mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
af1d8ca44a
changes before doing phi lowering for switches. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102809 91177308-0d34-0410-b5e6-96231b3b80d8
739 lines
26 KiB
C++
739 lines
26 KiB
C++
//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements a top-down list scheduler, using standard algorithms.
|
|
// The basic approach uses a priority queue of available nodes to schedule.
|
|
// One at a time, nodes are taken from the priority queue (thus in priority
|
|
// order), checked for legality to schedule, and emitted if legal.
|
|
//
|
|
// Nodes may not be legal to schedule either due to structural hazards (e.g.
|
|
// pipeline or resource constraints) or because an input to the instruction has
|
|
// not completed execution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "post-RA-sched"
|
|
#include "AntiDepBreaker.h"
|
|
#include "AggressiveAntiDepBreaker.h"
|
|
#include "CriticalAntiDepBreaker.h"
|
|
#include "ExactHazardRecognizer.h"
|
|
#include "SimpleHazardRecognizer.h"
|
|
#include "ScheduleDAGInstrs.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/LatencyPriorityQueue.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtarget.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumNoops, "Number of noops inserted");
|
|
STATISTIC(NumStalls, "Number of pipeline stalls");
|
|
STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
|
|
|
|
// Post-RA scheduling is enabled with
|
|
// TargetSubtarget.enablePostRAScheduler(). This flag can be used to
|
|
// override the target.
|
|
static cl::opt<bool>
|
|
EnablePostRAScheduler("post-RA-scheduler",
|
|
cl::desc("Enable scheduling after register allocation"),
|
|
cl::init(false), cl::Hidden);
|
|
static cl::opt<std::string>
|
|
EnableAntiDepBreaking("break-anti-dependencies",
|
|
cl::desc("Break post-RA scheduling anti-dependencies: "
|
|
"\"critical\", \"all\", or \"none\""),
|
|
cl::init("none"), cl::Hidden);
|
|
static cl::opt<bool>
|
|
EnablePostRAHazardAvoidance("avoid-hazards",
|
|
cl::desc("Enable exact hazard avoidance"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
|
|
static cl::opt<int>
|
|
DebugDiv("postra-sched-debugdiv",
|
|
cl::desc("Debug control MBBs that are scheduled"),
|
|
cl::init(0), cl::Hidden);
|
|
static cl::opt<int>
|
|
DebugMod("postra-sched-debugmod",
|
|
cl::desc("Debug control MBBs that are scheduled"),
|
|
cl::init(0), cl::Hidden);
|
|
|
|
AntiDepBreaker::~AntiDepBreaker() { }
|
|
|
|
namespace {
|
|
class PostRAScheduler : public MachineFunctionPass {
|
|
AliasAnalysis *AA;
|
|
CodeGenOpt::Level OptLevel;
|
|
|
|
public:
|
|
static char ID;
|
|
PostRAScheduler(CodeGenOpt::Level ol) :
|
|
MachineFunctionPass(&ID), OptLevel(ol) {}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
const char *getPassName() const {
|
|
return "Post RA top-down list latency scheduler";
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &Fn);
|
|
};
|
|
char PostRAScheduler::ID = 0;
|
|
|
|
class SchedulePostRATDList : public ScheduleDAGInstrs {
|
|
/// AvailableQueue - The priority queue to use for the available SUnits.
|
|
///
|
|
LatencyPriorityQueue AvailableQueue;
|
|
|
|
/// PendingQueue - This contains all of the instructions whose operands have
|
|
/// been issued, but their results are not ready yet (due to the latency of
|
|
/// the operation). Once the operands becomes available, the instruction is
|
|
/// added to the AvailableQueue.
|
|
std::vector<SUnit*> PendingQueue;
|
|
|
|
/// Topo - A topological ordering for SUnits.
|
|
ScheduleDAGTopologicalSort Topo;
|
|
|
|
/// HazardRec - The hazard recognizer to use.
|
|
ScheduleHazardRecognizer *HazardRec;
|
|
|
|
/// AntiDepBreak - Anti-dependence breaking object, or NULL if none
|
|
AntiDepBreaker *AntiDepBreak;
|
|
|
|
/// AA - AliasAnalysis for making memory reference queries.
|
|
AliasAnalysis *AA;
|
|
|
|
/// KillIndices - The index of the most recent kill (proceding bottom-up),
|
|
/// or ~0u if the register is not live.
|
|
unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
|
|
|
|
public:
|
|
SchedulePostRATDList(MachineFunction &MF,
|
|
const MachineLoopInfo &MLI,
|
|
const MachineDominatorTree &MDT,
|
|
ScheduleHazardRecognizer *HR,
|
|
AntiDepBreaker *ADB,
|
|
AliasAnalysis *aa)
|
|
: ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
|
|
HazardRec(HR), AntiDepBreak(ADB), AA(aa) {}
|
|
|
|
~SchedulePostRATDList() {
|
|
}
|
|
|
|
/// StartBlock - Initialize register live-range state for scheduling in
|
|
/// this block.
|
|
///
|
|
void StartBlock(MachineBasicBlock *BB);
|
|
|
|
/// Schedule - Schedule the instruction range using list scheduling.
|
|
///
|
|
void Schedule();
|
|
|
|
/// Observe - Update liveness information to account for the current
|
|
/// instruction, which will not be scheduled.
|
|
///
|
|
void Observe(MachineInstr *MI, unsigned Count);
|
|
|
|
/// FinishBlock - Clean up register live-range state.
|
|
///
|
|
void FinishBlock();
|
|
|
|
/// FixupKills - Fix register kill flags that have been made
|
|
/// invalid due to scheduling
|
|
///
|
|
void FixupKills(MachineBasicBlock *MBB);
|
|
|
|
private:
|
|
void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
|
|
void ReleaseSuccessors(SUnit *SU);
|
|
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
|
void ListScheduleTopDown();
|
|
void StartBlockForKills(MachineBasicBlock *BB);
|
|
|
|
// ToggleKillFlag - Toggle a register operand kill flag. Other
|
|
// adjustments may be made to the instruction if necessary. Return
|
|
// true if the operand has been deleted, false if not.
|
|
bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
|
|
};
|
|
}
|
|
|
|
/// isSchedulingBoundary - Test if the given instruction should be
|
|
/// considered a scheduling boundary. This primarily includes labels
|
|
/// and terminators.
|
|
///
|
|
static bool isSchedulingBoundary(const MachineInstr *MI,
|
|
const MachineFunction &MF) {
|
|
// Terminators and labels can't be scheduled around.
|
|
if (MI->getDesc().isTerminator() || MI->isLabel())
|
|
return true;
|
|
|
|
// Don't attempt to schedule around any instruction that modifies
|
|
// a stack-oriented pointer, as it's unlikely to be profitable. This
|
|
// saves compile time, because it doesn't require every single
|
|
// stack slot reference to depend on the instruction that does the
|
|
// modification.
|
|
const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
|
|
if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
|
|
// Check for explicit enable/disable of post-ra scheduling.
|
|
TargetSubtarget::AntiDepBreakMode AntiDepMode = TargetSubtarget::ANTIDEP_NONE;
|
|
SmallVector<TargetRegisterClass*, 4> CriticalPathRCs;
|
|
if (EnablePostRAScheduler.getPosition() > 0) {
|
|
if (!EnablePostRAScheduler)
|
|
return false;
|
|
} else {
|
|
// Check that post-RA scheduling is enabled for this target.
|
|
const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
|
|
if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode, CriticalPathRCs))
|
|
return false;
|
|
}
|
|
|
|
// Check for antidep breaking override...
|
|
if (EnableAntiDepBreaking.getPosition() > 0) {
|
|
AntiDepMode = (EnableAntiDepBreaking == "all") ? TargetSubtarget::ANTIDEP_ALL :
|
|
(EnableAntiDepBreaking == "critical") ? TargetSubtarget::ANTIDEP_CRITICAL :
|
|
TargetSubtarget::ANTIDEP_NONE;
|
|
}
|
|
|
|
DEBUG(dbgs() << "PostRAScheduler\n");
|
|
|
|
const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
|
|
const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
|
|
const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData();
|
|
ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
|
|
(ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) :
|
|
(ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
|
|
AntiDepBreaker *ADB =
|
|
((AntiDepMode == TargetSubtarget::ANTIDEP_ALL) ?
|
|
(AntiDepBreaker *)new AggressiveAntiDepBreaker(Fn, CriticalPathRCs) :
|
|
((AntiDepMode == TargetSubtarget::ANTIDEP_CRITICAL) ?
|
|
(AntiDepBreaker *)new CriticalAntiDepBreaker(Fn) : NULL));
|
|
|
|
SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR, ADB, AA);
|
|
|
|
// Loop over all of the basic blocks
|
|
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
|
|
MBB != MBBe; ++MBB) {
|
|
#ifndef NDEBUG
|
|
// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
|
|
if (DebugDiv > 0) {
|
|
static int bbcnt = 0;
|
|
if (bbcnt++ % DebugDiv != DebugMod)
|
|
continue;
|
|
dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
|
|
":BB#" << MBB->getNumber() << " ***\n";
|
|
}
|
|
#endif
|
|
|
|
// Initialize register live-range state for scheduling in this block.
|
|
Scheduler.StartBlock(MBB);
|
|
|
|
// FIXME: Temporary workaround for <rdar://problem/7759363>: The post-RA
|
|
// scheduler has some sort of problem with DebugValue instructions that
|
|
// causes an assertion in LeaksContext.h to fail occasionally. Just
|
|
// remove all those instructions for now.
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
|
|
I != E; ) {
|
|
MachineInstr *MI = &*I++;
|
|
if (MI->isDebugValue())
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
// Schedule each sequence of instructions not interrupted by a label
|
|
// or anything else that effectively needs to shut down scheduling.
|
|
MachineBasicBlock::iterator Current = MBB->end();
|
|
unsigned Count = MBB->size(), CurrentCount = Count;
|
|
for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
|
|
MachineInstr *MI = prior(I);
|
|
if (isSchedulingBoundary(MI, Fn)) {
|
|
Scheduler.Run(MBB, I, Current, CurrentCount);
|
|
Scheduler.EmitSchedule();
|
|
Current = MI;
|
|
CurrentCount = Count - 1;
|
|
Scheduler.Observe(MI, CurrentCount);
|
|
}
|
|
I = MI;
|
|
--Count;
|
|
}
|
|
assert(Count == 0 && "Instruction count mismatch!");
|
|
assert((MBB->begin() == Current || CurrentCount != 0) &&
|
|
"Instruction count mismatch!");
|
|
Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
|
|
Scheduler.EmitSchedule();
|
|
|
|
// Clean up register live-range state.
|
|
Scheduler.FinishBlock();
|
|
|
|
// Update register kills
|
|
Scheduler.FixupKills(MBB);
|
|
}
|
|
|
|
delete HR;
|
|
delete ADB;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// StartBlock - Initialize register live-range state for scheduling in
|
|
/// this block.
|
|
///
|
|
void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
|
|
// Call the superclass.
|
|
ScheduleDAGInstrs::StartBlock(BB);
|
|
|
|
// Reset the hazard recognizer and anti-dep breaker.
|
|
HazardRec->Reset();
|
|
if (AntiDepBreak != NULL)
|
|
AntiDepBreak->StartBlock(BB);
|
|
}
|
|
|
|
/// Schedule - Schedule the instruction range using list scheduling.
|
|
///
|
|
void SchedulePostRATDList::Schedule() {
|
|
// Build the scheduling graph.
|
|
BuildSchedGraph(AA);
|
|
|
|
if (AntiDepBreak != NULL) {
|
|
unsigned Broken =
|
|
AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos,
|
|
InsertPosIndex);
|
|
|
|
if (Broken != 0) {
|
|
// We made changes. Update the dependency graph.
|
|
// Theoretically we could update the graph in place:
|
|
// When a live range is changed to use a different register, remove
|
|
// the def's anti-dependence *and* output-dependence edges due to
|
|
// that register, and add new anti-dependence and output-dependence
|
|
// edges based on the next live range of the register.
|
|
SUnits.clear();
|
|
Sequence.clear();
|
|
EntrySU = SUnit();
|
|
ExitSU = SUnit();
|
|
BuildSchedGraph(AA);
|
|
|
|
NumFixedAnti += Broken;
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "********** List Scheduling **********\n");
|
|
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
|
|
SUnits[su].dumpAll(this));
|
|
|
|
AvailableQueue.initNodes(SUnits);
|
|
ListScheduleTopDown();
|
|
AvailableQueue.releaseState();
|
|
}
|
|
|
|
/// Observe - Update liveness information to account for the current
|
|
/// instruction, which will not be scheduled.
|
|
///
|
|
void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
|
|
if (AntiDepBreak != NULL)
|
|
AntiDepBreak->Observe(MI, Count, InsertPosIndex);
|
|
}
|
|
|
|
/// FinishBlock - Clean up register live-range state.
|
|
///
|
|
void SchedulePostRATDList::FinishBlock() {
|
|
if (AntiDepBreak != NULL)
|
|
AntiDepBreak->FinishBlock();
|
|
|
|
// Call the superclass.
|
|
ScheduleDAGInstrs::FinishBlock();
|
|
}
|
|
|
|
/// StartBlockForKills - Initialize register live-range state for updating kills
|
|
///
|
|
void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
|
|
// Initialize the indices to indicate that no registers are live.
|
|
for (unsigned i = 0; i < TRI->getNumRegs(); ++i)
|
|
KillIndices[i] = ~0u;
|
|
|
|
// Determine the live-out physregs for this block.
|
|
if (!BB->empty() && BB->back().getDesc().isReturn()) {
|
|
// In a return block, examine the function live-out regs.
|
|
for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
|
|
E = MRI.liveout_end(); I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
KillIndices[Reg] = BB->size();
|
|
// Repeat, for all subregs.
|
|
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
|
|
*Subreg; ++Subreg) {
|
|
KillIndices[*Subreg] = BB->size();
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// In a non-return block, examine the live-in regs of all successors.
|
|
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
|
|
SE = BB->succ_end(); SI != SE; ++SI) {
|
|
for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
|
|
E = (*SI)->livein_end(); I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
KillIndices[Reg] = BB->size();
|
|
// Repeat, for all subregs.
|
|
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
|
|
*Subreg; ++Subreg) {
|
|
KillIndices[*Subreg] = BB->size();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
|
|
MachineOperand &MO) {
|
|
// Setting kill flag...
|
|
if (!MO.isKill()) {
|
|
MO.setIsKill(true);
|
|
return false;
|
|
}
|
|
|
|
// If MO itself is live, clear the kill flag...
|
|
if (KillIndices[MO.getReg()] != ~0u) {
|
|
MO.setIsKill(false);
|
|
return false;
|
|
}
|
|
|
|
// If any subreg of MO is live, then create an imp-def for that
|
|
// subreg and keep MO marked as killed.
|
|
MO.setIsKill(false);
|
|
bool AllDead = true;
|
|
const unsigned SuperReg = MO.getReg();
|
|
for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
|
|
*Subreg; ++Subreg) {
|
|
if (KillIndices[*Subreg] != ~0u) {
|
|
MI->addOperand(MachineOperand::CreateReg(*Subreg,
|
|
true /*IsDef*/,
|
|
true /*IsImp*/,
|
|
false /*IsKill*/,
|
|
false /*IsDead*/));
|
|
AllDead = false;
|
|
}
|
|
}
|
|
|
|
if(AllDead)
|
|
MO.setIsKill(true);
|
|
return false;
|
|
}
|
|
|
|
/// FixupKills - Fix the register kill flags, they may have been made
|
|
/// incorrect by instruction reordering.
|
|
///
|
|
void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
|
|
DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
|
|
|
|
std::set<unsigned> killedRegs;
|
|
BitVector ReservedRegs = TRI->getReservedRegs(MF);
|
|
|
|
StartBlockForKills(MBB);
|
|
|
|
// Examine block from end to start...
|
|
unsigned Count = MBB->size();
|
|
for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
|
|
I != E; --Count) {
|
|
MachineInstr *MI = --I;
|
|
if (MI->isDebugValue())
|
|
continue;
|
|
|
|
// Update liveness. Registers that are defed but not used in this
|
|
// instruction are now dead. Mark register and all subregs as they
|
|
// are completely defined.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
if (!MO.isDef()) continue;
|
|
// Ignore two-addr defs.
|
|
if (MI->isRegTiedToUseOperand(i)) continue;
|
|
|
|
KillIndices[Reg] = ~0u;
|
|
|
|
// Repeat for all subregs.
|
|
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
|
|
*Subreg; ++Subreg) {
|
|
KillIndices[*Subreg] = ~0u;
|
|
}
|
|
}
|
|
|
|
// Examine all used registers and set/clear kill flag. When a
|
|
// register is used multiple times we only set the kill flag on
|
|
// the first use.
|
|
killedRegs.clear();
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
|
|
|
|
bool kill = false;
|
|
if (killedRegs.find(Reg) == killedRegs.end()) {
|
|
kill = true;
|
|
// A register is not killed if any subregs are live...
|
|
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
|
|
*Subreg; ++Subreg) {
|
|
if (KillIndices[*Subreg] != ~0u) {
|
|
kill = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If subreg is not live, then register is killed if it became
|
|
// live in this instruction
|
|
if (kill)
|
|
kill = (KillIndices[Reg] == ~0u);
|
|
}
|
|
|
|
if (MO.isKill() != kill) {
|
|
DEBUG(dbgs() << "Fixing " << MO << " in ");
|
|
// Warning: ToggleKillFlag may invalidate MO.
|
|
ToggleKillFlag(MI, MO);
|
|
DEBUG(MI->dump());
|
|
}
|
|
|
|
killedRegs.insert(Reg);
|
|
}
|
|
|
|
// Mark any used register (that is not using undef) and subregs as
|
|
// now live...
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
|
|
|
|
KillIndices[Reg] = Count;
|
|
|
|
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
|
|
*Subreg; ++Subreg) {
|
|
KillIndices[*Subreg] = Count;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-Down Scheduling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
|
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
|
|
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
|
|
SUnit *SuccSU = SuccEdge->getSUnit();
|
|
|
|
#ifndef NDEBUG
|
|
if (SuccSU->NumPredsLeft == 0) {
|
|
dbgs() << "*** Scheduling failed! ***\n";
|
|
SuccSU->dump(this);
|
|
dbgs() << " has been released too many times!\n";
|
|
llvm_unreachable(0);
|
|
}
|
|
#endif
|
|
--SuccSU->NumPredsLeft;
|
|
|
|
// Compute how many cycles it will be before this actually becomes
|
|
// available. This is the max of the start time of all predecessors plus
|
|
// their latencies.
|
|
SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
|
|
|
|
// If all the node's predecessors are scheduled, this node is ready
|
|
// to be scheduled. Ignore the special ExitSU node.
|
|
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
|
|
PendingQueue.push_back(SuccSU);
|
|
}
|
|
|
|
/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
|
|
void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
ReleaseSucc(SU, &*I);
|
|
}
|
|
}
|
|
|
|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
|
/// count of its successors. If a successor pending count is zero, add it to
|
|
/// the Available queue.
|
|
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
|
DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
|
|
DEBUG(SU->dump(this));
|
|
|
|
Sequence.push_back(SU);
|
|
assert(CurCycle >= SU->getDepth() &&
|
|
"Node scheduled above its depth!");
|
|
SU->setDepthToAtLeast(CurCycle);
|
|
|
|
ReleaseSuccessors(SU);
|
|
SU->isScheduled = true;
|
|
AvailableQueue.ScheduledNode(SU);
|
|
}
|
|
|
|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
|
|
/// schedulers.
|
|
void SchedulePostRATDList::ListScheduleTopDown() {
|
|
unsigned CurCycle = 0;
|
|
|
|
// We're scheduling top-down but we're visiting the regions in
|
|
// bottom-up order, so we don't know the hazards at the start of a
|
|
// region. So assume no hazards (this should usually be ok as most
|
|
// blocks are a single region).
|
|
HazardRec->Reset();
|
|
|
|
// Release any successors of the special Entry node.
|
|
ReleaseSuccessors(&EntrySU);
|
|
|
|
// Add all leaves to Available queue.
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
// It is available if it has no predecessors.
|
|
bool available = SUnits[i].Preds.empty();
|
|
if (available) {
|
|
AvailableQueue.push(&SUnits[i]);
|
|
SUnits[i].isAvailable = true;
|
|
}
|
|
}
|
|
|
|
// In any cycle where we can't schedule any instructions, we must
|
|
// stall or emit a noop, depending on the target.
|
|
bool CycleHasInsts = false;
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
std::vector<SUnit*> NotReady;
|
|
Sequence.reserve(SUnits.size());
|
|
while (!AvailableQueue.empty() || !PendingQueue.empty()) {
|
|
// Check to see if any of the pending instructions are ready to issue. If
|
|
// so, add them to the available queue.
|
|
unsigned MinDepth = ~0u;
|
|
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
|
|
if (PendingQueue[i]->getDepth() <= CurCycle) {
|
|
AvailableQueue.push(PendingQueue[i]);
|
|
PendingQueue[i]->isAvailable = true;
|
|
PendingQueue[i] = PendingQueue.back();
|
|
PendingQueue.pop_back();
|
|
--i; --e;
|
|
} else if (PendingQueue[i]->getDepth() < MinDepth)
|
|
MinDepth = PendingQueue[i]->getDepth();
|
|
}
|
|
|
|
DEBUG(dbgs() << "\n*** Examining Available\n";
|
|
LatencyPriorityQueue q = AvailableQueue;
|
|
while (!q.empty()) {
|
|
SUnit *su = q.pop();
|
|
dbgs() << "Height " << su->getHeight() << ": ";
|
|
su->dump(this);
|
|
});
|
|
|
|
SUnit *FoundSUnit = 0;
|
|
bool HasNoopHazards = false;
|
|
while (!AvailableQueue.empty()) {
|
|
SUnit *CurSUnit = AvailableQueue.pop();
|
|
|
|
ScheduleHazardRecognizer::HazardType HT =
|
|
HazardRec->getHazardType(CurSUnit);
|
|
if (HT == ScheduleHazardRecognizer::NoHazard) {
|
|
FoundSUnit = CurSUnit;
|
|
break;
|
|
}
|
|
|
|
// Remember if this is a noop hazard.
|
|
HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
|
|
|
|
NotReady.push_back(CurSUnit);
|
|
}
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
if (!NotReady.empty()) {
|
|
AvailableQueue.push_all(NotReady);
|
|
NotReady.clear();
|
|
}
|
|
|
|
// If we found a node to schedule...
|
|
if (FoundSUnit) {
|
|
// ... schedule the node...
|
|
ScheduleNodeTopDown(FoundSUnit, CurCycle);
|
|
HazardRec->EmitInstruction(FoundSUnit);
|
|
CycleHasInsts = true;
|
|
|
|
// If we are using the target-specific hazards, then don't
|
|
// advance the cycle time just because we schedule a node. If
|
|
// the target allows it we can schedule multiple nodes in the
|
|
// same cycle.
|
|
if (!EnablePostRAHazardAvoidance) {
|
|
if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
|
|
++CurCycle;
|
|
}
|
|
} else {
|
|
if (CycleHasInsts) {
|
|
DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
|
|
HazardRec->AdvanceCycle();
|
|
} else if (!HasNoopHazards) {
|
|
// Otherwise, we have a pipeline stall, but no other problem,
|
|
// just advance the current cycle and try again.
|
|
DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
|
|
HazardRec->AdvanceCycle();
|
|
++NumStalls;
|
|
} else {
|
|
// Otherwise, we have no instructions to issue and we have instructions
|
|
// that will fault if we don't do this right. This is the case for
|
|
// processors without pipeline interlocks and other cases.
|
|
DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
|
|
HazardRec->EmitNoop();
|
|
Sequence.push_back(0); // NULL here means noop
|
|
++NumNoops;
|
|
}
|
|
|
|
++CurCycle;
|
|
CycleHasInsts = false;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
VerifySchedule(/*isBottomUp=*/false);
|
|
#endif
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public Constructor Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) {
|
|
return new PostRAScheduler(OptLevel);
|
|
}
|