llvm-6502/include/llvm/Transforms/Utils/SSAUpdater.h
Chandler Carruth 064a68682d Update comments for SSAUpdater to use the modern doxygen comment
standards for LLVM. Remove duplicated comments on the interface from the
implementation file (implementation comments are left there of course).
Also clean up, re-word, and fix a few typos and errors in the commenst
spotted along the way.

This is in preparation for changes to these files and to keep the
uninteresting tidying in a separate commit.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187335 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-28 22:00:33 +00:00

178 lines
6.1 KiB
C++

//===-- SSAUpdater.h - Unstructured SSA Update Tool -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SSAUpdater class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATER_H
#define LLVM_TRANSFORMS_UTILS_SSAUPDATER_H
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Compiler.h"
namespace llvm {
class BasicBlock;
class Instruction;
class LoadInst;
template<typename T> class SmallVectorImpl;
template<typename T> class SSAUpdaterTraits;
class PHINode;
class Type;
class Use;
class Value;
/// \brief Helper class for SSA formation on a set of values defined in
/// multiple blocks.
///
/// This is used when code duplication or another unstructured
/// transformation wants to rewrite a set of uses of one value with uses of a
/// set of values.
class SSAUpdater {
friend class SSAUpdaterTraits<SSAUpdater>;
private:
/// This keeps track of which value to use on a per-block basis. When we
/// insert PHI nodes, we keep track of them here.
//typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
void *AV;
/// ProtoType holds the type of the values being rewritten.
Type *ProtoType;
/// PHI nodes are given a name based on ProtoName.
std::string ProtoName;
/// If this is non-null, the SSAUpdater adds all PHI nodes that it creates to
/// the vector.
SmallVectorImpl<PHINode*> *InsertedPHIs;
public:
/// If InsertedPHIs is specified, it will be filled
/// in with all PHI Nodes created by rewriting.
explicit SSAUpdater(SmallVectorImpl<PHINode*> *InsertedPHIs = 0);
~SSAUpdater();
/// \brief Reset this object to get ready for a new set of SSA updates with
/// type 'Ty'.
///
/// PHI nodes get a name based on 'Name'.
void Initialize(Type *Ty, StringRef Name);
/// \brief Indicate that a rewritten value is available in the specified block
/// with the specified value.
void AddAvailableValue(BasicBlock *BB, Value *V);
/// \brief Return true if the SSAUpdater already has a value for the specified
/// block.
bool HasValueForBlock(BasicBlock *BB) const;
/// \brief Construct SSA form, materializing a value that is live at the end
/// of the specified block.
Value *GetValueAtEndOfBlock(BasicBlock *BB);
/// \brief Construct SSA form, materializing a value that is live in the
/// middle of the specified block.
///
/// \c GetValueInMiddleOfBlock is the same as \c GetValueAtEndOfBlock except
/// in one important case: if there is a definition of the rewritten value
/// after the 'use' in BB. Consider code like this:
///
/// \code
/// X1 = ...
/// SomeBB:
/// use(X)
/// X2 = ...
/// br Cond, SomeBB, OutBB
/// \endcode
///
/// In this case, there are two values (X1 and X2) added to the AvailableVals
/// set by the client of the rewriter, and those values are both live out of
/// their respective blocks. However, the use of X happens in the *middle* of
/// a block. Because of this, we need to insert a new PHI node in SomeBB to
/// merge the appropriate values, and this value isn't live out of the block.
Value *GetValueInMiddleOfBlock(BasicBlock *BB);
/// \brief Rewrite a use of the symbolic value.
///
/// This handles PHI nodes, which use their value in the corresponding
/// predecessor. Note that this will not work if the use is supposed to be
/// rewritten to a value defined in the same block as the use, but above it.
/// Any 'AddAvailableValue's added for the use's block will be considered to
/// be below it.
void RewriteUse(Use &U);
/// \brief Rewrite a use like \c RewriteUse but handling in-block definitions.
///
/// This version of the method can rewrite uses in the same block as
/// a definition, because it assumes that all uses of a value are below any
/// inserted values.
void RewriteUseAfterInsertions(Use &U);
private:
Value *GetValueAtEndOfBlockInternal(BasicBlock *BB);
void operator=(const SSAUpdater&) LLVM_DELETED_FUNCTION;
SSAUpdater(const SSAUpdater&) LLVM_DELETED_FUNCTION;
};
/// \brief Helper class for promoting a collection of loads and stores into SSA
/// Form using the SSAUpdater.
///
/// This handles complexities that SSAUpdater doesn't, such as multiple loads
/// and stores in one block.
///
/// Clients of this class are expected to subclass this and implement the
/// virtual methods.
class LoadAndStorePromoter {
protected:
SSAUpdater &SSA;
public:
LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
SSAUpdater &S, StringRef Name = StringRef());
virtual ~LoadAndStorePromoter() {}
/// \brief This does the promotion.
///
/// Insts is a list of loads and stores to promote, and Name is the basename
/// for the PHIs to insert. After this is complete, the loads and stores are
/// removed from the code.
void run(const SmallVectorImpl<Instruction*> &Insts) const;
/// \brief Return true if the specified instruction is in the Inst list.
///
/// The Insts list is the one passed into the constructor. Clients should
/// implement this with a more efficient version if possible.
virtual bool isInstInList(Instruction *I,
const SmallVectorImpl<Instruction*> &Insts) const;
/// \brief This hook is invoked after all the stores are found and inserted as
/// available values.
virtual void doExtraRewritesBeforeFinalDeletion() const {
}
/// \brief Clients can choose to implement this to get notified right before
/// a load is RAUW'd another value.
virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const {
}
/// \brief Called before each instruction is deleted.
virtual void instructionDeleted(Instruction *I) const {
}
/// \brief Called to update debug info associated with the instruction.
virtual void updateDebugInfo(Instruction *I) const {
}
};
} // End llvm namespace
#endif