mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-18 10:31:57 +00:00
3ed469ccd7
Turn on -Wunused and -Wno-unused-parameter. Clean up most of the resulting fall out by removing unused variables. Remaining warnings have to do with unused functions (I didn't want to delete code without review) and unused variables in generated code. Maintainers should clean up the remaining issues when they see them. All changes pass DejaGnu tests and Olden. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31380 91177308-0d34-0410-b5e6-96231b3b80d8
276 lines
10 KiB
C++
276 lines
10 KiB
C++
//===- InlineSimple.cpp - Code to perform simple function inlining --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements bottom-up inlining of functions into callees.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Inliner.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
struct ArgInfo {
|
|
unsigned ConstantWeight;
|
|
unsigned AllocaWeight;
|
|
|
|
ArgInfo(unsigned CWeight, unsigned AWeight)
|
|
: ConstantWeight(CWeight), AllocaWeight(AWeight) {}
|
|
};
|
|
|
|
// FunctionInfo - For each function, calculate the size of it in blocks and
|
|
// instructions.
|
|
struct FunctionInfo {
|
|
// NumInsts, NumBlocks - Keep track of how large each function is, which is
|
|
// used to estimate the code size cost of inlining it.
|
|
unsigned NumInsts, NumBlocks;
|
|
|
|
// ArgumentWeights - Each formal argument of the function is inspected to
|
|
// see if it is used in any contexts where making it a constant or alloca
|
|
// would reduce the code size. If so, we add some value to the argument
|
|
// entry here.
|
|
std::vector<ArgInfo> ArgumentWeights;
|
|
|
|
FunctionInfo() : NumInsts(0), NumBlocks(0) {}
|
|
|
|
/// analyzeFunction - Fill in the current structure with information gleaned
|
|
/// from the specified function.
|
|
void analyzeFunction(Function *F);
|
|
};
|
|
|
|
class SimpleInliner : public Inliner {
|
|
std::map<const Function*, FunctionInfo> CachedFunctionInfo;
|
|
public:
|
|
int getInlineCost(CallSite CS);
|
|
};
|
|
RegisterPass<SimpleInliner> X("inline", "Function Integration/Inlining");
|
|
}
|
|
|
|
ModulePass *llvm::createFunctionInliningPass() { return new SimpleInliner(); }
|
|
|
|
// CountCodeReductionForConstant - Figure out an approximation for how many
|
|
// instructions will be constant folded if the specified value is constant.
|
|
//
|
|
static unsigned CountCodeReductionForConstant(Value *V) {
|
|
unsigned Reduction = 0;
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
|
|
if (isa<BranchInst>(*UI))
|
|
Reduction += 40; // Eliminating a conditional branch is a big win
|
|
else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
|
|
// Eliminating a switch is a big win, proportional to the number of edges
|
|
// deleted.
|
|
Reduction += (SI->getNumSuccessors()-1) * 40;
|
|
else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
|
|
// Turning an indirect call into a direct call is a BIG win
|
|
Reduction += CI->getCalledValue() == V ? 500 : 0;
|
|
} else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
|
|
// Turning an indirect call into a direct call is a BIG win
|
|
Reduction += II->getCalledValue() == V ? 500 : 0;
|
|
} else {
|
|
// Figure out if this instruction will be removed due to simple constant
|
|
// propagation.
|
|
Instruction &Inst = cast<Instruction>(**UI);
|
|
bool AllOperandsConstant = true;
|
|
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
|
|
if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
|
|
AllOperandsConstant = false;
|
|
break;
|
|
}
|
|
|
|
if (AllOperandsConstant) {
|
|
// We will get to remove this instruction...
|
|
Reduction += 7;
|
|
|
|
// And any other instructions that use it which become constants
|
|
// themselves.
|
|
Reduction += CountCodeReductionForConstant(&Inst);
|
|
}
|
|
}
|
|
|
|
return Reduction;
|
|
}
|
|
|
|
// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
|
|
// the function will be if it is inlined into a context where an argument
|
|
// becomes an alloca.
|
|
//
|
|
static unsigned CountCodeReductionForAlloca(Value *V) {
|
|
if (!isa<PointerType>(V->getType())) return 0; // Not a pointer
|
|
unsigned Reduction = 0;
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
|
Instruction *I = cast<Instruction>(*UI);
|
|
if (isa<LoadInst>(I) || isa<StoreInst>(I))
|
|
Reduction += 10;
|
|
else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
// If the GEP has variable indices, we won't be able to do much with it.
|
|
for (Instruction::op_iterator I = GEP->op_begin()+1, E = GEP->op_end();
|
|
I != E; ++I)
|
|
if (!isa<Constant>(*I)) return 0;
|
|
Reduction += CountCodeReductionForAlloca(GEP)+15;
|
|
} else {
|
|
// If there is some other strange instruction, we're not going to be able
|
|
// to do much if we inline this.
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return Reduction;
|
|
}
|
|
|
|
/// analyzeFunction - Fill in the current structure with information gleaned
|
|
/// from the specified function.
|
|
void FunctionInfo::analyzeFunction(Function *F) {
|
|
unsigned NumInsts = 0, NumBlocks = 0;
|
|
|
|
// Look at the size of the callee. Each basic block counts as 20 units, and
|
|
// each instruction counts as 10.
|
|
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
|
|
for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
|
|
II != E; ++II) {
|
|
if (isa<DbgInfoIntrinsic>(II)) continue; // Debug intrinsics don't count.
|
|
|
|
// Noop casts don't count.
|
|
if (const CastInst *CI = dyn_cast<CastInst>(II)) {
|
|
const Type *OpTy = CI->getOperand(0)->getType();
|
|
if (CI->getType()->isLosslesslyConvertibleTo(OpTy))
|
|
continue;
|
|
if ((isa<PointerType>(CI->getType()) && OpTy->isInteger()) ||
|
|
(isa<PointerType>(OpTy) && CI->getType()->isInteger()))
|
|
continue; // ptr <-> int is *probably* noop cast.
|
|
} else if (const GetElementPtrInst *GEPI =
|
|
dyn_cast<GetElementPtrInst>(II)) {
|
|
// If a GEP has all constant indices, it will probably be folded with
|
|
// a load/store.
|
|
bool AllConstant = true;
|
|
for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
|
|
if (!isa<ConstantInt>(GEPI->getOperand(i))) {
|
|
AllConstant = false;
|
|
break;
|
|
}
|
|
if (AllConstant) continue;
|
|
}
|
|
|
|
++NumInsts;
|
|
}
|
|
|
|
++NumBlocks;
|
|
}
|
|
|
|
this->NumBlocks = NumBlocks;
|
|
this->NumInsts = NumInsts;
|
|
|
|
// Check out all of the arguments to the function, figuring out how much
|
|
// code can be eliminated if one of the arguments is a constant.
|
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
|
|
ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
|
|
CountCodeReductionForAlloca(I)));
|
|
}
|
|
|
|
|
|
// getInlineCost - The heuristic used to determine if we should inline the
|
|
// function call or not.
|
|
//
|
|
int SimpleInliner::getInlineCost(CallSite CS) {
|
|
Instruction *TheCall = CS.getInstruction();
|
|
Function *Callee = CS.getCalledFunction();
|
|
const Function *Caller = TheCall->getParent()->getParent();
|
|
|
|
// Don't inline a directly recursive call.
|
|
if (Caller == Callee) return 2000000000;
|
|
|
|
// InlineCost - This value measures how good of an inline candidate this call
|
|
// site is to inline. A lower inline cost make is more likely for the call to
|
|
// be inlined. This value may go negative.
|
|
//
|
|
int InlineCost = 0;
|
|
|
|
// If there is only one call of the function, and it has internal linkage,
|
|
// make it almost guaranteed to be inlined.
|
|
//
|
|
if (Callee->hasInternalLinkage() && Callee->hasOneUse())
|
|
InlineCost -= 30000;
|
|
|
|
// If this function uses the coldcc calling convention, prefer not to inline
|
|
// it.
|
|
if (Callee->getCallingConv() == CallingConv::Cold)
|
|
InlineCost += 2000;
|
|
|
|
// If the instruction after the call, or if the normal destination of the
|
|
// invoke is an unreachable instruction, the function is noreturn. As such,
|
|
// there is little point in inlining this.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
|
|
if (isa<UnreachableInst>(II->getNormalDest()->begin()))
|
|
InlineCost += 10000;
|
|
} else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
|
|
InlineCost += 10000;
|
|
|
|
// Get information about the callee...
|
|
FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
|
|
|
|
// If we haven't calculated this information yet, do so now.
|
|
if (CalleeFI.NumBlocks == 0)
|
|
CalleeFI.analyzeFunction(Callee);
|
|
|
|
// Add to the inline quality for properties that make the call valuable to
|
|
// inline. This includes factors that indicate that the result of inlining
|
|
// the function will be optimizable. Currently this just looks at arguments
|
|
// passed into the function.
|
|
//
|
|
unsigned ArgNo = 0;
|
|
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
|
|
I != E; ++I, ++ArgNo) {
|
|
// Each argument passed in has a cost at both the caller and the callee
|
|
// sides. This favors functions that take many arguments over functions
|
|
// that take few arguments.
|
|
InlineCost -= 20;
|
|
|
|
// If this is a function being passed in, it is very likely that we will be
|
|
// able to turn an indirect function call into a direct function call.
|
|
if (isa<Function>(I))
|
|
InlineCost -= 100;
|
|
|
|
// If an alloca is passed in, inlining this function is likely to allow
|
|
// significant future optimization possibilities (like scalar promotion, and
|
|
// scalarization), so encourage the inlining of the function.
|
|
//
|
|
else if (isa<AllocaInst>(I)) {
|
|
if (ArgNo < CalleeFI.ArgumentWeights.size())
|
|
InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
|
|
|
|
// If this is a constant being passed into the function, use the argument
|
|
// weights calculated for the callee to determine how much will be folded
|
|
// away with this information.
|
|
} else if (isa<Constant>(I)) {
|
|
if (ArgNo < CalleeFI.ArgumentWeights.size())
|
|
InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
|
|
}
|
|
}
|
|
|
|
// Now that we have considered all of the factors that make the call site more
|
|
// likely to be inlined, look at factors that make us not want to inline it.
|
|
|
|
// Don't inline into something too big, which would make it bigger. Here, we
|
|
// count each basic block as a single unit.
|
|
//
|
|
InlineCost += Caller->size()/20;
|
|
|
|
|
|
// Look at the size of the callee. Each basic block counts as 20 units, and
|
|
// each instruction counts as 5.
|
|
InlineCost += CalleeFI.NumInsts*5 + CalleeFI.NumBlocks*20;
|
|
return InlineCost;
|
|
}
|
|
|