llvm-6502/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
Chandler Carruth d04a8d4b33 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-03 16:50:05 +00:00

123 lines
4.5 KiB
C++

//===- UnifyFunctionExitNodes.cpp - Make all functions have a single exit -===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is used to ensure that functions have at most one return
// instruction in them. Additionally, it keeps track of which node is the new
// exit node of the CFG. If there are no exit nodes in the CFG, the getExitNode
// method will return a null pointer.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/BasicBlock.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Type.h"
using namespace llvm;
char UnifyFunctionExitNodes::ID = 0;
INITIALIZE_PASS(UnifyFunctionExitNodes, "mergereturn",
"Unify function exit nodes", false, false)
Pass *llvm::createUnifyFunctionExitNodesPass() {
return new UnifyFunctionExitNodes();
}
void UnifyFunctionExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{
// We preserve the non-critical-edgeness property
AU.addPreservedID(BreakCriticalEdgesID);
// This is a cluster of orthogonal Transforms
AU.addPreserved("mem2reg");
AU.addPreservedID(LowerSwitchID);
}
// UnifyAllExitNodes - Unify all exit nodes of the CFG by creating a new
// BasicBlock, and converting all returns to unconditional branches to this
// new basic block. The singular exit node is returned.
//
// If there are no return stmts in the Function, a null pointer is returned.
//
bool UnifyFunctionExitNodes::runOnFunction(Function &F) {
// Loop over all of the blocks in a function, tracking all of the blocks that
// return.
//
std::vector<BasicBlock*> ReturningBlocks;
std::vector<BasicBlock*> UnreachableBlocks;
for(Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
if (isa<ReturnInst>(I->getTerminator()))
ReturningBlocks.push_back(I);
else if (isa<UnreachableInst>(I->getTerminator()))
UnreachableBlocks.push_back(I);
// Then unreachable blocks.
if (UnreachableBlocks.empty()) {
UnreachableBlock = 0;
} else if (UnreachableBlocks.size() == 1) {
UnreachableBlock = UnreachableBlocks.front();
} else {
UnreachableBlock = BasicBlock::Create(F.getContext(),
"UnifiedUnreachableBlock", &F);
new UnreachableInst(F.getContext(), UnreachableBlock);
for (std::vector<BasicBlock*>::iterator I = UnreachableBlocks.begin(),
E = UnreachableBlocks.end(); I != E; ++I) {
BasicBlock *BB = *I;
BB->getInstList().pop_back(); // Remove the unreachable inst.
BranchInst::Create(UnreachableBlock, BB);
}
}
// Now handle return blocks.
if (ReturningBlocks.empty()) {
ReturnBlock = 0;
return false; // No blocks return
} else if (ReturningBlocks.size() == 1) {
ReturnBlock = ReturningBlocks.front(); // Already has a single return block
return false;
}
// Otherwise, we need to insert a new basic block into the function, add a PHI
// nodes (if the function returns values), and convert all of the return
// instructions into unconditional branches.
//
BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(),
"UnifiedReturnBlock", &F);
PHINode *PN = 0;
if (F.getReturnType()->isVoidTy()) {
ReturnInst::Create(F.getContext(), NULL, NewRetBlock);
} else {
// If the function doesn't return void... add a PHI node to the block...
PN = PHINode::Create(F.getReturnType(), ReturningBlocks.size(),
"UnifiedRetVal");
NewRetBlock->getInstList().push_back(PN);
ReturnInst::Create(F.getContext(), PN, NewRetBlock);
}
// Loop over all of the blocks, replacing the return instruction with an
// unconditional branch.
//
for (std::vector<BasicBlock*>::iterator I = ReturningBlocks.begin(),
E = ReturningBlocks.end(); I != E; ++I) {
BasicBlock *BB = *I;
// Add an incoming element to the PHI node for every return instruction that
// is merging into this new block...
if (PN)
PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
BB->getInstList().pop_back(); // Remove the return insn
BranchInst::Create(NewRetBlock, BB);
}
ReturnBlock = NewRetBlock;
return true;
}