mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 04:30:12 +00:00
081c34b725
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize the pass's dependencies. Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h before parsing commandline arguments. I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass registration/creation, please send the testcase to me directly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8
1092 lines
36 KiB
C++
1092 lines
36 KiB
C++
//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the following classes:
|
|
// 1. DominatorTree: Represent dominators as an explicit tree structure.
|
|
// 2. DominanceFrontier: Calculate and hold the dominance frontier for a
|
|
// function.
|
|
//
|
|
// These data structures are listed in increasing order of complexity. It
|
|
// takes longer to calculate the dominator frontier, for example, than the
|
|
// DominatorTree mapping.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_DOMINATORS_H
|
|
#define LLVM_ANALYSIS_DOMINATORS_H
|
|
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <set>
|
|
|
|
namespace llvm {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// DominatorBase - Base class that other, more interesting dominator analyses
|
|
/// inherit from.
|
|
///
|
|
template <class NodeT>
|
|
class DominatorBase {
|
|
protected:
|
|
std::vector<NodeT*> Roots;
|
|
const bool IsPostDominators;
|
|
inline explicit DominatorBase(bool isPostDom) :
|
|
Roots(), IsPostDominators(isPostDom) {}
|
|
public:
|
|
|
|
/// getRoots - Return the root blocks of the current CFG. This may include
|
|
/// multiple blocks if we are computing post dominators. For forward
|
|
/// dominators, this will always be a single block (the entry node).
|
|
///
|
|
inline const std::vector<NodeT*> &getRoots() const { return Roots; }
|
|
|
|
/// isPostDominator - Returns true if analysis based of postdoms
|
|
///
|
|
bool isPostDominator() const { return IsPostDominators; }
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DomTreeNode - Dominator Tree Node
|
|
template<class NodeT> class DominatorTreeBase;
|
|
struct PostDominatorTree;
|
|
class MachineBasicBlock;
|
|
|
|
template <class NodeT>
|
|
class DomTreeNodeBase {
|
|
NodeT *TheBB;
|
|
DomTreeNodeBase<NodeT> *IDom;
|
|
std::vector<DomTreeNodeBase<NodeT> *> Children;
|
|
int DFSNumIn, DFSNumOut;
|
|
|
|
template<class N> friend class DominatorTreeBase;
|
|
friend struct PostDominatorTree;
|
|
public:
|
|
typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
|
|
typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
|
|
const_iterator;
|
|
|
|
iterator begin() { return Children.begin(); }
|
|
iterator end() { return Children.end(); }
|
|
const_iterator begin() const { return Children.begin(); }
|
|
const_iterator end() const { return Children.end(); }
|
|
|
|
NodeT *getBlock() const { return TheBB; }
|
|
DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
|
|
const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
|
|
return Children;
|
|
}
|
|
|
|
DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
|
|
: TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
|
|
|
|
DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
|
|
Children.push_back(C);
|
|
return C;
|
|
}
|
|
|
|
size_t getNumChildren() const {
|
|
return Children.size();
|
|
}
|
|
|
|
void clearAllChildren() {
|
|
Children.clear();
|
|
}
|
|
|
|
bool compare(DomTreeNodeBase<NodeT> *Other) {
|
|
if (getNumChildren() != Other->getNumChildren())
|
|
return true;
|
|
|
|
SmallPtrSet<NodeT *, 4> OtherChildren;
|
|
for (iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
|
|
NodeT *Nd = (*I)->getBlock();
|
|
OtherChildren.insert(Nd);
|
|
}
|
|
|
|
for (iterator I = begin(), E = end(); I != E; ++I) {
|
|
NodeT *N = (*I)->getBlock();
|
|
if (OtherChildren.count(N) == 0)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
|
|
assert(IDom && "No immediate dominator?");
|
|
if (IDom != NewIDom) {
|
|
typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
|
|
std::find(IDom->Children.begin(), IDom->Children.end(), this);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
|
|
// Switch to new dominator
|
|
IDom = NewIDom;
|
|
IDom->Children.push_back(this);
|
|
}
|
|
}
|
|
|
|
/// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
|
|
/// not call them.
|
|
unsigned getDFSNumIn() const { return DFSNumIn; }
|
|
unsigned getDFSNumOut() const { return DFSNumOut; }
|
|
private:
|
|
// Return true if this node is dominated by other. Use this only if DFS info
|
|
// is valid.
|
|
bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
|
|
return this->DFSNumIn >= other->DFSNumIn &&
|
|
this->DFSNumOut <= other->DFSNumOut;
|
|
}
|
|
};
|
|
|
|
EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
|
|
EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
|
|
|
|
template<class NodeT>
|
|
static raw_ostream &operator<<(raw_ostream &o,
|
|
const DomTreeNodeBase<NodeT> *Node) {
|
|
if (Node->getBlock())
|
|
WriteAsOperand(o, Node->getBlock(), false);
|
|
else
|
|
o << " <<exit node>>";
|
|
|
|
o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
|
|
|
|
return o << "\n";
|
|
}
|
|
|
|
template<class NodeT>
|
|
static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
|
|
unsigned Lev) {
|
|
o.indent(2*Lev) << "[" << Lev << "] " << N;
|
|
for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
|
|
E = N->end(); I != E; ++I)
|
|
PrintDomTree<NodeT>(*I, o, Lev+1);
|
|
}
|
|
|
|
typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// DominatorTree - Calculate the immediate dominator tree for a function.
|
|
///
|
|
|
|
template<class FuncT, class N>
|
|
void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
|
|
FuncT& F);
|
|
|
|
template<class NodeT>
|
|
class DominatorTreeBase : public DominatorBase<NodeT> {
|
|
protected:
|
|
typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
|
|
DomTreeNodeMapType DomTreeNodes;
|
|
DomTreeNodeBase<NodeT> *RootNode;
|
|
|
|
bool DFSInfoValid;
|
|
unsigned int SlowQueries;
|
|
// Information record used during immediate dominators computation.
|
|
struct InfoRec {
|
|
unsigned DFSNum;
|
|
unsigned Semi;
|
|
unsigned Size;
|
|
NodeT *Label, *Child;
|
|
unsigned Parent, Ancestor;
|
|
|
|
std::vector<NodeT*> Bucket;
|
|
|
|
InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0),
|
|
Ancestor(0) {}
|
|
};
|
|
|
|
DenseMap<NodeT*, NodeT*> IDoms;
|
|
|
|
// Vertex - Map the DFS number to the BasicBlock*
|
|
std::vector<NodeT*> Vertex;
|
|
|
|
// Info - Collection of information used during the computation of idoms.
|
|
DenseMap<NodeT*, InfoRec> Info;
|
|
|
|
void reset() {
|
|
for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
|
|
E = DomTreeNodes.end(); I != E; ++I)
|
|
delete I->second;
|
|
DomTreeNodes.clear();
|
|
IDoms.clear();
|
|
this->Roots.clear();
|
|
Vertex.clear();
|
|
RootNode = 0;
|
|
}
|
|
|
|
// NewBB is split and now it has one successor. Update dominator tree to
|
|
// reflect this change.
|
|
template<class N, class GraphT>
|
|
void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
typename GraphT::NodeType* NewBB) {
|
|
assert(std::distance(GraphT::child_begin(NewBB),
|
|
GraphT::child_end(NewBB)) == 1 &&
|
|
"NewBB should have a single successor!");
|
|
typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
|
|
|
|
std::vector<typename GraphT::NodeType*> PredBlocks;
|
|
typedef GraphTraits<Inverse<N> > InvTraits;
|
|
for (typename InvTraits::ChildIteratorType PI =
|
|
InvTraits::child_begin(NewBB),
|
|
PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
|
|
PredBlocks.push_back(*PI);
|
|
|
|
assert(!PredBlocks.empty() && "No predblocks?");
|
|
|
|
bool NewBBDominatesNewBBSucc = true;
|
|
for (typename InvTraits::ChildIteratorType PI =
|
|
InvTraits::child_begin(NewBBSucc),
|
|
E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
|
|
typename InvTraits::NodeType *ND = *PI;
|
|
if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
|
|
DT.isReachableFromEntry(ND)) {
|
|
NewBBDominatesNewBBSucc = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Find NewBB's immediate dominator and create new dominator tree node for
|
|
// NewBB.
|
|
NodeT *NewBBIDom = 0;
|
|
unsigned i = 0;
|
|
for (i = 0; i < PredBlocks.size(); ++i)
|
|
if (DT.isReachableFromEntry(PredBlocks[i])) {
|
|
NewBBIDom = PredBlocks[i];
|
|
break;
|
|
}
|
|
|
|
// It's possible that none of the predecessors of NewBB are reachable;
|
|
// in that case, NewBB itself is unreachable, so nothing needs to be
|
|
// changed.
|
|
if (!NewBBIDom)
|
|
return;
|
|
|
|
for (i = i + 1; i < PredBlocks.size(); ++i) {
|
|
if (DT.isReachableFromEntry(PredBlocks[i]))
|
|
NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
|
|
}
|
|
|
|
// Create the new dominator tree node... and set the idom of NewBB.
|
|
DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
|
|
|
|
// If NewBB strictly dominates other blocks, then it is now the immediate
|
|
// dominator of NewBBSucc. Update the dominator tree as appropriate.
|
|
if (NewBBDominatesNewBBSucc) {
|
|
DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
|
|
DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
|
|
}
|
|
}
|
|
|
|
public:
|
|
explicit DominatorTreeBase(bool isPostDom)
|
|
: DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
|
|
virtual ~DominatorTreeBase() { reset(); }
|
|
|
|
// FIXME: Should remove this
|
|
virtual bool runOnFunction(Function &F) { return false; }
|
|
|
|
/// compare - Return false if the other dominator tree base matches this
|
|
/// dominator tree base. Otherwise return true.
|
|
bool compare(DominatorTreeBase &Other) const {
|
|
|
|
const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
|
|
if (DomTreeNodes.size() != OtherDomTreeNodes.size())
|
|
return true;
|
|
|
|
for (typename DomTreeNodeMapType::const_iterator
|
|
I = this->DomTreeNodes.begin(),
|
|
E = this->DomTreeNodes.end(); I != E; ++I) {
|
|
NodeT *BB = I->first;
|
|
typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
|
|
if (OI == OtherDomTreeNodes.end())
|
|
return true;
|
|
|
|
DomTreeNodeBase<NodeT>* MyNd = I->second;
|
|
DomTreeNodeBase<NodeT>* OtherNd = OI->second;
|
|
|
|
if (MyNd->compare(OtherNd))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
virtual void releaseMemory() { reset(); }
|
|
|
|
/// getNode - return the (Post)DominatorTree node for the specified basic
|
|
/// block. This is the same as using operator[] on this class.
|
|
///
|
|
inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
|
|
typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
|
|
return I != DomTreeNodes.end() ? I->second : 0;
|
|
}
|
|
|
|
/// getRootNode - This returns the entry node for the CFG of the function. If
|
|
/// this tree represents the post-dominance relations for a function, however,
|
|
/// this root may be a node with the block == NULL. This is the case when
|
|
/// there are multiple exit nodes from a particular function. Consumers of
|
|
/// post-dominance information must be capable of dealing with this
|
|
/// possibility.
|
|
///
|
|
DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
|
|
const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
|
|
|
|
/// properlyDominates - Returns true iff this dominates N and this != N.
|
|
/// Note that this is not a constant time operation!
|
|
///
|
|
bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
|
|
const DomTreeNodeBase<NodeT> *B) const {
|
|
if (A == 0 || B == 0) return false;
|
|
return dominatedBySlowTreeWalk(A, B);
|
|
}
|
|
|
|
inline bool properlyDominates(const NodeT *A, const NodeT *B) {
|
|
if (A == B)
|
|
return false;
|
|
|
|
// Cast away the const qualifiers here. This is ok since
|
|
// this function doesn't actually return the values returned
|
|
// from getNode.
|
|
return properlyDominates(getNode(const_cast<NodeT *>(A)),
|
|
getNode(const_cast<NodeT *>(B)));
|
|
}
|
|
|
|
bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
|
|
const DomTreeNodeBase<NodeT> *B) const {
|
|
const DomTreeNodeBase<NodeT> *IDom;
|
|
if (A == 0 || B == 0) return false;
|
|
while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
|
|
B = IDom; // Walk up the tree
|
|
return IDom != 0;
|
|
}
|
|
|
|
|
|
/// isReachableFromEntry - Return true if A is dominated by the entry
|
|
/// block of the function containing it.
|
|
bool isReachableFromEntry(const NodeT* A) {
|
|
assert(!this->isPostDominator() &&
|
|
"This is not implemented for post dominators");
|
|
return dominates(&A->getParent()->front(), A);
|
|
}
|
|
|
|
/// dominates - Returns true iff A dominates B. Note that this is not a
|
|
/// constant time operation!
|
|
///
|
|
inline bool dominates(const DomTreeNodeBase<NodeT> *A,
|
|
const DomTreeNodeBase<NodeT> *B) {
|
|
if (B == A)
|
|
return true; // A node trivially dominates itself.
|
|
|
|
if (A == 0 || B == 0)
|
|
return false;
|
|
|
|
// Compare the result of the tree walk and the dfs numbers, if expensive
|
|
// checks are enabled.
|
|
#ifdef XDEBUG
|
|
assert((!DFSInfoValid ||
|
|
(dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
|
|
"Tree walk disagrees with dfs numbers!");
|
|
#endif
|
|
|
|
if (DFSInfoValid)
|
|
return B->DominatedBy(A);
|
|
|
|
// If we end up with too many slow queries, just update the
|
|
// DFS numbers on the theory that we are going to keep querying.
|
|
SlowQueries++;
|
|
if (SlowQueries > 32) {
|
|
updateDFSNumbers();
|
|
return B->DominatedBy(A);
|
|
}
|
|
|
|
return dominatedBySlowTreeWalk(A, B);
|
|
}
|
|
|
|
inline bool dominates(const NodeT *A, const NodeT *B) {
|
|
if (A == B)
|
|
return true;
|
|
|
|
// Cast away the const qualifiers here. This is ok since
|
|
// this function doesn't actually return the values returned
|
|
// from getNode.
|
|
return dominates(getNode(const_cast<NodeT *>(A)),
|
|
getNode(const_cast<NodeT *>(B)));
|
|
}
|
|
|
|
NodeT *getRoot() const {
|
|
assert(this->Roots.size() == 1 && "Should always have entry node!");
|
|
return this->Roots[0];
|
|
}
|
|
|
|
/// findNearestCommonDominator - Find nearest common dominator basic block
|
|
/// for basic block A and B. If there is no such block then return NULL.
|
|
NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
|
|
assert(A->getParent() == B->getParent() &&
|
|
"Two blocks are not in same function");
|
|
|
|
// If either A or B is a entry block then it is nearest common dominator
|
|
// (for forward-dominators).
|
|
if (!this->isPostDominator()) {
|
|
NodeT &Entry = A->getParent()->front();
|
|
if (A == &Entry || B == &Entry)
|
|
return &Entry;
|
|
}
|
|
|
|
// If B dominates A then B is nearest common dominator.
|
|
if (dominates(B, A))
|
|
return B;
|
|
|
|
// If A dominates B then A is nearest common dominator.
|
|
if (dominates(A, B))
|
|
return A;
|
|
|
|
DomTreeNodeBase<NodeT> *NodeA = getNode(A);
|
|
DomTreeNodeBase<NodeT> *NodeB = getNode(B);
|
|
|
|
// Collect NodeA dominators set.
|
|
SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
|
|
NodeADoms.insert(NodeA);
|
|
DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
|
|
while (IDomA) {
|
|
NodeADoms.insert(IDomA);
|
|
IDomA = IDomA->getIDom();
|
|
}
|
|
|
|
// Walk NodeB immediate dominators chain and find common dominator node.
|
|
DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
|
|
while (IDomB) {
|
|
if (NodeADoms.count(IDomB) != 0)
|
|
return IDomB->getBlock();
|
|
|
|
IDomB = IDomB->getIDom();
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
|
|
// Cast away the const qualifiers here. This is ok since
|
|
// const is re-introduced on the return type.
|
|
return findNearestCommonDominator(const_cast<NodeT *>(A),
|
|
const_cast<NodeT *>(B));
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// API to update (Post)DominatorTree information based on modifications to
|
|
// the CFG...
|
|
|
|
/// addNewBlock - Add a new node to the dominator tree information. This
|
|
/// creates a new node as a child of DomBB dominator node,linking it into
|
|
/// the children list of the immediate dominator.
|
|
DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
|
|
assert(getNode(BB) == 0 && "Block already in dominator tree!");
|
|
DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
|
|
assert(IDomNode && "Not immediate dominator specified for block!");
|
|
DFSInfoValid = false;
|
|
return DomTreeNodes[BB] =
|
|
IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
|
|
}
|
|
|
|
/// changeImmediateDominator - This method is used to update the dominator
|
|
/// tree information when a node's immediate dominator changes.
|
|
///
|
|
void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
|
|
DomTreeNodeBase<NodeT> *NewIDom) {
|
|
assert(N && NewIDom && "Cannot change null node pointers!");
|
|
DFSInfoValid = false;
|
|
N->setIDom(NewIDom);
|
|
}
|
|
|
|
void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
|
|
changeImmediateDominator(getNode(BB), getNode(NewBB));
|
|
}
|
|
|
|
/// eraseNode - Removes a node from the dominator tree. Block must not
|
|
/// dominate any other blocks. Removes node from its immediate dominator's
|
|
/// children list. Deletes dominator node associated with basic block BB.
|
|
void eraseNode(NodeT *BB) {
|
|
DomTreeNodeBase<NodeT> *Node = getNode(BB);
|
|
assert(Node && "Removing node that isn't in dominator tree.");
|
|
assert(Node->getChildren().empty() && "Node is not a leaf node.");
|
|
|
|
// Remove node from immediate dominator's children list.
|
|
DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
|
|
if (IDom) {
|
|
typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
|
|
std::find(IDom->Children.begin(), IDom->Children.end(), Node);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
}
|
|
|
|
DomTreeNodes.erase(BB);
|
|
delete Node;
|
|
}
|
|
|
|
/// removeNode - Removes a node from the dominator tree. Block must not
|
|
/// dominate any other blocks. Invalidates any node pointing to removed
|
|
/// block.
|
|
void removeNode(NodeT *BB) {
|
|
assert(getNode(BB) && "Removing node that isn't in dominator tree.");
|
|
DomTreeNodes.erase(BB);
|
|
}
|
|
|
|
/// splitBlock - BB is split and now it has one successor. Update dominator
|
|
/// tree to reflect this change.
|
|
void splitBlock(NodeT* NewBB) {
|
|
if (this->IsPostDominators)
|
|
this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
|
|
else
|
|
this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
|
|
}
|
|
|
|
/// print - Convert to human readable form
|
|
///
|
|
void print(raw_ostream &o) const {
|
|
o << "=============================--------------------------------\n";
|
|
if (this->isPostDominator())
|
|
o << "Inorder PostDominator Tree: ";
|
|
else
|
|
o << "Inorder Dominator Tree: ";
|
|
if (this->DFSInfoValid)
|
|
o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
|
|
o << "\n";
|
|
|
|
// The postdom tree can have a null root if there are no returns.
|
|
if (getRootNode())
|
|
PrintDomTree<NodeT>(getRootNode(), o, 1);
|
|
}
|
|
|
|
protected:
|
|
template<class GraphT>
|
|
friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
typename GraphT::NodeType* VIn);
|
|
|
|
template<class GraphT>
|
|
friend typename GraphT::NodeType* Eval(
|
|
DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
typename GraphT::NodeType* V);
|
|
|
|
template<class GraphT>
|
|
friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
unsigned DFSNumV, typename GraphT::NodeType* W,
|
|
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
|
|
|
|
template<class GraphT>
|
|
friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
typename GraphT::NodeType* V,
|
|
unsigned N);
|
|
|
|
template<class FuncT, class N>
|
|
friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
|
|
FuncT& F);
|
|
|
|
/// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
|
|
/// dominator tree in dfs order.
|
|
void updateDFSNumbers() {
|
|
unsigned DFSNum = 0;
|
|
|
|
SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
|
|
typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
|
|
|
|
DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
|
|
|
|
if (!ThisRoot)
|
|
return;
|
|
|
|
// Even in the case of multiple exits that form the post dominator root
|
|
// nodes, do not iterate over all exits, but start from the virtual root
|
|
// node. Otherwise bbs, that are not post dominated by any exit but by the
|
|
// virtual root node, will never be assigned a DFS number.
|
|
WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
|
|
ThisRoot->DFSNumIn = DFSNum++;
|
|
|
|
while (!WorkStack.empty()) {
|
|
DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
|
|
typename DomTreeNodeBase<NodeT>::iterator ChildIt =
|
|
WorkStack.back().second;
|
|
|
|
// If we visited all of the children of this node, "recurse" back up the
|
|
// stack setting the DFOutNum.
|
|
if (ChildIt == Node->end()) {
|
|
Node->DFSNumOut = DFSNum++;
|
|
WorkStack.pop_back();
|
|
} else {
|
|
// Otherwise, recursively visit this child.
|
|
DomTreeNodeBase<NodeT> *Child = *ChildIt;
|
|
++WorkStack.back().second;
|
|
|
|
WorkStack.push_back(std::make_pair(Child, Child->begin()));
|
|
Child->DFSNumIn = DFSNum++;
|
|
}
|
|
}
|
|
|
|
SlowQueries = 0;
|
|
DFSInfoValid = true;
|
|
}
|
|
|
|
DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
|
|
typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
|
|
if (I != this->DomTreeNodes.end() && I->second)
|
|
return I->second;
|
|
|
|
// Haven't calculated this node yet? Get or calculate the node for the
|
|
// immediate dominator.
|
|
NodeT *IDom = getIDom(BB);
|
|
|
|
assert(IDom || this->DomTreeNodes[NULL]);
|
|
DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
|
|
return this->DomTreeNodes[BB] = IDomNode->addChild(C);
|
|
}
|
|
|
|
inline NodeT *getIDom(NodeT *BB) const {
|
|
typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
|
|
return I != IDoms.end() ? I->second : 0;
|
|
}
|
|
|
|
inline void addRoot(NodeT* BB) {
|
|
this->Roots.push_back(BB);
|
|
}
|
|
|
|
public:
|
|
/// recalculate - compute a dominator tree for the given function
|
|
template<class FT>
|
|
void recalculate(FT& F) {
|
|
reset();
|
|
this->Vertex.push_back(0);
|
|
|
|
if (!this->IsPostDominators) {
|
|
// Initialize root
|
|
this->Roots.push_back(&F.front());
|
|
this->IDoms[&F.front()] = 0;
|
|
this->DomTreeNodes[&F.front()] = 0;
|
|
|
|
Calculate<FT, NodeT*>(*this, F);
|
|
} else {
|
|
// Initialize the roots list
|
|
for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
|
|
if (std::distance(GraphTraits<FT*>::child_begin(I),
|
|
GraphTraits<FT*>::child_end(I)) == 0)
|
|
addRoot(I);
|
|
|
|
// Prepopulate maps so that we don't get iterator invalidation issues later.
|
|
this->IDoms[I] = 0;
|
|
this->DomTreeNodes[I] = 0;
|
|
}
|
|
|
|
Calculate<FT, Inverse<NodeT*> >(*this, F);
|
|
}
|
|
}
|
|
};
|
|
|
|
EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
|
|
|
|
//===-------------------------------------
|
|
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
|
|
/// compute a normal dominator tree.
|
|
///
|
|
class DominatorTree : public FunctionPass {
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
DominatorTreeBase<BasicBlock>* DT;
|
|
|
|
DominatorTree() : FunctionPass(ID) {
|
|
initializeDominatorTreePass(*PassRegistry::getPassRegistry());
|
|
DT = new DominatorTreeBase<BasicBlock>(false);
|
|
}
|
|
|
|
~DominatorTree() {
|
|
delete DT;
|
|
}
|
|
|
|
DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
|
|
|
|
/// getRoots - Return the root blocks of the current CFG. This may include
|
|
/// multiple blocks if we are computing post dominators. For forward
|
|
/// dominators, this will always be a single block (the entry node).
|
|
///
|
|
inline const std::vector<BasicBlock*> &getRoots() const {
|
|
return DT->getRoots();
|
|
}
|
|
|
|
inline BasicBlock *getRoot() const {
|
|
return DT->getRoot();
|
|
}
|
|
|
|
inline DomTreeNode *getRootNode() const {
|
|
return DT->getRootNode();
|
|
}
|
|
|
|
/// compare - Return false if the other dominator tree matches this
|
|
/// dominator tree. Otherwise return true.
|
|
inline bool compare(DominatorTree &Other) const {
|
|
DomTreeNode *R = getRootNode();
|
|
DomTreeNode *OtherR = Other.getRootNode();
|
|
|
|
if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
|
|
return true;
|
|
|
|
if (DT->compare(Other.getBase()))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
virtual bool runOnFunction(Function &F);
|
|
|
|
virtual void verifyAnalysis() const;
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
|
|
return DT->dominates(A, B);
|
|
}
|
|
|
|
inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
|
|
return DT->dominates(A, B);
|
|
}
|
|
|
|
// dominates - Return true if A dominates B. This performs the
|
|
// special checks necessary if A and B are in the same basic block.
|
|
bool dominates(const Instruction *A, const Instruction *B) const;
|
|
|
|
bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
|
|
return DT->properlyDominates(A, B);
|
|
}
|
|
|
|
bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const {
|
|
return DT->properlyDominates(A, B);
|
|
}
|
|
|
|
/// findNearestCommonDominator - Find nearest common dominator basic block
|
|
/// for basic block A and B. If there is no such block then return NULL.
|
|
inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
|
|
return DT->findNearestCommonDominator(A, B);
|
|
}
|
|
|
|
inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A,
|
|
const BasicBlock *B) {
|
|
return DT->findNearestCommonDominator(A, B);
|
|
}
|
|
|
|
inline DomTreeNode *operator[](BasicBlock *BB) const {
|
|
return DT->getNode(BB);
|
|
}
|
|
|
|
/// getNode - return the (Post)DominatorTree node for the specified basic
|
|
/// block. This is the same as using operator[] on this class.
|
|
///
|
|
inline DomTreeNode *getNode(BasicBlock *BB) const {
|
|
return DT->getNode(BB);
|
|
}
|
|
|
|
/// addNewBlock - Add a new node to the dominator tree information. This
|
|
/// creates a new node as a child of DomBB dominator node,linking it into
|
|
/// the children list of the immediate dominator.
|
|
inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
|
|
return DT->addNewBlock(BB, DomBB);
|
|
}
|
|
|
|
/// changeImmediateDominator - This method is used to update the dominator
|
|
/// tree information when a node's immediate dominator changes.
|
|
///
|
|
inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
|
|
DT->changeImmediateDominator(N, NewIDom);
|
|
}
|
|
|
|
inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
|
|
DT->changeImmediateDominator(N, NewIDom);
|
|
}
|
|
|
|
/// eraseNode - Removes a node from the dominator tree. Block must not
|
|
/// dominate any other blocks. Removes node from its immediate dominator's
|
|
/// children list. Deletes dominator node associated with basic block BB.
|
|
inline void eraseNode(BasicBlock *BB) {
|
|
DT->eraseNode(BB);
|
|
}
|
|
|
|
/// splitBlock - BB is split and now it has one successor. Update dominator
|
|
/// tree to reflect this change.
|
|
inline void splitBlock(BasicBlock* NewBB) {
|
|
DT->splitBlock(NewBB);
|
|
}
|
|
|
|
bool isReachableFromEntry(const BasicBlock* A) {
|
|
return DT->isReachableFromEntry(A);
|
|
}
|
|
|
|
|
|
virtual void releaseMemory() {
|
|
DT->releaseMemory();
|
|
}
|
|
|
|
virtual void print(raw_ostream &OS, const Module* M= 0) const;
|
|
};
|
|
|
|
//===-------------------------------------
|
|
/// DominatorTree GraphTraits specialization so the DominatorTree can be
|
|
/// iterable by generic graph iterators.
|
|
///
|
|
template <> struct GraphTraits<DomTreeNode*> {
|
|
typedef DomTreeNode NodeType;
|
|
typedef NodeType::iterator ChildIteratorType;
|
|
|
|
static NodeType *getEntryNode(NodeType *N) {
|
|
return N;
|
|
}
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->end();
|
|
}
|
|
|
|
typedef df_iterator<DomTreeNode*> nodes_iterator;
|
|
|
|
static nodes_iterator nodes_begin(DomTreeNode *N) {
|
|
return df_begin(getEntryNode(N));
|
|
}
|
|
|
|
static nodes_iterator nodes_end(DomTreeNode *N) {
|
|
return df_end(getEntryNode(N));
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<DominatorTree*>
|
|
: public GraphTraits<DomTreeNode*> {
|
|
static NodeType *getEntryNode(DominatorTree *DT) {
|
|
return DT->getRootNode();
|
|
}
|
|
|
|
static nodes_iterator nodes_begin(DominatorTree *N) {
|
|
return df_begin(getEntryNode(N));
|
|
}
|
|
|
|
static nodes_iterator nodes_end(DominatorTree *N) {
|
|
return df_end(getEntryNode(N));
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// DominanceFrontierBase - Common base class for computing forward and inverse
|
|
/// dominance frontiers for a function.
|
|
///
|
|
class DominanceFrontierBase : public FunctionPass {
|
|
public:
|
|
typedef std::set<BasicBlock*> DomSetType; // Dom set for a bb
|
|
typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
|
|
protected:
|
|
DomSetMapType Frontiers;
|
|
std::vector<BasicBlock*> Roots;
|
|
const bool IsPostDominators;
|
|
|
|
public:
|
|
DominanceFrontierBase(char &ID, bool isPostDom)
|
|
: FunctionPass(ID), IsPostDominators(isPostDom) {}
|
|
|
|
/// getRoots - Return the root blocks of the current CFG. This may include
|
|
/// multiple blocks if we are computing post dominators. For forward
|
|
/// dominators, this will always be a single block (the entry node).
|
|
///
|
|
inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
|
|
|
|
/// isPostDominator - Returns true if analysis based of postdoms
|
|
///
|
|
bool isPostDominator() const { return IsPostDominators; }
|
|
|
|
virtual void releaseMemory() { Frontiers.clear(); }
|
|
|
|
// Accessor interface:
|
|
typedef DomSetMapType::iterator iterator;
|
|
typedef DomSetMapType::const_iterator const_iterator;
|
|
iterator begin() { return Frontiers.begin(); }
|
|
const_iterator begin() const { return Frontiers.begin(); }
|
|
iterator end() { return Frontiers.end(); }
|
|
const_iterator end() const { return Frontiers.end(); }
|
|
iterator find(BasicBlock *B) { return Frontiers.find(B); }
|
|
const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
|
|
|
|
iterator addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
|
|
assert(find(BB) == end() && "Block already in DominanceFrontier!");
|
|
return Frontiers.insert(std::make_pair(BB, frontier)).first;
|
|
}
|
|
|
|
/// removeBlock - Remove basic block BB's frontier.
|
|
void removeBlock(BasicBlock *BB) {
|
|
assert(find(BB) != end() && "Block is not in DominanceFrontier!");
|
|
for (iterator I = begin(), E = end(); I != E; ++I)
|
|
I->second.erase(BB);
|
|
Frontiers.erase(BB);
|
|
}
|
|
|
|
void addToFrontier(iterator I, BasicBlock *Node) {
|
|
assert(I != end() && "BB is not in DominanceFrontier!");
|
|
I->second.insert(Node);
|
|
}
|
|
|
|
void removeFromFrontier(iterator I, BasicBlock *Node) {
|
|
assert(I != end() && "BB is not in DominanceFrontier!");
|
|
assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
|
|
I->second.erase(Node);
|
|
}
|
|
|
|
/// compareDomSet - Return false if two domsets match. Otherwise
|
|
/// return true;
|
|
bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const {
|
|
std::set<BasicBlock *> tmpSet;
|
|
for (DomSetType::const_iterator I = DS2.begin(),
|
|
E = DS2.end(); I != E; ++I)
|
|
tmpSet.insert(*I);
|
|
|
|
for (DomSetType::const_iterator I = DS1.begin(),
|
|
E = DS1.end(); I != E; ) {
|
|
BasicBlock *Node = *I++;
|
|
|
|
if (tmpSet.erase(Node) == 0)
|
|
// Node is in DS1 but not in DS2.
|
|
return true;
|
|
}
|
|
|
|
if (!tmpSet.empty())
|
|
// There are nodes that are in DS2 but not in DS1.
|
|
return true;
|
|
|
|
// DS1 and DS2 matches.
|
|
return false;
|
|
}
|
|
|
|
/// compare - Return true if the other dominance frontier base matches
|
|
/// this dominance frontier base. Otherwise return false.
|
|
bool compare(DominanceFrontierBase &Other) const {
|
|
DomSetMapType tmpFrontiers;
|
|
for (DomSetMapType::const_iterator I = Other.begin(),
|
|
E = Other.end(); I != E; ++I)
|
|
tmpFrontiers.insert(std::make_pair(I->first, I->second));
|
|
|
|
for (DomSetMapType::iterator I = tmpFrontiers.begin(),
|
|
E = tmpFrontiers.end(); I != E; ) {
|
|
BasicBlock *Node = I->first;
|
|
const_iterator DFI = find(Node);
|
|
if (DFI == end())
|
|
return true;
|
|
|
|
if (compareDomSet(I->second, DFI->second))
|
|
return true;
|
|
|
|
++I;
|
|
tmpFrontiers.erase(Node);
|
|
}
|
|
|
|
if (!tmpFrontiers.empty())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// print - Convert to human readable form
|
|
///
|
|
virtual void print(raw_ostream &OS, const Module* = 0) const;
|
|
|
|
/// dump - Dump the dominance frontier to dbgs().
|
|
void dump() const;
|
|
};
|
|
|
|
|
|
//===-------------------------------------
|
|
/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
|
|
/// used to compute a forward dominator frontiers.
|
|
///
|
|
class DominanceFrontier : public DominanceFrontierBase {
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
DominanceFrontier() :
|
|
DominanceFrontierBase(ID, false) {
|
|
initializeDominanceFrontierPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
BasicBlock *getRoot() const {
|
|
assert(Roots.size() == 1 && "Should always have entry node!");
|
|
return Roots[0];
|
|
}
|
|
|
|
virtual bool runOnFunction(Function &) {
|
|
Frontiers.clear();
|
|
DominatorTree &DT = getAnalysis<DominatorTree>();
|
|
Roots = DT.getRoots();
|
|
assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
|
|
calculate(DT, DT[Roots[0]]);
|
|
return false;
|
|
}
|
|
|
|
virtual void verifyAnalysis() const;
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<DominatorTree>();
|
|
}
|
|
|
|
/// splitBlock - BB is split and now it has one successor. Update dominance
|
|
/// frontier to reflect this change.
|
|
void splitBlock(BasicBlock *BB);
|
|
|
|
/// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
|
|
/// to reflect this change.
|
|
void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
|
|
DominatorTree *DT) {
|
|
// NewBB is now dominating BB. Which means BB's dominance
|
|
// frontier is now part of NewBB's dominance frontier. However, BB
|
|
// itself is not member of NewBB's dominance frontier.
|
|
DominanceFrontier::iterator NewDFI = find(NewBB);
|
|
DominanceFrontier::iterator DFI = find(BB);
|
|
// If BB was an entry block then its frontier is empty.
|
|
if (DFI == end())
|
|
return;
|
|
DominanceFrontier::DomSetType BBSet = DFI->second;
|
|
for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
|
|
BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
|
|
BasicBlock *DFMember = *BBSetI;
|
|
// Insert only if NewBB dominates DFMember.
|
|
if (!DT->dominates(NewBB, DFMember))
|
|
NewDFI->second.insert(DFMember);
|
|
}
|
|
NewDFI->second.erase(BB);
|
|
}
|
|
|
|
const DomSetType &calculate(const DominatorTree &DT,
|
|
const DomTreeNode *Node);
|
|
};
|
|
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|