llvm-6502/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
Chris Lattner 36ba5006df Implement a refinement to the mem2reg algorithm for cases where an alloca
has a single def.  In this case, look for uses that are dominated by the def
and attempt to rewrite them to directly use the stored value.

This speeds up mem2reg on these values and reduces the number of phi nodes
inserted.  This should address PR665.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24411 91177308-0d34-0410-b5e6-96231b3b80d8
2005-11-18 07:31:42 +00:00

741 lines
30 KiB
C++

//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file promote memory references to be register references. It promotes
// alloca instructions which only have loads and stores as uses. An alloca is
// transformed by using dominator frontiers to place PHI nodes, then traversing
// the function in depth-first order to rewrite loads and stores as appropriate.
// This is just the standard SSA construction algorithm to construct "pruned"
// SSA form.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/StableBasicBlockNumbering.h"
#include <algorithm>
using namespace llvm;
/// isAllocaPromotable - Return true if this alloca is legal for promotion.
/// This is true if there are only loads and stores to the alloca.
///
bool llvm::isAllocaPromotable(const AllocaInst *AI, const TargetData &TD) {
// FIXME: If the memory unit is of pointer or integer type, we can permit
// assignments to subsections of the memory unit.
// Only allow direct loads and stores...
for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
UI != UE; ++UI) // Loop over all of the uses of the alloca
if (isa<LoadInst>(*UI)) {
// noop
} else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
if (SI->getOperand(0) == AI)
return false; // Don't allow a store OF the AI, only INTO the AI.
} else {
return false; // Not a load or store.
}
return true;
}
namespace {
struct PromoteMem2Reg {
/// Allocas - The alloca instructions being promoted.
///
std::vector<AllocaInst*> Allocas;
std::vector<AllocaInst*> &RetryList;
DominatorTree &DT;
DominanceFrontier &DF;
const TargetData &TD;
/// AST - An AliasSetTracker object to update. If null, don't update it.
///
AliasSetTracker *AST;
/// AllocaLookup - Reverse mapping of Allocas.
///
std::map<AllocaInst*, unsigned> AllocaLookup;
/// NewPhiNodes - The PhiNodes we're adding.
///
std::map<BasicBlock*, std::vector<PHINode*> > NewPhiNodes;
/// PointerAllocaValues - If we are updating an AliasSetTracker, then for
/// each alloca that is of pointer type, we keep track of what to copyValue
/// to the inserted PHI nodes here.
///
std::vector<Value*> PointerAllocaValues;
/// Visited - The set of basic blocks the renamer has already visited.
///
std::set<BasicBlock*> Visited;
/// BBNumbers - Contains a stable numbering of basic blocks to avoid
/// non-determinstic behavior.
StableBasicBlockNumbering BBNumbers;
public:
PromoteMem2Reg(const std::vector<AllocaInst*> &A,
std::vector<AllocaInst*> &Retry, DominatorTree &dt,
DominanceFrontier &df, const TargetData &td,
AliasSetTracker *ast)
: Allocas(A), RetryList(Retry), DT(dt), DF(df), TD(td), AST(ast) {}
void run();
/// properlyDominates - Return true if I1 properly dominates I2.
///
bool properlyDominates(Instruction *I1, Instruction *I2) const {
if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
I1 = II->getNormalDest()->begin();
return DT[I1->getParent()]->properlyDominates(DT[I2->getParent()]);
}
/// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
///
bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
return DT[BB1]->dominates(DT[BB2]);
}
private:
void MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
std::set<PHINode*> &DeadPHINodes);
bool PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI);
void PromoteLocallyUsedAllocas(BasicBlock *BB,
const std::vector<AllocaInst*> &AIs);
void RenamePass(BasicBlock *BB, BasicBlock *Pred,
std::vector<Value*> &IncVals);
bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
std::set<PHINode*> &InsertedPHINodes);
};
} // end of anonymous namespace
void PromoteMem2Reg::run() {
Function &F = *DF.getRoot()->getParent();
// LocallyUsedAllocas - Keep track of all of the alloca instructions which are
// only used in a single basic block. These instructions can be efficiently
// promoted by performing a single linear scan over that one block. Since
// individual basic blocks are sometimes large, we group together all allocas
// that are live in a single basic block by the basic block they are live in.
std::map<BasicBlock*, std::vector<AllocaInst*> > LocallyUsedAllocas;
if (AST) PointerAllocaValues.resize(Allocas.size());
for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
AllocaInst *AI = Allocas[AllocaNum];
assert(isAllocaPromotable(AI, TD) &&
"Cannot promote non-promotable alloca!");
assert(AI->getParent()->getParent() == &F &&
"All allocas should be in the same function, which is same as DF!");
if (AI->use_empty()) {
// If there are no uses of the alloca, just delete it now.
if (AST) AST->deleteValue(AI);
AI->getParent()->getInstList().erase(AI);
// Remove the alloca from the Allocas list, since it has been processed
Allocas[AllocaNum] = Allocas.back();
Allocas.pop_back();
--AllocaNum;
continue;
}
// Calculate the set of read and write-locations for each alloca. This is
// analogous to finding the 'uses' and 'definitions' of each variable.
std::vector<BasicBlock*> DefiningBlocks;
std::vector<BasicBlock*> UsingBlocks;
StoreInst *OnlyStore = 0;
BasicBlock *OnlyBlock = 0;
bool OnlyUsedInOneBlock = true;
// As we scan the uses of the alloca instruction, keep track of stores, and
// decide whether all of the loads and stores to the alloca are within the
// same basic block.
Value *AllocaPointerVal = 0;
for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E;++U){
Instruction *User = cast<Instruction>(*U);
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
// Remember the basic blocks which define new values for the alloca
DefiningBlocks.push_back(SI->getParent());
AllocaPointerVal = SI->getOperand(0);
OnlyStore = SI;
} else {
LoadInst *LI = cast<LoadInst>(User);
// Otherwise it must be a load instruction, keep track of variable reads
UsingBlocks.push_back(LI->getParent());
AllocaPointerVal = LI;
}
if (OnlyUsedInOneBlock) {
if (OnlyBlock == 0)
OnlyBlock = User->getParent();
else if (OnlyBlock != User->getParent())
OnlyUsedInOneBlock = false;
}
}
// If the alloca is only read and written in one basic block, just perform a
// linear sweep over the block to eliminate it.
if (OnlyUsedInOneBlock) {
LocallyUsedAllocas[OnlyBlock].push_back(AI);
// Remove the alloca from the Allocas list, since it will be processed.
Allocas[AllocaNum] = Allocas.back();
Allocas.pop_back();
--AllocaNum;
continue;
}
// If there is only a single store to this value, replace any loads of
// it that are directly dominated by the definition with the value stored.
if (DefiningBlocks.size() == 1) {
// Be aware of loads before the store.
std::set<BasicBlock*> ProcessedBlocks;
for (unsigned i = 0, e = UsingBlocks.size(); i != e; ++i)
// If the store dominates the block and if we haven't processed it yet,
// do so now.
if (dominates(OnlyStore->getParent(), UsingBlocks[i]))
if (ProcessedBlocks.insert(UsingBlocks[i]).second) {
BasicBlock *UseBlock = UsingBlocks[i];
// If the use and store are in the same block, do a quick scan to
// verify that there are no uses before the store.
if (UseBlock == OnlyStore->getParent()) {
BasicBlock::iterator I = UseBlock->begin();
for (; &*I != OnlyStore; ++I) { // scan block for store.
if (isa<LoadInst>(I) && I->getOperand(0) == AI)
break;
}
if (&*I != OnlyStore) break; // Do not handle this case.
}
// Otherwise, if this is a different block or if all uses happen
// after the store, do a simple linear scan to replace loads with
// the stored value.
for (BasicBlock::iterator I = UseBlock->begin(),E = UseBlock->end();
I != E; ) {
if (LoadInst *LI = dyn_cast<LoadInst>(I++)) {
if (LI->getOperand(0) == AI) {
LI->replaceAllUsesWith(OnlyStore->getOperand(0));
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
LI->eraseFromParent();
}
}
}
// Finally, remove this block from the UsingBlock set.
UsingBlocks[i] = UsingBlocks.back();
--i; --e;
}
// Finally, after the scan, check to see if the store is all that is left.
if (UsingBlocks.empty()) {
// The alloca has been processed, move on.
Allocas[AllocaNum] = Allocas.back();
Allocas.pop_back();
--AllocaNum;
continue;
}
}
if (AST)
PointerAllocaValues[AllocaNum] = AllocaPointerVal;
// If we haven't computed a numbering for the BB's in the function, do so
// now.
BBNumbers.compute(F);
// Compute the locations where PhiNodes need to be inserted. Look at the
// dominance frontier of EACH basic-block we have a write in.
//
unsigned CurrentVersion = 0;
std::set<PHINode*> InsertedPHINodes;
std::vector<unsigned> DFBlocks;
while (!DefiningBlocks.empty()) {
BasicBlock *BB = DefiningBlocks.back();
DefiningBlocks.pop_back();
// Look up the DF for this write, add it to PhiNodes
DominanceFrontier::const_iterator it = DF.find(BB);
if (it != DF.end()) {
const DominanceFrontier::DomSetType &S = it->second;
// In theory we don't need the indirection through the DFBlocks vector.
// In practice, the order of calling QueuePhiNode would depend on the
// (unspecified) ordering of basic blocks in the dominance frontier,
// which would give PHI nodes non-determinstic subscripts. Fix this by
// processing blocks in order of the occurance in the function.
for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
PE = S.end(); P != PE; ++P)
DFBlocks.push_back(BBNumbers.getNumber(*P));
// Sort by which the block ordering in the function.
std::sort(DFBlocks.begin(), DFBlocks.end());
for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
BasicBlock *BB = BBNumbers.getBlock(DFBlocks[i]);
if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
DefiningBlocks.push_back(BB);
}
DFBlocks.clear();
}
}
// Now that we have inserted PHI nodes along the Iterated Dominance Frontier
// of the writes to the variable, scan through the reads of the variable,
// marking PHI nodes which are actually necessary as alive (by removing them
// from the InsertedPHINodes set). This is not perfect: there may PHI
// marked alive because of loads which are dominated by stores, but there
// will be no unmarked PHI nodes which are actually used.
//
for (unsigned i = 0, e = UsingBlocks.size(); i != e; ++i)
MarkDominatingPHILive(UsingBlocks[i], AllocaNum, InsertedPHINodes);
UsingBlocks.clear();
// If there are any PHI nodes which are now known to be dead, remove them!
for (std::set<PHINode*>::iterator I = InsertedPHINodes.begin(),
E = InsertedPHINodes.end(); I != E; ++I) {
PHINode *PN = *I;
std::vector<PHINode*> &BBPNs = NewPhiNodes[PN->getParent()];
BBPNs[AllocaNum] = 0;
// Check to see if we just removed the last inserted PHI node from this
// basic block. If so, remove the entry for the basic block.
bool HasOtherPHIs = false;
for (unsigned i = 0, e = BBPNs.size(); i != e; ++i)
if (BBPNs[i]) {
HasOtherPHIs = true;
break;
}
if (!HasOtherPHIs)
NewPhiNodes.erase(PN->getParent());
if (AST && isa<PointerType>(PN->getType()))
AST->deleteValue(PN);
PN->getParent()->getInstList().erase(PN);
}
// Keep the reverse mapping of the 'Allocas' array.
AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
}
// Process all allocas which are only used in a single basic block.
for (std::map<BasicBlock*, std::vector<AllocaInst*> >::iterator I =
LocallyUsedAllocas.begin(), E = LocallyUsedAllocas.end(); I != E; ++I){
const std::vector<AllocaInst*> &LocAllocas = I->second;
assert(!LocAllocas.empty() && "empty alloca list??");
// It's common for there to only be one alloca in the list. Handle it
// efficiently.
if (LocAllocas.size() == 1) {
// If we can do the quick promotion pass, do so now.
if (PromoteLocallyUsedAlloca(I->first, LocAllocas[0]))
RetryList.push_back(LocAllocas[0]); // Failed, retry later.
} else {
// Locally promote anything possible. Note that if this is unable to
// promote a particular alloca, it puts the alloca onto the Allocas vector
// for global processing.
PromoteLocallyUsedAllocas(I->first, LocAllocas);
}
}
if (Allocas.empty())
return; // All of the allocas must have been trivial!
// Set the incoming values for the basic block to be null values for all of
// the alloca's. We do this in case there is a load of a value that has not
// been stored yet. In this case, it will get this null value.
//
std::vector<Value *> Values(Allocas.size());
for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
// Walks all basic blocks in the function performing the SSA rename algorithm
// and inserting the phi nodes we marked as necessary
//
RenamePass(F.begin(), 0, Values);
// The renamer uses the Visited set to avoid infinite loops. Clear it now.
Visited.clear();
// Remove the allocas themselves from the function...
for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
Instruction *A = Allocas[i];
// If there are any uses of the alloca instructions left, they must be in
// sections of dead code that were not processed on the dominance frontier.
// Just delete the users now.
//
if (!A->use_empty())
A->replaceAllUsesWith(UndefValue::get(A->getType()));
if (AST) AST->deleteValue(A);
A->getParent()->getInstList().erase(A);
}
// At this point, the renamer has added entries to PHI nodes for all reachable
// code. Unfortunately, there may be blocks which are not reachable, which
// the renamer hasn't traversed. If this is the case, the PHI nodes may not
// have incoming values for all predecessors. Loop over all PHI nodes we have
// created, inserting undef values if they are missing any incoming values.
//
for (std::map<BasicBlock*, std::vector<PHINode *> >::iterator I =
NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
std::vector<BasicBlock*> Preds(pred_begin(I->first), pred_end(I->first));
std::vector<PHINode*> &PNs = I->second;
assert(!PNs.empty() && "Empty PHI node list??");
// Loop over all of the PHI nodes and see if there are any that we can get
// rid of because they merge all of the same incoming values. This can
// happen due to undef values coming into the PHI nodes.
PHINode *SomePHI = 0;
for (unsigned i = 0, e = PNs.size(); i != e; ++i)
if (PNs[i]) {
if (Value *V = PNs[i]->hasConstantValue(true)) {
if (!isa<Instruction>(V) ||
properlyDominates(cast<Instruction>(V), PNs[i])) {
if (AST && isa<PointerType>(PNs[i]->getType()))
AST->deleteValue(PNs[i]);
PNs[i]->replaceAllUsesWith(V);
PNs[i]->eraseFromParent();
PNs[i] = 0;
}
}
if (PNs[i])
SomePHI = PNs[i];
}
// Only do work here if there the PHI nodes are missing incoming values. We
// know that all PHI nodes that were inserted in a block will have the same
// number of incoming values, so we can just check any PHI node.
if (SomePHI && Preds.size() != SomePHI->getNumIncomingValues()) {
// Ok, now we know that all of the PHI nodes are missing entries for some
// basic blocks. Start by sorting the incoming predecessors for efficient
// access.
std::sort(Preds.begin(), Preds.end());
// Now we loop through all BB's which have entries in SomePHI and remove
// them from the Preds list.
for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
// Do a log(n) search of the Preds list for the entry we want.
std::vector<BasicBlock*>::iterator EntIt =
std::lower_bound(Preds.begin(), Preds.end(),
SomePHI->getIncomingBlock(i));
assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
"PHI node has entry for a block which is not a predecessor!");
// Remove the entry
Preds.erase(EntIt);
}
// At this point, the blocks left in the preds list must have dummy
// entries inserted into every PHI nodes for the block.
for (unsigned i = 0, e = PNs.size(); i != e; ++i)
if (PHINode *PN = PNs[i]) {
Value *UndefVal = UndefValue::get(PN->getType());
for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
PN->addIncoming(UndefVal, Preds[pred]);
}
}
}
}
// MarkDominatingPHILive - Mem2Reg wants to construct "pruned" SSA form, not
// "minimal" SSA form. To do this, it inserts all of the PHI nodes on the IDF
// as usual (inserting the PHI nodes in the DeadPHINodes set), then processes
// each read of the variable. For each block that reads the variable, this
// function is called, which removes used PHI nodes from the DeadPHINodes set.
// After all of the reads have been processed, any PHI nodes left in the
// DeadPHINodes set are removed.
//
void PromoteMem2Reg::MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
std::set<PHINode*> &DeadPHINodes) {
// Scan the immediate dominators of this block looking for a block which has a
// PHI node for Alloca num. If we find it, mark the PHI node as being alive!
for (DominatorTree::Node *N = DT[BB]; N; N = N->getIDom()) {
BasicBlock *DomBB = N->getBlock();
std::map<BasicBlock*, std::vector<PHINode*> >::iterator
I = NewPhiNodes.find(DomBB);
if (I != NewPhiNodes.end() && I->second[AllocaNum]) {
// Ok, we found an inserted PHI node which dominates this value.
PHINode *DominatingPHI = I->second[AllocaNum];
// Find out if we previously thought it was dead.
std::set<PHINode*>::iterator DPNI = DeadPHINodes.find(DominatingPHI);
if (DPNI != DeadPHINodes.end()) {
// Ok, until now, we thought this PHI node was dead. Mark it as being
// alive/needed.
DeadPHINodes.erase(DPNI);
// Now that we have marked the PHI node alive, also mark any PHI nodes
// which it might use as being alive as well.
for (pred_iterator PI = pred_begin(DomBB), PE = pred_end(DomBB);
PI != PE; ++PI)
MarkDominatingPHILive(*PI, AllocaNum, DeadPHINodes);
}
}
}
}
/// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic
/// block. If this is the case, avoid traversing the CFG and inserting a lot of
/// potentially useless PHI nodes by just performing a single linear pass over
/// the basic block using the Alloca.
///
/// If we cannot promote this alloca (because it is read before it is written),
/// return true. This is necessary in cases where, due to control flow, the
/// alloca is potentially undefined on some control flow paths. e.g. code like
/// this is potentially correct:
///
/// for (...) { if (c) { A = undef; undef = B; } }
///
/// ... so long as A is not used before undef is set.
///
bool PromoteMem2Reg::PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI) {
assert(!AI->use_empty() && "There are no uses of the alloca!");
// Handle degenerate cases quickly.
if (AI->hasOneUse()) {
Instruction *U = cast<Instruction>(AI->use_back());
if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
// Must be a load of uninitialized value.
LI->replaceAllUsesWith(UndefValue::get(AI->getAllocatedType()));
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
} else {
// Otherwise it must be a store which is never read.
assert(isa<StoreInst>(U));
}
BB->getInstList().erase(U);
} else {
// Uses of the uninitialized memory location shall get undef.
Value *CurVal = 0;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
Instruction *Inst = I++;
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
if (LI->getOperand(0) == AI) {
if (!CurVal) return true; // Could not locally promote!
// Loads just returns the "current value"...
LI->replaceAllUsesWith(CurVal);
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
BB->getInstList().erase(LI);
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
if (SI->getOperand(1) == AI) {
// Store updates the "current value"...
CurVal = SI->getOperand(0);
BB->getInstList().erase(SI);
}
}
}
}
// After traversing the basic block, there should be no more uses of the
// alloca, remove it now.
assert(AI->use_empty() && "Uses of alloca from more than one BB??");
if (AST) AST->deleteValue(AI);
AI->getParent()->getInstList().erase(AI);
return false;
}
/// PromoteLocallyUsedAllocas - This method is just like
/// PromoteLocallyUsedAlloca, except that it processes multiple alloca
/// instructions in parallel. This is important in cases where we have large
/// basic blocks, as we don't want to rescan the entire basic block for each
/// alloca which is locally used in it (which might be a lot).
void PromoteMem2Reg::
PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector<AllocaInst*> &AIs) {
std::map<AllocaInst*, Value*> CurValues;
for (unsigned i = 0, e = AIs.size(); i != e; ++i)
CurValues[AIs[i]] = 0; // Insert with null value
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
Instruction *Inst = I++;
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
// Is this a load of an alloca we are tracking?
if (AllocaInst *AI = dyn_cast<AllocaInst>(LI->getOperand(0))) {
std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
if (AIt != CurValues.end()) {
// If loading an uninitialized value, allow the inter-block case to
// handle it. Due to control flow, this might actually be ok.
if (AIt->second == 0) { // Use of locally uninitialized value??
RetryList.push_back(AI); // Retry elsewhere.
CurValues.erase(AIt); // Stop tracking this here.
if (CurValues.empty()) return;
} else {
// Loads just returns the "current value"...
LI->replaceAllUsesWith(AIt->second);
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
BB->getInstList().erase(LI);
}
}
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1))) {
std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
if (AIt != CurValues.end()) {
// Store updates the "current value"...
AIt->second = SI->getOperand(0);
BB->getInstList().erase(SI);
}
}
}
}
}
// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
// Alloca returns true if there wasn't already a phi-node for that variable
//
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
unsigned &Version,
std::set<PHINode*> &InsertedPHINodes) {
// Look up the basic-block in question.
std::vector<PHINode*> &BBPNs = NewPhiNodes[BB];
if (BBPNs.empty()) BBPNs.resize(Allocas.size());
// If the BB already has a phi node added for the i'th alloca then we're done!
if (BBPNs[AllocaNo]) return false;
// Create a PhiNode using the dereferenced type... and add the phi-node to the
// BasicBlock.
PHINode *PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
Allocas[AllocaNo]->getName() + "." +
utostr(Version++), BB->begin());
BBPNs[AllocaNo] = PN;
InsertedPHINodes.insert(PN);
if (AST && isa<PointerType>(PN->getType()))
AST->copyValue(PointerAllocaValues[AllocaNo], PN);
return true;
}
// RenamePass - Recursively traverse the CFG of the function, renaming loads and
// stores to the allocas which we are promoting. IncomingVals indicates what
// value each Alloca contains on exit from the predecessor block Pred.
//
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
std::vector<Value*> &IncomingVals) {
// If this BB needs a PHI node, update the PHI node for each variable we need
// PHI nodes for.
std::map<BasicBlock*, std::vector<PHINode *> >::iterator
BBPNI = NewPhiNodes.find(BB);
if (BBPNI != NewPhiNodes.end()) {
std::vector<PHINode *> &BBPNs = BBPNI->second;
for (unsigned k = 0; k != BBPNs.size(); ++k)
if (PHINode *PN = BBPNs[k]) {
// Add this incoming value to the PHI node.
PN->addIncoming(IncomingVals[k], Pred);
// The currently active variable for this block is now the PHI.
IncomingVals[k] = PN;
}
}
// don't revisit nodes
if (Visited.count(BB)) return;
// mark as visited
Visited.insert(BB);
for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
Instruction *I = II++; // get the instruction, increment iterator
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
if (AI != AllocaLookup.end()) {
Value *V = IncomingVals[AI->second];
// walk the use list of this load and replace all uses with r
LI->replaceAllUsesWith(V);
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
BB->getInstList().erase(LI);
}
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// Delete this instruction and mark the name as the current holder of the
// value
if (AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
if (ai != AllocaLookup.end()) {
// what value were we writing?
IncomingVals[ai->second] = SI->getOperand(0);
BB->getInstList().erase(SI);
}
}
}
}
// Recurse to our successors.
TerminatorInst *TI = BB->getTerminator();
for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
std::vector<Value*> OutgoingVals(IncomingVals);
RenamePass(TI->getSuccessor(i), BB, OutgoingVals);
}
}
/// PromoteMemToReg - Promote the specified list of alloca instructions into
/// scalar registers, inserting PHI nodes as appropriate. This function makes
/// use of DominanceFrontier information. This function does not modify the CFG
/// of the function at all. All allocas must be from the same function.
///
/// If AST is specified, the specified tracker is updated to reflect changes
/// made to the IR.
///
void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
DominatorTree &DT, DominanceFrontier &DF,
const TargetData &TD, AliasSetTracker *AST) {
// If there is nothing to do, bail out...
if (Allocas.empty()) return;
std::vector<AllocaInst*> RetryList;
PromoteMem2Reg(Allocas, RetryList, DT, DF, TD, AST).run();
// PromoteMem2Reg may not have been able to promote all of the allocas in one
// pass, run it again if needed.
while (!RetryList.empty()) {
// If we need to retry some allocas, this is due to there being no store
// before a read in a local block. To counteract this, insert a store of
// undef into the alloca right after the alloca itself.
for (unsigned i = 0, e = RetryList.size(); i != e; ++i) {
BasicBlock::iterator BBI = RetryList[i];
new StoreInst(UndefValue::get(RetryList[i]->getAllocatedType()),
RetryList[i], ++BBI);
}
std::vector<AllocaInst*> NewAllocas;
std::swap(NewAllocas, RetryList);
PromoteMem2Reg(NewAllocas, RetryList, DT, DF, TD, AST).run();
}
}