDUse array into an SDValue array for use with
// the regular getNode logic.
SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
return getNode(Opcode, DL, VT, NewOps);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
ArrayRef<SDValue> Ops) {
unsigned NumOps = Ops.size();
switch (NumOps) {
case 0: return getNode(Opcode, DL, VT);
case 1: return getNode(Opcode, DL, VT, Ops[0]);
case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
default: break;
}
switch (Opcode) {
default: break;
case ISD::SELECT_CC: {
assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
assert(Ops[0].getValueType() == Ops[1].getValueType() &&
"LHS and RHS of condition must have same type!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"True and False arms of SelectCC must have same type!");
assert(Ops[2].getValueType() == VT &&
"select_cc node must be of same type as true and false value!");
break;
}
case ISD::BR_CC: {
assert(NumOps == 5 && "BR_CC takes 5 operands!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"LHS/RHS of comparison should match types!");
break;
}
}
// Memoize nodes.
SDNode *N;
SDVTList VTs = getVTList(VT);
if (VT != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
VTs, Ops);
CSEMap.InsertNode(N, IP);
} else {
N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
VTs, Ops);
}
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
return getNode(Opcode, DL, getVTList(ResultTys), Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
ArrayRef<SDValue> Ops) {
if (VTList.NumVTs == 1)
return getNode(Opcode, DL, VTList.VTs[0], Ops);
#if 0
switch (Opcode) {
// FIXME: figure out how to safely handle things like
// int foo(int x) { return 1 << (x & 255); }
// int bar() { return foo(256); }
case ISD::SRA_PARTS:
case ISD::SRL_PARTS:
case ISD::SHL_PARTS:
if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
else if (N3.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
// If the and is only masking out bits that cannot effect the shift,
// eliminate the and.
unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
}
break;
}
#endif
// Memoize the node unless it returns a flag.
SDNode *N;
unsigned NumOps = Ops.size();
if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
if (NumOps == 1) {
N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
DL.getDebugLoc(), VTList, Ops[0]);
} else if (NumOps == 2) {
N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
DL.getDebugLoc(), VTList, Ops[0],
Ops[1]);
} else if (NumOps == 3) {
N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
DL.getDebugLoc(), VTList, Ops[0],
Ops[1], Ops[2]);
} else {
N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
VTList, Ops);
}
CSEMap.InsertNode(N, IP);
} else {
if (NumOps == 1) {
N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
DL.getDebugLoc(), VTList, Ops[0]);
} else if (NumOps == 2) {
N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
DL.getDebugLoc(), VTList, Ops[0],
Ops[1]);
} else if (NumOps == 3) {
N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
DL.getDebugLoc(), VTList, Ops[0],
Ops[1], Ops[2]);
} else {
N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
VTList, Ops);
}
}
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList) {
return getNode(Opcode, DL, VTList, None);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
SDValue N1) {
SDValue Ops[] = { N1 };
return getNode(Opcode, DL, VTList, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
SDValue N1, SDValue N2) {
SDValue Ops[] = { N1, N2 };
return getNode(Opcode, DL, VTList, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
SDValue N1, SDValue N2, SDValue N3) {
SDValue Ops[] = { N1, N2, N3 };
return getNode(Opcode, DL, VTList, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
SDValue N1, SDValue N2, SDValue N3,
SDValue N4) {
SDValue Ops[] = { N1, N2, N3, N4 };
return getNode(Opcode, DL, VTList, Ops);
}
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
SDValue N1, SDValue N2, SDValue N3,
SDValue N4, SDValue N5) {
SDValue Ops[] = { N1, N2, N3, N4, N5 };
return getNode(Opcode, DL, VTList, Ops);
}
SDVTList SelectionDAG::getVTList(EVT VT) {
return makeVTList(SDNode::getValueTypeList(VT), 1);
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
FoldingSetNodeID ID;
ID.AddInteger(2U);
ID.AddInteger(VT1.getRawBits());
ID.AddInteger(VT2.getRawBits());
void *IP = nullptr;
SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
if (!Result) {
EVT *Array = Allocator.Allocate<EVT>(2);
Array[0] = VT1;
Array[1] = VT2;
Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
VTListMap.InsertNode(Result, IP);
}
return Result->getSDVTList();
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
FoldingSetNodeID ID;
ID.AddInteger(3U);
ID.AddInteger(VT1.getRawBits());
ID.AddInteger(VT2.getRawBits());
ID.AddInteger(VT3.getRawBits());
void *IP = nullptr;
SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
if (!Result) {
EVT *Array = Allocator.Allocate<EVT>(3);
Array[0] = VT1;
Array[1] = VT2;
Array[2] = VT3;
Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
VTListMap.InsertNode(Result, IP);
}
return Result->getSDVTList();
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
FoldingSetNodeID ID;
ID.AddInteger(4U);
ID.AddInteger(VT1.getRawBits());
ID.AddInteger(VT2.getRawBits());
ID.AddInteger(VT3.getRawBits());
ID.AddInteger(VT4.getRawBits());
void *IP = nullptr;
SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
if (!Result) {
EVT *Array = Allocator.Allocate<EVT>(4);
Array[0] = VT1;
Array[1] = VT2;
Array[2] = VT3;
Array[3] = VT4;
Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
VTListMap.InsertNode(Result, IP);
}
return Result->getSDVTList();
}
SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
unsigned NumVTs = VTs.size();
FoldingSetNodeID ID;
ID.AddInteger(NumVTs);
for (unsigned index = 0; index < NumVTs; index++) {
ID.AddInteger(VTs[index].getRawBits());
}
void *IP = nullptr;
SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
if (!Result) {
EVT *Array = Allocator.Allocate<EVT>(NumVTs);
std::copy(VTs.begin(), VTs.end(), Array);
Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
VTListMap.InsertNode(Result, IP);
}
return Result->getSDVTList();
}
/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
/// specified operands. If the resultant node already exists in the DAG,
/// this does not modify the specified node, instead it returns the node that
/// already exists. If the resultant node does not exist in the DAG, the
/// input node is returned. As a degenerate case, if you specify the same
/// input operands as the node already has, the input node is returned.
SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
// Check to see if there is no change.
if (Op == N->getOperand(0)) return N;
// See if the modified node already exists.
void *InsertPos = nullptr;
if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
return Existing;
// Nope it doesn't. Remove the node from its current place in the maps.
if (InsertPos)
if (!RemoveNodeFromCSEMaps(N))
InsertPos = nullptr;
// Now we update the operands.
N->OperandList[0].set(Op);
// If this gets put into a CSE map, add it.
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return N;
}
SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
// Check to see if there is no change.
if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
return N; // No operands changed, just return the input node.
// See if the modified node already exists.
void *InsertPos = nullptr;
if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
return Existing;
// Nope it doesn't. Remove the node from its current place in the maps.
if (InsertPos)
if (!RemoveNodeFromCSEMaps(N))
InsertPos = nullptr;
// Now we update the operands.
if (N->OperandList[0] != Op1)
N->OperandList[0].set(Op1);
if (N->OperandList[1] != Op2)
N->OperandList[1].set(Op2);
// If this gets put into a CSE map, add it.
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return N;
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
SDValue Ops[] = { Op1, Op2, Op3 };
return UpdateNodeOperands(N, Ops);
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4) {
SDValue Ops[] = { Op1, Op2, Op3, Op4 };
return UpdateNodeOperands(N, Ops);
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4, SDValue Op5) {
SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
return UpdateNodeOperands(N, Ops);
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
unsigned NumOps = Ops.size();
assert(N->getNumOperands() == NumOps &&
"Update with wrong number of operands");
// If no operands changed just return the input node.
if (Ops.empty() || std::equal(Ops.begin(), Ops.end(), N->op_begin()))
return N;
// See if the modified node already exists.
void *InsertPos = nullptr;
if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
return Existing;
// Nope it doesn't. Remove the node from its current place in the maps.
if (InsertPos)
if (!RemoveNodeFromCSEMaps(N))
InsertPos = nullptr;
// Now we update the operands.
for (unsigned i = 0; i != NumOps; ++i)
if (N->OperandList[i] != Ops[i])
N->OperandList[i].set(Ops[i]);
// If this gets put into a CSE map, add it.
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return N;
}
/// DropOperands - Release the operands and set this node to have
/// zero operands.
void SDNode::DropOperands() {
// Unlike the code in MorphNodeTo that does this, we don't need to
// watch for dead nodes here.
for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
SDUse &Use = *I++;
Use.set(SDValue());
}
}
/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
/// machine opcode.
///
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT) {
SDVTList VTs = getVTList(VT);
return SelectNodeTo(N, MachineOpc, VTs, None);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, SDValue Op1) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, SDValue Op1,
SDValue Op2) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, SDValue Op1,
SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2, Op3 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT);
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2);
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2) {
SDVTList VTs = getVTList(VT1, VT2);
return SelectNodeTo(N, MachineOpc, VTs, None);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2, EVT VT3,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2, EVT VT3, EVT VT4,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2,
SDValue Op1) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2,
SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2,
SDValue Op1, SDValue Op2,
SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2, Op3 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2, EVT VT3,
SDValue Op1, SDValue Op2,
SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
SDValue Ops[] = { Op1, Op2, Op3 };
return SelectNodeTo(N, MachineOpc, VTs, Ops);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
SDVTList VTs,ArrayRef<SDValue> Ops) {
N = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
// Reset the NodeID to -1.
N->setNodeId(-1);
return N;
}
/// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away
/// the line number information on the merged node since it is not possible to
/// preserve the information that operation is associated with multiple lines.
/// This will make the debugger working better at -O0, were there is a higher
/// probability having other instructions associated with that line.
///
/// For IROrder, we keep the smaller of the two
SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, SDLoc OLoc) {
DebugLoc NLoc = N->getDebugLoc();
if (!(NLoc.isUnknown()) && (OptLevel == CodeGenOpt::None) &&
(OLoc.getDebugLoc() != NLoc)) {
N->setDebugLoc(DebugLoc());
}
unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
N->setIROrder(Order);
return N;
}
/// MorphNodeTo - This *mutates* the specified node to have the specified
/// return type, opcode, and operands.
///
/// Note that MorphNodeTo returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one. Note that the SDLoc need not be the same.
///
/// Using MorphNodeTo is faster than creating a new node and swapping it in
/// with ReplaceAllUsesWith both because it often avoids allocating a new
/// node, and because it doesn't require CSE recalculation for any of
/// the node's users.
///
/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
/// As a consequence it isn't appropriate to use from within the DAG combiner or
/// the legalizer which maintain worklists that would need to be updated when
/// deleting things.
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
SDVTList VTs, ArrayRef<SDValue> Ops) {
unsigned NumOps = Ops.size();
// If an identical node already exists, use it.
void *IP = nullptr;
if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, VTs, Ops);
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N));
}
if (!RemoveNodeFromCSEMaps(N))
IP = nullptr;
// Start the morphing.
N->NodeType = Opc;
N->ValueList = VTs.VTs;
N->NumValues = VTs.NumVTs;
// Clear the operands list, updating used nodes to remove this from their
// use list. Keep track of any operands that become dead as a result.
SmallPtrSet<SDNode*, 16> DeadNodeSet;
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
SDUse &Use = *I++;
SDNode *Used = Use.getNode();
Use.set(SDValue());
if (Used->use_empty())
DeadNodeSet.insert(Used);
}
if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
// Initialize the memory references information.
MN->setMemRefs(nullptr, nullptr);
// If NumOps is larger than the # of operands we can have in a
// MachineSDNode, reallocate the operand list.
if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
if (MN->OperandsNeedDelete)
delete[] MN->OperandList;
if (NumOps > array_lengthof(MN->LocalOperands))
// We're creating a final node that will live unmorphed for the
// remainder of the current SelectionDAG iteration, so we can allocate
// the operands directly out of a pool with no recycling metadata.
MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
Ops.data(), NumOps);
else
MN->InitOperands(MN->LocalOperands, Ops.data(), NumOps);
MN->OperandsNeedDelete = false;
} else
MN->InitOperands(MN->OperandList, Ops.data(), NumOps);
} else {
// If NumOps is larger than the # of operands we currently have, reallocate
// the operand list.
if (NumOps > N->NumOperands) {
if (N->OperandsNeedDelete)
delete[] N->OperandList;
N->InitOperands(new SDUse[NumOps], Ops.data(), NumOps);
N->OperandsNeedDelete = true;
} else
N->InitOperands(N->OperandList, Ops.data(), NumOps);
}
// Delete any nodes that are still dead after adding the uses for the
// new operands.
if (!DeadNodeSet.empty()) {
SmallVector<SDNode *, 16> DeadNodes;
for (SDNode *N : DeadNodeSet)
if (N->use_empty())
DeadNodes.push_back(N);
RemoveDeadNodes(DeadNodes);
}
if (IP)
CSEMap.InsertNode(N, IP); // Memoize the new node.
return N;
}
/// getMachineNode - These are used for target selectors to create a new node
/// with specified return type(s), MachineInstr opcode, and operands.
///
/// Note that getMachineNode returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT) {
SDVTList VTs = getVTList(VT);
return getMachineNode(Opcode, dl, VTs, None);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT, SDValue Op1) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT,
SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT,
SDValue Op1, SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2, Op3 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT);
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2) {
SDVTList VTs = getVTList(VT1, VT2);
return getMachineNode(Opcode, dl, VTs, None);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
EVT VT1, EVT VT2, SDValue Op1) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
EVT VT1, EVT VT2, SDValue Op1,
SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2, Op3 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
EVT VT1, EVT VT2,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2);
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
EVT VT1, EVT VT2, EVT VT3,
SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
SDValue Ops[] = { Op1, Op2 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
EVT VT1, EVT VT2, EVT VT3,
SDValue Op1, SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
SDValue Ops[] = { Op1, Op2, Op3 };
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
EVT VT1, EVT VT2, EVT VT3,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1,
EVT VT2, EVT VT3, EVT VT4,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
ArrayRef<EVT> ResultTys,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(ResultTys);
return getMachineNode(Opcode, dl, VTs, Ops);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc DL, SDVTList VTs,
ArrayRef<SDValue> OpsArray) {
bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
MachineSDNode *N;
void *IP = nullptr;
const SDValue *Ops = OpsArray.data();
unsigned NumOps = OpsArray.size();
if (DoCSE) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ~Opcode, VTs, OpsArray);
IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL));
}
}
// Allocate a new MachineSDNode.
N = new (NodeAllocator) MachineSDNode(~Opcode, DL.getIROrder(),
DL.getDebugLoc(), VTs);
// Initialize the operands list.
if (NumOps > array_lengthof(N->LocalOperands))
// We're creating a final node that will live unmorphed for the
// remainder of the current SelectionDAG iteration, so we can allocate
// the operands directly out of a pool with no recycling metadata.
N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
Ops, NumOps);
else
N->InitOperands(N->LocalOperands, Ops, NumOps);
N->OperandsNeedDelete = false;
if (DoCSE)
CSEMap.InsertNode(N, IP);
InsertNode(N);
return N;
}
/// getTargetExtractSubreg - A convenience function for creating
/// TargetOpcode::EXTRACT_SUBREG nodes.
SDValue
SelectionDAG::getTargetExtractSubreg(int SRIdx, SDLoc DL, EVT VT,
SDValue Operand) {
SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
VT, Operand, SRIdxVal);
return SDValue(Subreg, 0);
}
/// getTargetInsertSubreg - A convenience function for creating
/// TargetOpcode::INSERT_SUBREG nodes.
SDValue
SelectionDAG::getTargetInsertSubreg(int SRIdx, SDLoc DL, EVT VT,
SDValue Operand, SDValue Subreg) {
SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
VT, Operand, Subreg, SRIdxVal);
return SDValue(Result, 0);
}
/// getNodeIfExists - Get the specified node if it's already available, or
/// else return NULL.
SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
ArrayRef<SDValue> Ops, bool nuw, bool nsw,
bool exact) {
if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops);
if (isBinOpWithFlags(Opcode))
AddBinaryNodeIDCustom(ID, nuw, nsw, exact);
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return E;
}
return nullptr;
}
/// getDbgValue - Creates a SDDbgValue node.
///
/// SDNode
SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N,
unsigned R, bool IsIndirect, uint64_t Off,
DebugLoc DL, unsigned O) {
return new (Allocator) SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O);
}
/// Constant
SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr,
const Value *C, uint64_t Off,
DebugLoc DL, unsigned O) {
return new (Allocator) SDDbgValue(Var, Expr, C, Off, DL, O);
}
/// FrameIndex
SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr,
unsigned FI, uint64_t Off,
DebugLoc DL, unsigned O) {
return new (Allocator) SDDbgValue(Var, Expr, FI, Off, DL, O);
}
namespace {
/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
/// pointed to by a use iterator is deleted, increment the use iterator
/// so that it doesn't dangle.
///
class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
SDNode::use_iterator &UI;
SDNode::use_iterator &UE;
void NodeDeleted(SDNode *N, SDNode *E) override {
// Increment the iterator as needed.
while (UI != UE && N == *UI)
++UI;
}
public:
RAUWUpdateListener(SelectionDAG &d,
SDNode::use_iterator &ui,
SDNode::use_iterator &ue)
: SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
};
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes From has a single result value.
///
void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
SDNode *From = FromN.getNode();
assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
"Cannot replace with this method!");
assert(From != To.getNode() && "Cannot replace uses of with self");
// Iterate over all the existing uses of From. New uses will be added
// to the beginning of the use list, which we avoid visiting.
// This specifically avoids visiting uses of From that arise while the
// replacement is happening, because any such uses would be the result
// of CSE: If an existing node looks like From after one of its operands
// is replaced by To, we don't want to replace of all its users with To
// too. See PR3018 for more info.
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(User);
// A user can appear in a use list multiple times, and when this
// happens the uses are usually next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
SDUse &Use = UI.getUse();
++UI;
Use.set(To);
} while (UI != UE && *UI == User);
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
// If we just RAUW'd the root, take note.
if (FromN == getRoot())
setRoot(To);
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes that for each value of From, there is a
/// corresponding value in To in the same position with the same type.
///
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
#ifndef NDEBUG
for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
assert((!From->hasAnyUseOfValue(i) ||
From->getValueType(i) == To->getValueType(i)) &&
"Cannot use this version of ReplaceAllUsesWith!");
#endif
// Handle the trivial case.
if (From == To)
return;
// Iterate over just the existing users of From. See the comments in
// the ReplaceAllUsesWith above.
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(User);
// A user can appear in a use list multiple times, and when this
// happens the uses are usually next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
SDUse &Use = UI.getUse();
++UI;
Use.setNode(To);
} while (UI != UE && *UI == User);
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
// If we just RAUW'd the root, take note.
if (From == getRoot().getNode())
setRoot(SDValue(To, getRoot().getResNo()));
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version can replace From with any result values. To must match the
/// number and types of values returned by From.
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
if (From->getNumValues() == 1) // Handle the simple case efficiently.
return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
// Iterate over just the existing users of From. See the comments in
// the ReplaceAllUsesWith above.
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(User);
// A user can appear in a use list multiple times, and when this
// happens the uses are usually next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
SDUse &Use = UI.getUse();
const SDValue &ToOp = To[Use.getResNo()];
++UI;
Use.set(ToOp);
} while (UI != UE && *UI == User);
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
// If we just RAUW'd the root, take note.
if (From == getRoot().getNode())
setRoot(SDValue(To[getRoot().getResNo()]));
}
/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.getNode() alone. The Deleted
/// vector is handled the same way as for ReplaceAllUsesWith.
void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
// Handle the really simple, really trivial case efficiently.
if (From == To) return;
// Handle the simple, trivial, case efficiently.
if (From.getNode()->getNumValues() == 1) {
ReplaceAllUsesWith(From, To);
return;
}
// Iterate over just the existing users of From. See the comments in
// the ReplaceAllUsesWith above.
SDNode::use_iterator UI = From.getNode()->use_begin(),
UE = From.getNode()->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
bool UserRemovedFromCSEMaps = false;
// A user can appear in a use list multiple times, and when this
// happens the uses are usually next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
SDUse &Use = UI.getUse();
// Skip uses of different values from the same node.
if (Use.getResNo() != From.getResNo()) {
++UI;
continue;
}
// If this node hasn't been modified yet, it's still in the CSE maps,
// so remove its old self from the CSE maps.
if (!UserRemovedFromCSEMaps) {
RemoveNodeFromCSEMaps(User);
UserRemovedFromCSEMaps = true;
}
++UI;
Use.set(To);
} while (UI != UE && *UI == User);
// We are iterating over all uses of the From node, so if a use
// doesn't use the specific value, no changes are made.
if (!UserRemovedFromCSEMaps)
continue;
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
// If we just RAUW'd the root, take note.
if (From == getRoot())
setRoot(To);
}
namespace {
/// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
/// to record information about a use.
struct UseMemo {
SDNode *User;
unsigned Index;
SDUse *Use;
};
/// operator< - Sort Memos by User.
bool operator<(const UseMemo &L, const UseMemo &R) {
return (intptr_t)L.User < (intptr_t)R.User;
}
}
/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.getNode() alone. The same value
/// may appear in both the From and To list. The Deleted vector is
/// handled the same way as for ReplaceAllUsesWith.
void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
const SDValue *To,
unsigned Num){
// Handle the simple, trivial case efficiently.
if (Num == 1)
return ReplaceAllUsesOfValueWith(*From, *To);
// Read up all the uses and make records of them. This helps
// processing new uses that are introduced during the
// replacement process.
SmallVector<UseMemo, 4> Uses;
for (unsigned i = 0; i != Num; ++i) {
unsigned FromResNo = From[i].getResNo();
SDNode *FromNode = From[i].getNode();
for (SDNode::use_iterator UI = FromNode->use_begin(),
E = FromNode->use_end(); UI != E; ++UI) {
SDUse &Use = UI.getUse();
if (Use.getResNo() == FromResNo) {
UseMemo Memo = { *UI, i, &Use };
Uses.push_back(Memo);
}
}
}
// Sort the uses, so that all the uses from a given User are together.
std::sort(Uses.begin(), Uses.end());
for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
UseIndex != UseIndexEnd; ) {
// We know that this user uses some value of From. If it is the right
// value, update it.
SDNode *User = Uses[UseIndex].User;
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(User);
// The Uses array is sorted, so all the uses for a given User
// are next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
unsigned i = Uses[UseIndex].Index;
SDUse &Use = *Uses[UseIndex].Use;
++UseIndex;
Use.set(To[i]);
} while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
}
/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
/// based on their topological order. It returns the maximum id and a vector
/// of the SDNodes* in assigned order by reference.
unsigned SelectionDAG::AssignTopologicalOrder() {
unsigned DAGSize = 0;
// SortedPos tracks the progress of the algorithm. Nodes before it are
// sorted, nodes after it are unsorted. When the algorithm completes
// it is at the end of the list.
allnodes_iterator SortedPos = allnodes_begin();
// Visit all the nodes. Move nodes with no operands to the front of
// the list immediately. Annotate nodes that do have operands with their
// operand count. Before we do this, the Node Id fields of the nodes
// may contain arbitrary values. After, the Node Id fields for nodes
// before SortedPos will contain the topological sort index, and the
// Node Id fields for nodes At SortedPos and after will contain the
// count of outstanding operands.
for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
SDNode *N = I++;
checkForCycles(N, this);
unsigned Degree = N->getNumOperands();
if (Degree == 0) {
// A node with no uses, add it to the result array immediately.
N->setNodeId(DAGSize++);
allnodes_iterator Q = N;
if (Q != SortedPos)
SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
assert(SortedPos != AllNodes.end() && "Overran node list");
++SortedPos;
} else {
// Temporarily use the Node Id as scratch space for the degree count.
N->setNodeId(Degree);
}
}
// Visit all the nodes. As we iterate, move nodes into sorted order,
// such that by the time the end is reached all nodes will be sorted.
for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
SDNode *N = I;
checkForCycles(N, this);
// N is in sorted position, so all its uses have one less operand
// that needs to be sorted.
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
UI != UE; ++UI) {
SDNode *P = *UI;
unsigned Degree = P->getNodeId();
assert(Degree != 0 && "Invalid node degree");
--Degree;
if (Degree == 0) {
// All of P's operands are sorted, so P may sorted now.
P->setNodeId(DAGSize++);
if (P != SortedPos)
SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
assert(SortedPos != AllNodes.end() && "Overran node list");
++SortedPos;
} else {
// Update P's outstanding operand count.
P->setNodeId(Degree);
}
}
if (I == SortedPos) {
#ifndef NDEBUG
SDNode *S = ++I;
dbgs() << "Overran sorted position:\n";
S->dumprFull(this); dbgs() << "\n";
dbgs() << "Checking if this is due to cycles\n";
checkForCycles(this, true);
#endif
llvm_unreachable(nullptr);
}
}
assert(SortedPos == AllNodes.end() &&
"Topological sort incomplete!");
assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
"First node in topological sort is not the entry token!");
assert(AllNodes.front().getNodeId() == 0 &&
"First node in topological sort has non-zero id!");
assert(AllNodes.front().getNumOperands() == 0 &&
"First node in topological sort has operands!");
assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
"Last node in topologic sort has unexpected id!");
assert(AllNodes.back().use_empty() &&
"Last node in topologic sort has users!");
assert(DAGSize == allnodes_size() && "Node count mismatch!");
return DAGSize;
}
/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
/// value is produced by SD.
void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
if (SD) {
assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
SD->setHasDebugValue(true);
}
DbgInfo->add(DB, SD, isParameter);
}
/// TransferDbgValues - Transfer SDDbgValues.
void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
if (From == To || !From.getNode()->getHasDebugValue())
return;
SDNode *FromNode = From.getNode();
SDNode *ToNode = To.getNode();
ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
SmallVector<SDDbgValue *, 2> ClonedDVs;
for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
I != E; ++I) {
SDDbgValue *Dbg = *I;
if (Dbg->getKind() == SDDbgValue::SDNODE) {
SDDbgValue *Clone =
getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode,
To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(),
Dbg->getDebugLoc(), Dbg->getOrder());
ClonedDVs.push_back(Clone);
}
}
for (SmallVectorImpl<SDDbgValue *>::iterator I = ClonedDVs.begin(),
E = ClonedDVs.end(); I != E; ++I)
AddDbgValue(*I, ToNode, false);
}
//===----------------------------------------------------------------------===//
// SDNode Class
//===----------------------------------------------------------------------===//
HandleSDNode::~HandleSDNode() {
DropOperands();
}
GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
DebugLoc DL, const GlobalValue *GA,
EVT VT, int64_t o, unsigned char TF)
: SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
TheGlobal = GA;
}
AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, DebugLoc dl, EVT VT,
SDValue X, unsigned SrcAS,
unsigned DestAS)
: UnarySDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT), X),
SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
EVT memvt, MachineMemOperand *mmo)
: SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
MMO->isNonTemporal(), MMO->isInvariant());
assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
assert(isNonTemporal() == MMO->isNonTemporal() &&
"Non-temporal encoding error!");
// We check here that the size of the memory operand fits within the size of
// the MMO. This is because the MMO might indicate only a possible address
// range instead of specifying the affected memory addresses precisely.
assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
}
MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
ArrayRef<SDValue> Ops, EVT memvt, MachineMemOperand *mmo)
: SDNode(Opc, Order, dl, VTs, Ops),
MemoryVT(memvt), MMO(mmo) {
SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
MMO->isNonTemporal(), MMO->isInvariant());
assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
}
/// Profile - Gather unique data for the node.
///
void SDNode::Profile(FoldingSetNodeID &ID) const {
AddNodeIDNode(ID, this);
}
namespace {
struct EVTArray {
std::vector<EVT> VTs;
EVTArray() {
VTs.reserve(MVT::LAST_VALUETYPE);
for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
VTs.push_back(MVT((MVT::SimpleValueType)i));
}
};
}
static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
static ManagedStatic<EVTArray> SimpleVTArray;
static ManagedStatic<sys::SmartMutex<true> > VTMutex;
/// getValueTypeList - Return a pointer to the specified value type.
///
const EVT *SDNode::getValueTypeList(EVT VT) {
if (VT.isExtended()) {
sys::SmartScopedLock<true> Lock(*VTMutex);
return &(*EVTs->insert(VT).first);
} else {
assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
"Value type out of range!");
return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
}
}
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value. This method ignores uses of other values defined by this
/// operation.
bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
assert(Value < getNumValues() && "Bad value!");
// TODO: Only iterate over uses of a given value of the node
for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
if (UI.getUse().getResNo() == Value) {
if (NUses == 0)
return false;
--NUses;
}
}
// Found exactly the right number of uses?
return NUses == 0;
}
/// hasAnyUseOfValue - Return true if there are any use of the indicated
/// value. This method ignores uses of other values defined by this operation.
bool SDNode::hasAnyUseOfValue(unsigned Value) const {
assert(Value < getNumValues() && "Bad value!");
for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
if (UI.getUse().getResNo() == Value)
return true;
return false;
}
/// isOnlyUserOf - Return true if this node is the only use of N.
///
bool SDNode::isOnlyUserOf(SDNode *N) const {
bool Seen = false;
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
SDNode *User = *I;
if (User == this)
Seen = true;
else
return false;
}
return Seen;
}
/// isOperand - Return true if this node is an operand of N.
///
bool SDValue::isOperandOf(SDNode *N) const {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
if (*this == N->getOperand(i))
return true;
return false;
}
bool SDNode::isOperandOf(SDNode *N) const {
for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
if (this == N->OperandList[i].getNode())
return true;
return false;
}
/// reachesChainWithoutSideEffects - Return true if this operand (which must
/// be a chain) reaches the specified operand without crossing any
/// side-effecting instructions on any chain path. In practice, this looks
/// through token factors and non-volatile loads. In order to remain efficient,
/// this only looks a couple of nodes in, it does not do an exhaustive search.
bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
unsigned Depth) const {
if (*this == Dest) return true;
// Don't search too deeply, we just want to be able to see through
// TokenFactor's etc.
if (Depth == 0) return false;
// If this is a token factor, all inputs to the TF happen in parallel. If any
// of the operands of the TF does not reach dest, then we cannot do the xform.
if (getOpcode() == ISD::TokenFactor) {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
return false;
return true;
}
// Loads don't have side effects, look through them.
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
if (!Ld->isVolatile())
return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
}
return false;
}
/// hasPredecessor - Return true if N is a predecessor of this node.
/// N is either an operand of this node, or can be reached by recursively
/// traversing up the operands.
/// NOTE: This is an expensive method. Use it carefully.
bool SDNode::hasPredecessor(const SDNode *N) const {
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
return hasPredecessorHelper(N, Visited, Worklist);
}
bool
SDNode::hasPredecessorHelper(const SDNode *N,
SmallPtrSetImpl<const SDNode *> &Visited,
SmallVectorImpl<const SDNode *> &Worklist) const {
if (Visited.empty()) {
Worklist.push_back(this);
} else {
// Take a look in the visited set. If we've already encountered this node
// we needn't search further.
if (Visited.count(N))
return true;
}
// Haven't visited N yet. Continue the search.
while (!Worklist.empty()) {
const SDNode *M = Worklist.pop_back_val();
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
SDNode *Op = M->getOperand(i).getNode();
if (Visited.insert(Op).second)
Worklist.push_back(Op);
if (Op == N)
return true;
}
}
return false;
}
uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
assert(Num < NumOperands && "Invalid child # of SDNode!");
return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
}
SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
assert(N->getNumValues() == 1 &&
"Can't unroll a vector with multiple results!");
EVT VT = N->getValueType(0);
unsigned NE = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
SDLoc dl(N);
SmallVector<SDValue, 8> Scalars;
SmallVector<SDValue, 4> Operands(N->getNumOperands());
// If ResNE is 0, fully unroll the vector op.
if (ResNE == 0)
ResNE = NE;
else if (NE > ResNE)
NE = ResNE;
unsigned i;
for (i= 0; i != NE; ++i) {
for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
SDValue Operand = N->getOperand(j);
EVT OperandVT = Operand.getValueType();
if (OperandVT.isVector()) {
// A vector operand; extract a single element.
EVT OperandEltVT = OperandVT.getVectorElementType();
Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
OperandEltVT,
Operand,
getConstant(i, TLI->getVectorIdxTy()));
} else {
// A scalar operand; just use it as is.
Operands[j] = Operand;
}
}
switch (N->getOpcode()) {
default:
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands));
break;
case ISD::VSELECT:
Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR:
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
getShiftAmountOperand(Operands[0].getValueType(),
Operands[1])));
break;
case ISD::SIGN_EXTEND_INREG:
case ISD::FP_ROUND_INREG: {
EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
Operands[0],
getValueType(ExtVT)));
}
}
}
for (; i < ResNE; ++i)
Scalars.push_back(getUNDEF(EltVT));
return getNode(ISD::BUILD_VECTOR, dl,
EVT::getVectorVT(*getContext(), EltVT, ResNE), Scalars);
}
/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
/// location that is 'Dist' units away from the location that the 'Base' load
/// is loading from.
bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
unsigned Bytes, int Dist) const {
if (LD->getChain() != Base->getChain())
return false;
EVT VT = LD->getValueType(0);
if (VT.getSizeInBits() / 8 != Bytes)
return false;
SDValue Loc = LD->getOperand(1);
SDValue BaseLoc = Base->getOperand(1);
if (Loc.getOpcode() == ISD::FrameIndex) {
if (BaseLoc.getOpcode() != ISD::FrameIndex)
return false;
const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
int FS = MFI->getObjectSize(FI);
int BFS = MFI->getObjectSize(BFI);
if (FS != BFS || FS != (int)Bytes) return false;
return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
}
// Handle X + C.
if (isBaseWithConstantOffset(Loc)) {
int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
if (Loc.getOperand(0) == BaseLoc) {
// If the base location is a simple address with no offset itself, then
// the second load's first add operand should be the base address.
if (LocOffset == Dist * (int)Bytes)
return true;
} else if (isBaseWithConstantOffset(BaseLoc)) {
// The base location itself has an offset, so subtract that value from the
// second load's offset before comparing to distance * size.
int64_t BOffset =
cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue();
if (Loc.getOperand(0) == BaseLoc.getOperand(0)) {
if ((LocOffset - BOffset) == Dist * (int)Bytes)
return true;
}
}
}
const GlobalValue *GV1 = nullptr;
const GlobalValue *GV2 = nullptr;
int64_t Offset1 = 0;
int64_t Offset2 = 0;
bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1);
bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
if (isGA1 && isGA2 && GV1 == GV2)
return Offset1 == (Offset2 + Dist*Bytes);
return false;
}
/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
/// it cannot be inferred.
unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
// If this is a GlobalAddress + cst, return the alignment.
const GlobalValue *GV;
int64_t GVOffset = 0;
if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
unsigned PtrWidth = TLI->getPointerTypeSizeInBits(GV->getType());
APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
llvm::computeKnownBits(const_cast<GlobalValue*>(GV), KnownZero, KnownOne,
TLI->getDataLayout());
unsigned AlignBits = KnownZero.countTrailingOnes();
unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
if (Align)
return MinAlign(Align, GVOffset);
}
// If this is a direct reference to a stack slot, use information about the
// stack slot's alignment.
int FrameIdx = 1 << 31;
int64_t FrameOffset = 0;
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
FrameIdx = FI->getIndex();
} else if (isBaseWithConstantOffset(Ptr) &&
isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
// Handle FI+Cst
FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
FrameOffset = Ptr.getConstantOperandVal(1);
}
if (FrameIdx != (1 << 31)) {
const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
FrameOffset);
return FIInfoAlign;
}
return 0;
}
/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
/// which is split (or expanded) into two not necessarily identical pieces.
std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
// Currently all types are split in half.
EVT LoVT, HiVT;
if (!VT.isVector()) {
LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
} else {
unsigned NumElements = VT.getVectorNumElements();
assert(!(NumElements & 1) && "Splitting vector, but not in half!");
LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
NumElements/2);
}
return std::make_pair(LoVT, HiVT);
}
/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
/// low/high part.
std::pair<SDValue, SDValue>
SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
const EVT &HiVT) {
assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
N.getValueType().getVectorNumElements() &&
"More vector elements requested than available!");
SDValue Lo, Hi;
Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
getConstant(0, TLI->getVectorIdxTy()));
Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
getConstant(LoVT.getVectorNumElements(), TLI->getVectorIdxTy()));
return std::make_pair(Lo, Hi);
}
void SelectionDAG::ExtractVectorElements(SDValue Op,
SmallVectorImpl<SDValue> &Args,
unsigned Start, unsigned Count) {
EVT VT = Op.getValueType();
if (Count == 0)
Count = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
EVT IdxTy = TLI->getVectorIdxTy();
SDLoc SL(Op);
for (unsigned i = Start, e = Start + Count; i != e; ++i) {
Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
Op, getConstant(i, IdxTy)));
}
}
// getAddressSpace - Return the address space this GlobalAddress belongs to.
unsigned GlobalAddressSDNode::getAddressSpace() const {
return getGlobal()->getType()->getAddressSpace();
}
Type *ConstantPoolSDNode::getType() const {
if (isMachineConstantPoolEntry())
return Val.MachineCPVal->getType();
return Val.ConstVal->getType();
}
bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
APInt &SplatUndef,
unsigned &SplatBitSize,
bool &HasAnyUndefs,
unsigned MinSplatBits,
bool isBigEndian) const {
EVT VT = getValueType(0);
assert(VT.isVector() && "Expected a vector type");
unsigned sz = VT.getSizeInBits();
if (MinSplatBits > sz)
return false;
SplatValue = APInt(sz, 0);
SplatUndef = APInt(sz, 0);
// Get the bits. Bits with undefined values (when the corresponding element
// of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
// in SplatValue. If any of the values are not constant, give up and return
// false.
unsigned int nOps = getNumOperands();
assert(nOps > 0 && "isConstantSplat has 0-size build vector");
unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
for (unsigned j = 0; j < nOps; ++j) {
unsigned i = isBigEndian ? nOps-1-j : j;
SDValue OpVal = getOperand(i);
unsigned BitPos = j * EltBitSize;
if (OpVal.getOpcode() == ISD::UNDEF)
SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
zextOrTrunc(sz) << BitPos;
else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
else
return false;
}
// The build_vector is all constants or undefs. Find the smallest element
// size that splats the vector.
HasAnyUndefs = (SplatUndef != 0);
while (sz > 8) {
unsigned HalfSize = sz / 2;
APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
APInt LowValue = SplatValue.trunc(HalfSize);
APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
APInt LowUndef = SplatUndef.trunc(HalfSize);
// If the two halves do not match (ignoring undef bits), stop here.
if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
MinSplatBits > HalfSize)
break;
SplatValue = HighValue | LowValue;
SplatUndef = HighUndef & LowUndef;
sz = HalfSize;
}
SplatBitSize = sz;
return true;
}
SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
if (UndefElements) {
UndefElements->clear();
UndefElements->resize(getNumOperands());
}
SDValue Splatted;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
SDValue Op = getOperand(i);
if (Op.getOpcode() == ISD::UNDEF) {
if (UndefElements)
(*UndefElements)[i] = true;
} else if (!Splatted) {
Splatted = Op;
} else if (Splatted != Op) {
return SDValue();
}
}
if (!Splatted) {
assert(getOperand(0).getOpcode() == ISD::UNDEF &&
"Can only have a splat without a constant for all undefs.");
return getOperand(0);
}
return Splatted;
}
ConstantSDNode *
BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
return dyn_cast_or_null<ConstantSDNode>(
getSplatValue(UndefElements).getNode());
}
ConstantFPSDNode *
BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
return dyn_cast_or_null<ConstantFPSDNode>(
getSplatValue(UndefElements).getNode());
}
bool BuildVectorSDNode::isConstant() const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
unsigned Opc = getOperand(i).getOpcode();
if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
return false;
}
return true;
}
bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
// Find the first non-undef value in the shuffle mask.
unsigned i, e;
for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
/* search */;
assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
// Make sure all remaining elements are either undef or the same as the first
// non-undef value.
for (int Idx = Mask[i]; i != e; ++i)
if (Mask[i] >= 0 && Mask[i] != Idx)
return false;
return true;
}
#ifndef NDEBUG
static void checkForCyclesHelper(const SDNode *N,
SmallPtrSetImpl<const SDNode*> &Visited,
SmallPtrSetImpl<const SDNode*> &Checked,
const llvm::SelectionDAG *DAG) {
// If this node has already been checked, don't check it again.
if (Checked.count(N))
return;
// If a node has already been visited on this depth-first walk, reject it as
// a cycle.
if (!Visited.insert(N).second) {
errs() << "Detected cycle in SelectionDAG\n";
dbgs() << "Offending node:\n";
N->dumprFull(DAG); dbgs() << "\n";
abort();
}
for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked, DAG);
Checked.insert(N);
Visited.erase(N);
}
#endif
void llvm::checkForCycles(const llvm::SDNode *N,
const llvm::SelectionDAG *DAG,
bool force) {
#ifndef NDEBUG
bool check = force;
#ifdef XDEBUG
check = true;
#endif // XDEBUG
if (check) {
assert(N && "Checking nonexistent SDNode");
SmallPtrSet<const SDNode*, 32> visited;
SmallPtrSet<const SDNode*, 32> checked;
checkForCyclesHelper(N, visited, checked, DAG);
}
#endif // !NDEBUG
}
void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
checkForCycles(DAG->getRoot().getNode(), DAG, force);
}