mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
a10756ee65
This new version is much more aggressive about doing "full" reduction in cases where it reduces register pressure, and also more aggressive about rewriting induction variables to count down (or up) to zero when doing so reduces register pressure. It currently uses fairly simplistic algorithms for finding reuse opportunities, but it introduces a new framework allows it to combine multiple strategies at once to form hybrid solutions, instead of doing all full-reduction or all base+index. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94061 91177308-0d34-0410-b5e6-96231b3b80d8
389 lines
15 KiB
C++
389 lines
15 KiB
C++
//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements bookkeeping for "interesting" users of expressions
|
|
// computed from induction variables.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "iv-users"
|
|
#include "llvm/Analysis/IVUsers.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
char IVUsers::ID = 0;
|
|
static RegisterPass<IVUsers>
|
|
X("iv-users", "Induction Variable Users", false, true);
|
|
|
|
Pass *llvm::createIVUsersPass() {
|
|
return new IVUsers();
|
|
}
|
|
|
|
/// containsAddRecFromDifferentLoop - Determine whether expression S involves a
|
|
/// subexpression that is an AddRec from a loop other than L. An outer loop
|
|
/// of L is OK, but not an inner loop nor a disjoint loop.
|
|
static bool containsAddRecFromDifferentLoop(const SCEV *S, Loop *L) {
|
|
// This is very common, put it first.
|
|
if (isa<SCEVConstant>(S))
|
|
return false;
|
|
if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
|
|
for (unsigned int i=0; i< AE->getNumOperands(); i++)
|
|
if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
|
|
return true;
|
|
return false;
|
|
}
|
|
if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
|
|
if (const Loop *newLoop = AE->getLoop()) {
|
|
if (newLoop == L)
|
|
return false;
|
|
// if newLoop is an outer loop of L, this is OK.
|
|
if (newLoop->contains(L))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
|
|
return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
|
|
containsAddRecFromDifferentLoop(DE->getRHS(), L);
|
|
#if 0
|
|
// SCEVSDivExpr has been backed out temporarily, but will be back; we'll
|
|
// need this when it is.
|
|
if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
|
|
return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
|
|
containsAddRecFromDifferentLoop(DE->getRHS(), L);
|
|
#endif
|
|
if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S))
|
|
return containsAddRecFromDifferentLoop(CE->getOperand(), L);
|
|
return false;
|
|
}
|
|
|
|
/// getSCEVStartAndStride - Compute the start and stride of this expression,
|
|
/// returning false if the expression is not a start/stride pair, or true if it
|
|
/// is. The stride must be a loop invariant expression, but the start may be
|
|
/// a mix of loop invariant and loop variant expressions. The start cannot,
|
|
/// however, contain an AddRec from a different loop, unless that loop is an
|
|
/// outer loop of the current loop.
|
|
static bool getSCEVStartAndStride(const SCEV *&SH, Loop *L, Loop *UseLoop,
|
|
const SCEV *&Start, const SCEV *&Stride,
|
|
ScalarEvolution *SE, DominatorTree *DT) {
|
|
const SCEV *TheAddRec = Start; // Initialize to zero.
|
|
|
|
// If the outer level is an AddExpr, the operands are all start values except
|
|
// for a nested AddRecExpr.
|
|
if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) {
|
|
for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i)
|
|
if (const SCEVAddRecExpr *AddRec =
|
|
dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) {
|
|
if (AddRec->getLoop() == L)
|
|
TheAddRec = SE->getAddExpr(AddRec, TheAddRec);
|
|
else
|
|
return false; // Nested IV of some sort?
|
|
} else {
|
|
Start = SE->getAddExpr(Start, AE->getOperand(i));
|
|
}
|
|
} else if (isa<SCEVAddRecExpr>(SH)) {
|
|
TheAddRec = SH;
|
|
} else {
|
|
return false; // not analyzable.
|
|
}
|
|
|
|
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec);
|
|
if (!AddRec || AddRec->getLoop() != L) return false;
|
|
|
|
// Use getSCEVAtScope to attempt to simplify other loops out of
|
|
// the picture.
|
|
const SCEV *AddRecStart = AddRec->getStart();
|
|
AddRecStart = SE->getSCEVAtScope(AddRecStart, UseLoop);
|
|
const SCEV *AddRecStride = AddRec->getStepRecurrence(*SE);
|
|
|
|
// FIXME: If Start contains an SCEVAddRecExpr from a different loop, other
|
|
// than an outer loop of the current loop, reject it. LSR has no concept of
|
|
// operating on more than one loop at a time so don't confuse it with such
|
|
// expressions.
|
|
if (containsAddRecFromDifferentLoop(AddRecStart, L))
|
|
return false;
|
|
|
|
Start = SE->getAddExpr(Start, AddRecStart);
|
|
|
|
// If stride is an instruction, make sure it properly dominates the header.
|
|
// Otherwise we could end up with a use before def situation.
|
|
if (!isa<SCEVConstant>(AddRecStride)) {
|
|
BasicBlock *Header = L->getHeader();
|
|
if (!AddRecStride->properlyDominates(Header, DT))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "[";
|
|
WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
|
|
dbgs() << "] Variable stride: " << *AddRec << "\n");
|
|
}
|
|
|
|
Stride = AddRecStride;
|
|
return true;
|
|
}
|
|
|
|
/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
|
|
/// and now we need to decide whether the user should use the preinc or post-inc
|
|
/// value. If this user should use the post-inc version of the IV, return true.
|
|
///
|
|
/// Choosing wrong here can break dominance properties (if we choose to use the
|
|
/// post-inc value when we cannot) or it can end up adding extra live-ranges to
|
|
/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
|
|
/// should use the post-inc value).
|
|
static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV,
|
|
Loop *L, LoopInfo *LI, DominatorTree *DT,
|
|
Pass *P) {
|
|
// If the user is in the loop, use the preinc value.
|
|
if (L->contains(User)) return false;
|
|
|
|
BasicBlock *LatchBlock = L->getLoopLatch();
|
|
if (!LatchBlock)
|
|
return false;
|
|
|
|
// Ok, the user is outside of the loop. If it is dominated by the latch
|
|
// block, use the post-inc value.
|
|
if (DT->dominates(LatchBlock, User->getParent()))
|
|
return true;
|
|
|
|
// There is one case we have to be careful of: PHI nodes. These little guys
|
|
// can live in blocks that are not dominated by the latch block, but (since
|
|
// their uses occur in the predecessor block, not the block the PHI lives in)
|
|
// should still use the post-inc value. Check for this case now.
|
|
PHINode *PN = dyn_cast<PHINode>(User);
|
|
if (!PN) return false; // not a phi, not dominated by latch block.
|
|
|
|
// Look at all of the uses of IV by the PHI node. If any use corresponds to
|
|
// a block that is not dominated by the latch block, give up and use the
|
|
// preincremented value.
|
|
unsigned NumUses = 0;
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingValue(i) == IV) {
|
|
++NumUses;
|
|
if (!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
|
|
return false;
|
|
}
|
|
|
|
// Okay, all uses of IV by PN are in predecessor blocks that really are
|
|
// dominated by the latch block. Use the post-incremented value.
|
|
return true;
|
|
}
|
|
|
|
/// AddUsersIfInteresting - Inspect the specified instruction. If it is a
|
|
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
|
|
/// return true. Otherwise, return false.
|
|
bool IVUsers::AddUsersIfInteresting(Instruction *I) {
|
|
if (!SE->isSCEVable(I->getType()))
|
|
return false; // Void and FP expressions cannot be reduced.
|
|
|
|
// LSR is not APInt clean, do not touch integers bigger than 64-bits.
|
|
if (SE->getTypeSizeInBits(I->getType()) > 64)
|
|
return false;
|
|
|
|
if (!Processed.insert(I))
|
|
return true; // Instruction already handled.
|
|
|
|
// Get the symbolic expression for this instruction.
|
|
const SCEV *ISE = SE->getSCEV(I);
|
|
if (isa<SCEVCouldNotCompute>(ISE)) return false;
|
|
|
|
// Get the start and stride for this expression.
|
|
Loop *UseLoop = LI->getLoopFor(I->getParent());
|
|
const SCEV *Start = SE->getIntegerSCEV(0, ISE->getType());
|
|
const SCEV *Stride = Start;
|
|
|
|
if (!getSCEVStartAndStride(ISE, L, UseLoop, Start, Stride, SE, DT))
|
|
return false; // Non-reducible symbolic expression, bail out.
|
|
|
|
// Keep things simple. Don't touch loop-variant strides.
|
|
if (!Stride->isLoopInvariant(L) && L->contains(I))
|
|
return false;
|
|
|
|
SmallPtrSet<Instruction *, 4> UniqueUsers;
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
|
UI != E; ++UI) {
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
if (!UniqueUsers.insert(User))
|
|
continue;
|
|
|
|
// Do not infinitely recurse on PHI nodes.
|
|
if (isa<PHINode>(User) && Processed.count(User))
|
|
continue;
|
|
|
|
// Descend recursively, but not into PHI nodes outside the current loop.
|
|
// It's important to see the entire expression outside the loop to get
|
|
// choices that depend on addressing mode use right, although we won't
|
|
// consider references ouside the loop in all cases.
|
|
// If User is already in Processed, we don't want to recurse into it again,
|
|
// but do want to record a second reference in the same instruction.
|
|
bool AddUserToIVUsers = false;
|
|
if (LI->getLoopFor(User->getParent()) != L) {
|
|
if (isa<PHINode>(User) || Processed.count(User) ||
|
|
!AddUsersIfInteresting(User)) {
|
|
DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
|
|
<< " OF SCEV: " << *ISE << '\n');
|
|
AddUserToIVUsers = true;
|
|
}
|
|
} else if (Processed.count(User) ||
|
|
!AddUsersIfInteresting(User)) {
|
|
DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
|
|
<< " OF SCEV: " << *ISE << '\n');
|
|
AddUserToIVUsers = true;
|
|
}
|
|
|
|
if (AddUserToIVUsers) {
|
|
IVUsersOfOneStride *StrideUses = IVUsesByStride[Stride];
|
|
if (!StrideUses) { // First occurrence of this stride?
|
|
StrideOrder.push_back(Stride);
|
|
StrideUses = new IVUsersOfOneStride(Stride);
|
|
IVUses.push_back(StrideUses);
|
|
IVUsesByStride[Stride] = StrideUses;
|
|
}
|
|
|
|
// Okay, we found a user that we cannot reduce. Analyze the instruction
|
|
// and decide what to do with it. If we are a use inside of the loop, use
|
|
// the value before incrementation, otherwise use it after incrementation.
|
|
if (IVUseShouldUsePostIncValue(User, I, L, LI, DT, this)) {
|
|
// The value used will be incremented by the stride more than we are
|
|
// expecting, so subtract this off.
|
|
const SCEV *NewStart = SE->getMinusSCEV(Start, Stride);
|
|
StrideUses->addUser(NewStart, User, I);
|
|
StrideUses->Users.back().setIsUseOfPostIncrementedValue(true);
|
|
DEBUG(dbgs() << " USING POSTINC SCEV, START=" << *NewStart<< "\n");
|
|
} else {
|
|
StrideUses->addUser(Start, User, I);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void IVUsers::AddUser(const SCEV *Stride, const SCEV *Offset,
|
|
Instruction *User, Value *Operand) {
|
|
IVUsersOfOneStride *StrideUses = IVUsesByStride[Stride];
|
|
if (!StrideUses) { // First occurrence of this stride?
|
|
StrideOrder.push_back(Stride);
|
|
StrideUses = new IVUsersOfOneStride(Stride);
|
|
IVUses.push_back(StrideUses);
|
|
IVUsesByStride[Stride] = StrideUses;
|
|
}
|
|
IVUsesByStride[Stride]->addUser(Offset, User, Operand);
|
|
}
|
|
|
|
IVUsers::IVUsers()
|
|
: LoopPass(&ID) {
|
|
}
|
|
|
|
void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addRequired<ScalarEvolution>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
|
|
|
|
L = l;
|
|
LI = &getAnalysis<LoopInfo>();
|
|
DT = &getAnalysis<DominatorTree>();
|
|
SE = &getAnalysis<ScalarEvolution>();
|
|
|
|
// Find all uses of induction variables in this loop, and categorize
|
|
// them by stride. Start by finding all of the PHI nodes in the header for
|
|
// this loop. If they are induction variables, inspect their uses.
|
|
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
|
|
AddUsersIfInteresting(I);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getReplacementExpr - Return a SCEV expression which computes the
|
|
/// value of the OperandValToReplace of the given IVStrideUse.
|
|
const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &U) const {
|
|
// Start with zero.
|
|
const SCEV *RetVal = SE->getIntegerSCEV(0, U.getParent()->Stride->getType());
|
|
// Create the basic add recurrence.
|
|
RetVal = SE->getAddRecExpr(RetVal, U.getParent()->Stride, L);
|
|
// Add the offset in a separate step, because it may be loop-variant.
|
|
RetVal = SE->getAddExpr(RetVal, U.getOffset());
|
|
// For uses of post-incremented values, add an extra stride to compute
|
|
// the actual replacement value.
|
|
if (U.isUseOfPostIncrementedValue())
|
|
RetVal = SE->getAddExpr(RetVal, U.getParent()->Stride);
|
|
return RetVal;
|
|
}
|
|
|
|
/// getCanonicalExpr - Return a SCEV expression which computes the
|
|
/// value of the SCEV of the given IVStrideUse, ignoring the
|
|
/// isUseOfPostIncrementedValue flag.
|
|
const SCEV *IVUsers::getCanonicalExpr(const IVStrideUse &U) const {
|
|
// Start with zero.
|
|
const SCEV *RetVal = SE->getIntegerSCEV(0, U.getParent()->Stride->getType());
|
|
// Create the basic add recurrence.
|
|
RetVal = SE->getAddRecExpr(RetVal, U.getParent()->Stride, L);
|
|
// Add the offset in a separate step, because it may be loop-variant.
|
|
RetVal = SE->getAddExpr(RetVal, U.getOffset());
|
|
return RetVal;
|
|
}
|
|
|
|
void IVUsers::print(raw_ostream &OS, const Module *M) const {
|
|
OS << "IV Users for loop ";
|
|
WriteAsOperand(OS, L->getHeader(), false);
|
|
if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
|
|
OS << " with backedge-taken count "
|
|
<< *SE->getBackedgeTakenCount(L);
|
|
}
|
|
OS << ":\n";
|
|
|
|
for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
|
|
std::map<const SCEV *, IVUsersOfOneStride*>::const_iterator SI =
|
|
IVUsesByStride.find(StrideOrder[Stride]);
|
|
assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
|
|
OS << " Stride " << *SI->first->getType() << " " << *SI->first << ":\n";
|
|
|
|
for (ilist<IVStrideUse>::const_iterator UI = SI->second->Users.begin(),
|
|
E = SI->second->Users.end(); UI != E; ++UI) {
|
|
OS << " ";
|
|
WriteAsOperand(OS, UI->getOperandValToReplace(), false);
|
|
OS << " = ";
|
|
OS << *getReplacementExpr(*UI);
|
|
if (UI->isUseOfPostIncrementedValue())
|
|
OS << " (post-inc)";
|
|
OS << " in ";
|
|
UI->getUser()->print(OS);
|
|
OS << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
void IVUsers::dump() const {
|
|
print(dbgs());
|
|
}
|
|
|
|
void IVUsers::releaseMemory() {
|
|
IVUsesByStride.clear();
|
|
StrideOrder.clear();
|
|
Processed.clear();
|
|
IVUses.clear();
|
|
}
|
|
|
|
void IVStrideUse::deleted() {
|
|
// Remove this user from the list.
|
|
Parent->Users.erase(this);
|
|
// this now dangles!
|
|
}
|