llvm-6502/include/llvm/InstrTypes.h
Duncan Sands a9d0c9dc58 When transforming a call to a bitcast function into
a direct call with cast parameters and cast return
value (if any), instcombine was prepared to cast any
non-void return value into any other, whether castable
or not.  Add a new predicate for testing whether casting
is valid, and check it both for the return value and
(as a cleanup) for the parameters.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45657 91177308-0d34-0410-b5e6-96231b3b80d8
2008-01-06 10:12:28 +00:00

590 lines
25 KiB
C++

//===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various meta classes of instructions that exist in the VM
// representation. Specific concrete subclasses of these may be found in the
// i*.h files...
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_INSTRUCTION_TYPES_H
#define LLVM_INSTRUCTION_TYPES_H
#include "llvm/Instruction.h"
namespace llvm {
//===----------------------------------------------------------------------===//
// TerminatorInst Class
//===----------------------------------------------------------------------===//
/// TerminatorInst - Subclasses of this class are all able to terminate a basic
/// block. Thus, these are all the flow control type of operations.
///
class TerminatorInst : public Instruction {
protected:
TerminatorInst(const Type *Ty, Instruction::TermOps iType,
Use *Ops, unsigned NumOps,
Instruction *InsertBefore = 0)
: Instruction(Ty, iType, Ops, NumOps, InsertBefore) {}
TerminatorInst(const Type *Ty, Instruction::TermOps iType,
Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd)
: Instruction(Ty, iType, Ops, NumOps, InsertAtEnd) {}
// Out of line virtual method, so the vtable, etc has a home.
~TerminatorInst();
/// Virtual methods - Terminators should overload these and provide inline
/// overrides of non-V methods.
virtual BasicBlock *getSuccessorV(unsigned idx) const = 0;
virtual unsigned getNumSuccessorsV() const = 0;
virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0;
public:
virtual Instruction *clone() const = 0;
/// getNumSuccessors - Return the number of successors that this terminator
/// has.
unsigned getNumSuccessors() const {
return getNumSuccessorsV();
}
/// getSuccessor - Return the specified successor.
///
BasicBlock *getSuccessor(unsigned idx) const {
return getSuccessorV(idx);
}
/// setSuccessor - Update the specified successor to point at the provided
/// block.
void setSuccessor(unsigned idx, BasicBlock *B) {
setSuccessorV(idx, B);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const TerminatorInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() >= TermOpsBegin && I->getOpcode() < TermOpsEnd;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// UnaryInstruction Class
//===----------------------------------------------------------------------===//
class UnaryInstruction : public Instruction {
Use Op;
// avoiding warning: 'this' : used in base member initializer list
UnaryInstruction* this_() { return this; }
protected:
UnaryInstruction(const Type *Ty, unsigned iType, Value *V, Instruction *IB =0)
: Instruction(Ty, iType, &Op, 1, IB), Op(V, this_()) {
}
UnaryInstruction(const Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
: Instruction(Ty, iType, &Op, 1, IAE), Op(V, this_()) {
}
public:
// Out of line virtual method, so the vtable, etc has a home.
~UnaryInstruction();
// Transparently provide more efficient getOperand methods.
Value *getOperand(unsigned i) const {
assert(i == 0 && "getOperand() out of range!");
return Op;
}
void setOperand(unsigned i, Value *Val) {
assert(i == 0 && "setOperand() out of range!");
Op = Val;
}
unsigned getNumOperands() const { return 1; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const UnaryInstruction *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Malloc ||
I->getOpcode() == Instruction::Alloca ||
I->getOpcode() == Instruction::Free ||
I->getOpcode() == Instruction::Load ||
I->getOpcode() == Instruction::VAArg ||
(I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// BinaryOperator Class
//===----------------------------------------------------------------------===//
class BinaryOperator : public Instruction {
Use Ops[2];
protected:
void init(BinaryOps iType);
BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty,
const std::string &Name, Instruction *InsertBefore);
BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty,
const std::string &Name, BasicBlock *InsertAtEnd);
public:
/// Transparently provide more efficient getOperand methods.
Value *getOperand(unsigned i) const {
assert(i < 2 && "getOperand() out of range!");
return Ops[i];
}
void setOperand(unsigned i, Value *Val) {
assert(i < 2 && "setOperand() out of range!");
Ops[i] = Val;
}
unsigned getNumOperands() const { return 2; }
/// create() - Construct a binary instruction, given the opcode and the two
/// operands. Optionally (if InstBefore is specified) insert the instruction
/// into a BasicBlock right before the specified instruction. The specified
/// Instruction is allowed to be a dereferenced end iterator.
///
static BinaryOperator *create(BinaryOps Op, Value *S1, Value *S2,
const std::string &Name = "",
Instruction *InsertBefore = 0);
/// create() - Construct a binary instruction, given the opcode and the two
/// operands. Also automatically insert this instruction to the end of the
/// BasicBlock specified.
///
static BinaryOperator *create(BinaryOps Op, Value *S1, Value *S2,
const std::string &Name,
BasicBlock *InsertAtEnd);
/// create* - These methods just forward to create, and are useful when you
/// statically know what type of instruction you're going to create. These
/// helpers just save some typing.
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
static BinaryOperator *create##OPC(Value *V1, Value *V2, \
const std::string &Name = "") {\
return create(Instruction::OPC, V1, V2, Name);\
}
#include "llvm/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
static BinaryOperator *create##OPC(Value *V1, Value *V2, \
const std::string &Name, BasicBlock *BB) {\
return create(Instruction::OPC, V1, V2, Name, BB);\
}
#include "llvm/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
static BinaryOperator *create##OPC(Value *V1, Value *V2, \
const std::string &Name, Instruction *I) {\
return create(Instruction::OPC, V1, V2, Name, I);\
}
#include "llvm/Instruction.def"
/// Helper functions to construct and inspect unary operations (NEG and NOT)
/// via binary operators SUB and XOR:
///
/// createNeg, createNot - Create the NEG and NOT
/// instructions out of SUB and XOR instructions.
///
static BinaryOperator *createNeg(Value *Op, const std::string &Name = "",
Instruction *InsertBefore = 0);
static BinaryOperator *createNeg(Value *Op, const std::string &Name,
BasicBlock *InsertAtEnd);
static BinaryOperator *createNot(Value *Op, const std::string &Name = "",
Instruction *InsertBefore = 0);
static BinaryOperator *createNot(Value *Op, const std::string &Name,
BasicBlock *InsertAtEnd);
/// isNeg, isNot - Check if the given Value is a NEG or NOT instruction.
///
static bool isNeg(const Value *V);
static bool isNot(const Value *V);
/// getNegArgument, getNotArgument - Helper functions to extract the
/// unary argument of a NEG or NOT operation implemented via Sub or Xor.
///
static const Value *getNegArgument(const Value *BinOp);
static Value *getNegArgument( Value *BinOp);
static const Value *getNotArgument(const Value *BinOp);
static Value *getNotArgument( Value *BinOp);
BinaryOps getOpcode() const {
return static_cast<BinaryOps>(Instruction::getOpcode());
}
virtual BinaryOperator *clone() const;
/// swapOperands - Exchange the two operands to this instruction.
/// This instruction is safe to use on any binary instruction and
/// does not modify the semantics of the instruction. If the
/// instruction is order dependent (SetLT f.e.) the opcode is
/// changed. If the instruction cannot be reversed (ie, it's a Div),
/// then return true.
///
bool swapOperands();
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const BinaryOperator *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() >= BinaryOpsBegin && I->getOpcode() < BinaryOpsEnd;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// CastInst Class
//===----------------------------------------------------------------------===//
/// CastInst - This is the base class for all instructions that perform data
/// casts. It is simply provided so that instruction category testing
/// can be performed with code like:
///
/// if (isa<CastInst>(Instr)) { ... }
/// @brief Base class of casting instructions.
class CastInst : public UnaryInstruction {
/// @brief Copy constructor
CastInst(const CastInst &CI)
: UnaryInstruction(CI.getType(), CI.getOpcode(), CI.getOperand(0)) {
}
/// @brief Do not allow default construction
CastInst();
protected:
/// @brief Constructor with insert-before-instruction semantics for subclasses
CastInst(const Type *Ty, unsigned iType, Value *S,
const std::string &Name = "", Instruction *InsertBefore = 0)
: UnaryInstruction(Ty, iType, S, InsertBefore) {
setName(Name);
}
/// @brief Constructor with insert-at-end-of-block semantics for subclasses
CastInst(const Type *Ty, unsigned iType, Value *S,
const std::string &Name, BasicBlock *InsertAtEnd)
: UnaryInstruction(Ty, iType, S, InsertAtEnd) {
setName(Name);
}
public:
/// Provides a way to construct any of the CastInst subclasses using an
/// opcode instead of the subclass's constructor. The opcode must be in the
/// CastOps category (Instruction::isCast(opcode) returns true). This
/// constructor has insert-before-instruction semantics to automatically
/// insert the new CastInst before InsertBefore (if it is non-null).
/// @brief Construct any of the CastInst subclasses
static CastInst *create(
Instruction::CastOps, ///< The opcode of the cast instruction
Value *S, ///< The value to be casted (operand 0)
const Type *Ty, ///< The type to which cast should be made
const std::string &Name = "", ///< Name for the instruction
Instruction *InsertBefore = 0 ///< Place to insert the instruction
);
/// Provides a way to construct any of the CastInst subclasses using an
/// opcode instead of the subclass's constructor. The opcode must be in the
/// CastOps category. This constructor has insert-at-end-of-block semantics
/// to automatically insert the new CastInst at the end of InsertAtEnd (if
/// its non-null).
/// @brief Construct any of the CastInst subclasses
static CastInst *create(
Instruction::CastOps, ///< The opcode for the cast instruction
Value *S, ///< The value to be casted (operand 0)
const Type *Ty, ///< The type to which operand is casted
const std::string &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Create a ZExt or BitCast cast instruction
static CastInst *createZExtOrBitCast(
Value *S, ///< The value to be casted (operand 0)
const Type *Ty, ///< The type to which cast should be made
const std::string &Name = "", ///< Name for the instruction
Instruction *InsertBefore = 0 ///< Place to insert the instruction
);
/// @brief Create a ZExt or BitCast cast instruction
static CastInst *createZExtOrBitCast(
Value *S, ///< The value to be casted (operand 0)
const Type *Ty, ///< The type to which operand is casted
const std::string &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Create a SExt or BitCast cast instruction
static CastInst *createSExtOrBitCast(
Value *S, ///< The value to be casted (operand 0)
const Type *Ty, ///< The type to which cast should be made
const std::string &Name = "", ///< Name for the instruction
Instruction *InsertBefore = 0 ///< Place to insert the instruction
);
/// @brief Create a BitCast or a PtrToInt cast instruction
static CastInst *createPointerCast(
Value *S, ///< The pointer value to be casted (operand 0)
const Type *Ty, ///< The type to which operand is casted
const std::string &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Create a BitCast or a PtrToInt cast instruction
static CastInst *createPointerCast(
Value *S, ///< The pointer value to be casted (operand 0)
const Type *Ty, ///< The type to which cast should be made
const std::string &Name = "", ///< Name for the instruction
Instruction *InsertBefore = 0 ///< Place to insert the instruction
);
/// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
static CastInst *createIntegerCast(
Value *S, ///< The pointer value to be casted (operand 0)
const Type *Ty, ///< The type to which cast should be made
bool isSigned, ///< Whether to regard S as signed or not
const std::string &Name = "", ///< Name for the instruction
Instruction *InsertBefore = 0 ///< Place to insert the instruction
);
/// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
static CastInst *createIntegerCast(
Value *S, ///< The integer value to be casted (operand 0)
const Type *Ty, ///< The integer type to which operand is casted
bool isSigned, ///< Whether to regard S as signed or not
const std::string &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
static CastInst *createFPCast(
Value *S, ///< The floating point value to be casted
const Type *Ty, ///< The floating point type to cast to
const std::string &Name = "", ///< Name for the instruction
Instruction *InsertBefore = 0 ///< Place to insert the instruction
);
/// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
static CastInst *createFPCast(
Value *S, ///< The floating point value to be casted
const Type *Ty, ///< The floating point type to cast to
const std::string &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Create a SExt or BitCast cast instruction
static CastInst *createSExtOrBitCast(
Value *S, ///< The value to be casted (operand 0)
const Type *Ty, ///< The type to which operand is casted
const std::string &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Create a Trunc or BitCast cast instruction
static CastInst *createTruncOrBitCast(
Value *S, ///< The value to be casted (operand 0)
const Type *Ty, ///< The type to which cast should be made
const std::string &Name = "", ///< Name for the instruction
Instruction *InsertBefore = 0 ///< Place to insert the instruction
);
/// @brief Create a Trunc or BitCast cast instruction
static CastInst *createTruncOrBitCast(
Value *S, ///< The value to be casted (operand 0)
const Type *Ty, ///< The type to which operand is casted
const std::string &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Check whether it is valid to call getCastOpcode for these types.
static bool isCastable(
const Type *SrcTy, ///< The Type from which the value should be cast.
const Type *DestTy ///< The Type to which the value should be cast.
);
/// Returns the opcode necessary to cast Val into Ty using usual casting
/// rules.
/// @brief Infer the opcode for cast operand and type
static Instruction::CastOps getCastOpcode(
const Value *Val, ///< The value to cast
bool SrcIsSigned, ///< Whether to treat the source as signed
const Type *Ty, ///< The Type to which the value should be casted
bool DstIsSigned ///< Whether to treate the dest. as signed
);
/// There are several places where we need to know if a cast instruction
/// only deals with integer source and destination types. To simplify that
/// logic, this method is provided.
/// @returns true iff the cast has only integral typed operand and dest type.
/// @brief Determine if this is an integer-only cast.
bool isIntegerCast() const;
/// A lossless cast is one that does not alter the basic value. It implies
/// a no-op cast but is more stringent, preventing things like int->float,
/// long->double, int->ptr, or vector->anything.
/// @returns true iff the cast is lossless.
/// @brief Determine if this is a lossless cast.
bool isLosslessCast() const;
/// A no-op cast is one that can be effected without changing any bits.
/// It implies that the source and destination types are the same size. The
/// IntPtrTy argument is used to make accurate determinations for casts
/// involving Integer and Pointer types. They are no-op casts if the integer
/// is the same size as the pointer. However, pointer size varies with
/// platform. Generally, the result of TargetData::getIntPtrType() should be
/// passed in. If that's not available, use Type::Int64Ty, which will make
/// the isNoopCast call conservative.
/// @brief Determine if this cast is a no-op cast.
bool isNoopCast(
const Type *IntPtrTy ///< Integer type corresponding to pointer
) const;
/// Determine how a pair of casts can be eliminated, if they can be at all.
/// This is a helper function for both CastInst and ConstantExpr.
/// @returns 0 if the CastInst pair can't be eliminated
/// @returns Instruction::CastOps value for a cast that can replace
/// the pair, casting SrcTy to DstTy.
/// @brief Determine if a cast pair is eliminable
static unsigned isEliminableCastPair(
Instruction::CastOps firstOpcode, ///< Opcode of first cast
Instruction::CastOps secondOpcode, ///< Opcode of second cast
const Type *SrcTy, ///< SrcTy of 1st cast
const Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
const Type *DstTy, ///< DstTy of 2nd cast
const Type *IntPtrTy ///< Integer type corresponding to Ptr types
);
/// @brief Return the opcode of this CastInst
Instruction::CastOps getOpcode() const {
return Instruction::CastOps(Instruction::getOpcode());
}
/// @brief Return the source type, as a convenience
const Type* getSrcTy() const { return getOperand(0)->getType(); }
/// @brief Return the destination type, as a convenience
const Type* getDestTy() const { return getType(); }
/// This method can be used to determine if a cast from S to DstTy using
/// Opcode op is valid or not.
/// @returns true iff the proposed cast is valid.
/// @brief Determine if a cast is valid without creating one.
static bool castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy);
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const CastInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// CmpInst Class
//===----------------------------------------------------------------------===//
/// This class is the base class for the comparison instructions.
/// @brief Abstract base class of comparison instructions.
class CmpInst: public Instruction {
CmpInst(); // do not implement
protected:
CmpInst(Instruction::OtherOps op, unsigned short pred, Value *LHS, Value *RHS,
const std::string &Name = "", Instruction *InsertBefore = 0);
CmpInst(Instruction::OtherOps op, unsigned short pred, Value *LHS, Value *RHS,
const std::string &Name, BasicBlock *InsertAtEnd);
Use Ops[2]; // CmpInst instructions always have 2 operands, optimize
public:
/// Construct a compare instruction, given the opcode, the predicate and
/// the two operands. Optionally (if InstBefore is specified) insert the
/// instruction into a BasicBlock right before the specified instruction.
/// The specified Instruction is allowed to be a dereferenced end iterator.
/// @brief Create a CmpInst
static CmpInst *create(OtherOps Op, unsigned short predicate, Value *S1,
Value *S2, const std::string &Name = "",
Instruction *InsertBefore = 0);
/// Construct a compare instruction, given the opcode, the predicate and the
/// two operands. Also automatically insert this instruction to the end of
/// the BasicBlock specified.
/// @brief Create a CmpInst
static CmpInst *create(OtherOps Op, unsigned short predicate, Value *S1,
Value *S2, const std::string &Name,
BasicBlock *InsertAtEnd);
/// @brief Get the opcode casted to the right type
OtherOps getOpcode() const {
return static_cast<OtherOps>(Instruction::getOpcode());
}
/// The predicate for CmpInst is defined by the subclasses but stored in
/// the SubclassData field (see Value.h). We allow it to be fetched here
/// as the predicate but there is no enum type for it, just the raw unsigned
/// short. This facilitates comparison of CmpInst instances without delving
/// into the subclasses since predicate values are distinct between the
/// CmpInst subclasses.
/// @brief Return the predicate for this instruction.
unsigned short getPredicate() const {
return SubclassData;
}
/// @brief Provide more efficient getOperand methods.
Value *getOperand(unsigned i) const {
assert(i < 2 && "getOperand() out of range!");
return Ops[i];
}
void setOperand(unsigned i, Value *Val) {
assert(i < 2 && "setOperand() out of range!");
Ops[i] = Val;
}
/// @brief CmpInst instructions always have 2 operands.
unsigned getNumOperands() const { return 2; }
/// This is just a convenience that dispatches to the subclasses.
/// @brief Swap the operands and adjust predicate accordingly to retain
/// the same comparison.
void swapOperands();
/// This is just a convenience that dispatches to the subclasses.
/// @brief Determine if this CmpInst is commutative.
bool isCommutative();
/// This is just a convenience that dispatches to the subclasses.
/// @brief Determine if this is an equals/not equals predicate.
bool isEquality();
/// @returns true if the predicate is unsigned, false otherwise.
/// @brief Determine if the predicate is an unsigned operation.
static bool isUnsigned(unsigned short predicate);
/// @returns true if the predicate is signed, false otherwise.
/// @brief Determine if the predicate is an signed operation.
static bool isSigned(unsigned short predicate);
/// @brief Determine if the predicate is an ordered operation.
static bool isOrdered(unsigned short predicate);
/// @brief Determine if the predicate is an unordered operation.
static bool isUnordered(unsigned short predicate);
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const CmpInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ICmp ||
I->getOpcode() == Instruction::FCmp;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
} // End llvm namespace
#endif