llvm-6502/lib/Target/ARM/ARMAsmPrinter.cpp
Dan Gohman b8275a3f6f Don't ignore the return value of AsmPrinter::doInitialization and
AsmPrinter::doFinalization.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40487 91177308-0d34-0410-b5e6-96231b3b80d8
2007-07-25 19:33:14 +00:00

1029 lines
36 KiB
C++

//===-- ARMAsmPrinter.cpp - ARM LLVM assembly writer ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the "Instituto Nokia de Tecnologia" and
// is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format ARM assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "ARM.h"
#include "ARMTargetMachine.h"
#include "ARMAddressingModes.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
#include <cctype>
using namespace llvm;
STATISTIC(EmittedInsts, "Number of machine instrs printed");
namespace {
struct VISIBILITY_HIDDEN ARMAsmPrinter : public AsmPrinter {
ARMAsmPrinter(std::ostream &O, TargetMachine &TM, const TargetAsmInfo *T)
: AsmPrinter(O, TM, T), DW(O, this, T), AFI(NULL), InCPMode(false) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
}
DwarfWriter DW;
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
/// make the right decision when printing asm code for different targets.
const ARMSubtarget *Subtarget;
/// AFI - Keep a pointer to ARMFunctionInfo for the current
/// MachineFunction
ARMFunctionInfo *AFI;
/// We name each basic block in a Function with a unique number, so
/// that we can consistently refer to them later. This is cleared
/// at the beginning of each call to runOnMachineFunction().
///
typedef std::map<const Value *, unsigned> ValueMapTy;
ValueMapTy NumberForBB;
/// Keeps the set of GlobalValues that require non-lazy-pointers for
/// indirect access.
std::set<std::string> GVNonLazyPtrs;
/// Keeps the set of external function GlobalAddresses that the asm
/// printer should generate stubs for.
std::set<std::string> FnStubs;
/// True if asm printer is printing a series of CONSTPOOL_ENTRY.
bool InCPMode;
virtual const char *getPassName() const {
return "ARM Assembly Printer";
}
void printOperand(const MachineInstr *MI, int opNum,
const char *Modifier = 0);
void printSOImmOperand(const MachineInstr *MI, int opNum);
void printSOImm2PartOperand(const MachineInstr *MI, int opNum);
void printSORegOperand(const MachineInstr *MI, int opNum);
void printAddrMode2Operand(const MachineInstr *MI, int OpNo);
void printAddrMode2OffsetOperand(const MachineInstr *MI, int OpNo);
void printAddrMode3Operand(const MachineInstr *MI, int OpNo);
void printAddrMode3OffsetOperand(const MachineInstr *MI, int OpNo);
void printAddrMode4Operand(const MachineInstr *MI, int OpNo,
const char *Modifier = 0);
void printAddrMode5Operand(const MachineInstr *MI, int OpNo,
const char *Modifier = 0);
void printAddrModePCOperand(const MachineInstr *MI, int OpNo,
const char *Modifier = 0);
void printThumbAddrModeRROperand(const MachineInstr *MI, int OpNo);
void printThumbAddrModeRI5Operand(const MachineInstr *MI, int OpNo,
unsigned Scale);
void printThumbAddrModeS1Operand(const MachineInstr *MI, int OpNo);
void printThumbAddrModeS2Operand(const MachineInstr *MI, int OpNo);
void printThumbAddrModeS4Operand(const MachineInstr *MI, int OpNo);
void printThumbAddrModeSPOperand(const MachineInstr *MI, int OpNo);
void printPredicateOperand(const MachineInstr *MI, int opNum);
void printSBitModifierOperand(const MachineInstr *MI, int opNum);
void printPCLabel(const MachineInstr *MI, int opNum);
void printRegisterList(const MachineInstr *MI, int opNum);
void printCPInstOperand(const MachineInstr *MI, int opNum,
const char *Modifier);
void printJTBlockOperand(const MachineInstr *MI, int opNum);
virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode);
bool printInstruction(const MachineInstr *MI); // autogenerated.
void printMachineInstruction(const MachineInstr *MI);
bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M);
bool doFinalization(Module &M);
virtual void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
printDataDirective(MCPV->getType());
ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MCPV;
GlobalValue *GV = ACPV->getGV();
std::string Name = GV ? Mang->getValueName(GV) : TAI->getGlobalPrefix();
if (!GV)
Name += ACPV->getSymbol();
if (ACPV->isNonLazyPointer()) {
GVNonLazyPtrs.insert(Name);
O << TAI->getPrivateGlobalPrefix() << Name << "$non_lazy_ptr";
} else if (ACPV->isStub()) {
FnStubs.insert(Name);
O << TAI->getPrivateGlobalPrefix() << Name << "$stub";
} else
O << Name;
if (ACPV->hasModifier()) O << "(" << ACPV->getModifier() << ")";
if (ACPV->getPCAdjustment() != 0) {
O << "-(" << TAI->getPrivateGlobalPrefix() << "PC"
<< utostr(ACPV->getLabelId())
<< "+" << (unsigned)ACPV->getPCAdjustment();
if (ACPV->mustAddCurrentAddress())
O << "-.";
O << ")";
}
O << "\n";
// If the constant pool value is a extern weak symbol, remember to emit
// the weak reference.
if (GV && GV->hasExternalWeakLinkage())
ExtWeakSymbols.insert(GV);
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineModuleInfo>();
}
};
} // end of anonymous namespace
#include "ARMGenAsmWriter.inc"
/// createARMCodePrinterPass - Returns a pass that prints the ARM
/// assembly code for a MachineFunction to the given output stream,
/// using the given target machine description. This should work
/// regardless of whether the function is in SSA form.
///
FunctionPass *llvm::createARMCodePrinterPass(std::ostream &o,
ARMTargetMachine &tm) {
return new ARMAsmPrinter(o, tm, tm.getTargetAsmInfo());
}
/// runOnMachineFunction - This uses the printInstruction()
/// method to print assembly for each instruction.
///
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
AFI = MF.getInfo<ARMFunctionInfo>();
DW.SetModuleInfo(&getAnalysis<MachineModuleInfo>());
SetupMachineFunction(MF);
O << "\n";
// NOTE: we don't print out constant pools here, they are handled as
// instructions.
O << "\n";
// Print out labels for the function.
const Function *F = MF.getFunction();
switch (F->getLinkage()) {
default: assert(0 && "Unknown linkage type!");
case Function::InternalLinkage:
SwitchToTextSection("\t.text", F);
break;
case Function::ExternalLinkage:
SwitchToTextSection("\t.text", F);
O << "\t.globl\t" << CurrentFnName << "\n";
break;
case Function::WeakLinkage:
case Function::LinkOnceLinkage:
if (Subtarget->isTargetDarwin()) {
SwitchToTextSection(
".section __TEXT,__textcoal_nt,coalesced,pure_instructions", F);
O << "\t.globl\t" << CurrentFnName << "\n";
O << "\t.weak_definition\t" << CurrentFnName << "\n";
} else {
O << TAI->getWeakRefDirective() << CurrentFnName << "\n";
}
break;
}
const char *VisibilityDirective = NULL;
if (F->hasHiddenVisibility())
VisibilityDirective = TAI->getHiddenDirective();
else if (F->hasProtectedVisibility())
VisibilityDirective = TAI->getProtectedDirective();
if (VisibilityDirective)
O << VisibilityDirective << CurrentFnName << "\n";
if (AFI->isThumbFunction()) {
EmitAlignment(1, F, AFI->getAlign());
O << "\t.code\t16\n";
O << "\t.thumb_func";
if (Subtarget->isTargetDarwin())
O << "\t" << CurrentFnName;
O << "\n";
InCPMode = false;
} else
EmitAlignment(2, F);
O << CurrentFnName << ":\n";
// Emit pre-function debug information.
DW.BeginFunction(&MF);
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
printBasicBlockLabel(I, true);
O << '\n';
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
printMachineInstruction(II);
}
}
if (TAI->hasDotTypeDotSizeDirective())
O << "\t.size " << CurrentFnName << ", .-" << CurrentFnName << "\n";
// Emit post-function debug information.
DW.EndFunction();
return false;
}
void ARMAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
const char *Modifier) {
const MachineOperand &MO = MI->getOperand(opNum);
switch (MO.getType()) {
case MachineOperand::MO_Register:
if (MRegisterInfo::isPhysicalRegister(MO.getReg()))
O << TM.getRegisterInfo()->get(MO.getReg()).Name;
else
assert(0 && "not implemented");
break;
case MachineOperand::MO_Immediate: {
if (!Modifier || strcmp(Modifier, "no_hash") != 0)
O << "#";
O << (int)MO.getImmedValue();
break;
}
case MachineOperand::MO_MachineBasicBlock:
printBasicBlockLabel(MO.getMachineBasicBlock());
return;
case MachineOperand::MO_GlobalAddress: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
GlobalValue *GV = MO.getGlobal();
std::string Name = Mang->getValueName(GV);
bool isExt = (GV->isDeclaration() || GV->hasWeakLinkage() ||
GV->hasLinkOnceLinkage());
if (isExt && isCallOp && Subtarget->isTargetDarwin() &&
TM.getRelocationModel() != Reloc::Static) {
O << TAI->getPrivateGlobalPrefix() << Name << "$stub";
FnStubs.insert(Name);
} else
O << Name;
if (MO.getOffset() > 0)
O << '+' << MO.getOffset();
else if (MO.getOffset() < 0)
O << MO.getOffset();
if (isCallOp && Subtarget->isTargetELF() &&
TM.getRelocationModel() == Reloc::PIC_)
O << "(PLT)";
if (GV->hasExternalWeakLinkage())
ExtWeakSymbols.insert(GV);
break;
}
case MachineOperand::MO_ExternalSymbol: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
std::string Name(TAI->getGlobalPrefix());
Name += MO.getSymbolName();
if (isCallOp && Subtarget->isTargetDarwin() &&
TM.getRelocationModel() != Reloc::Static) {
O << TAI->getPrivateGlobalPrefix() << Name << "$stub";
FnStubs.insert(Name);
} else
O << Name;
if (isCallOp && Subtarget->isTargetELF() &&
TM.getRelocationModel() == Reloc::PIC_)
O << "(PLT)";
break;
}
case MachineOperand::MO_ConstantPoolIndex:
O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
<< '_' << MO.getConstantPoolIndex();
break;
case MachineOperand::MO_JumpTableIndex:
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << MO.getJumpTableIndex();
break;
default:
O << "<unknown operand type>"; abort (); break;
}
}
static void printSOImm(std::ostream &O, int64_t V, const TargetAsmInfo *TAI) {
assert(V < (1 << 12) && "Not a valid so_imm value!");
unsigned Imm = ARM_AM::getSOImmValImm(V);
unsigned Rot = ARM_AM::getSOImmValRot(V);
// Print low-level immediate formation info, per
// A5.1.3: "Data-processing operands - Immediate".
if (Rot) {
O << "#" << Imm << ", " << Rot;
// Pretty printed version.
O << ' ' << TAI->getCommentString() << ' ' << (int)ARM_AM::rotr32(Imm, Rot);
} else {
O << "#" << Imm;
}
}
/// printSOImmOperand - SOImm is 4-bit rotate amount in bits 8-11 with 8-bit
/// immediate in bits 0-7.
void ARMAsmPrinter::printSOImmOperand(const MachineInstr *MI, int OpNum) {
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isImmediate() && "Not a valid so_imm value!");
printSOImm(O, MO.getImmedValue(), TAI);
}
/// printSOImm2PartOperand - SOImm is broken into two pieces using a mov
/// followed by a or to materialize.
void ARMAsmPrinter::printSOImm2PartOperand(const MachineInstr *MI, int OpNum) {
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isImmediate() && "Not a valid so_imm value!");
unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO.getImmedValue());
unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO.getImmedValue());
printSOImm(O, ARM_AM::getSOImmVal(V1), TAI);
O << "\n\torr";
printPredicateOperand(MI, 2);
O << " ";
printOperand(MI, 0);
O << ", ";
printOperand(MI, 0);
O << ", ";
printSOImm(O, ARM_AM::getSOImmVal(V2), TAI);
}
// so_reg is a 4-operand unit corresponding to register forms of the A5.1
// "Addressing Mode 1 - Data-processing operands" forms. This includes:
// REG 0 0 - e.g. R5
// REG REG 0,SH_OPC - e.g. R5, ROR R3
// REG 0 IMM,SH_OPC - e.g. R5, LSL #3
void ARMAsmPrinter::printSORegOperand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
assert(MRegisterInfo::isPhysicalRegister(MO1.getReg()));
O << TM.getRegisterInfo()->get(MO1.getReg()).Name;
// Print the shift opc.
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImmedValue()))
<< " ";
if (MO2.getReg()) {
assert(MRegisterInfo::isPhysicalRegister(MO2.getReg()));
O << TM.getRegisterInfo()->get(MO2.getReg()).Name;
assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
} else {
O << "#" << ARM_AM::getSORegOffset(MO3.getImm());
}
}
void ARMAsmPrinter::printAddrMode2Operand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
if (!MO1.isRegister()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op);
return;
}
O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).Name;
if (!MO2.getReg()) {
if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
O << ", #"
<< (char)ARM_AM::getAM2Op(MO3.getImm())
<< ARM_AM::getAM2Offset(MO3.getImm());
O << "]";
return;
}
O << ", "
<< (char)ARM_AM::getAM2Op(MO3.getImm())
<< TM.getRegisterInfo()->get(MO2.getReg()).Name;
if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm()))
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO3.getImmedValue()))
<< " #" << ShImm;
O << "]";
}
void ARMAsmPrinter::printAddrMode2OffsetOperand(const MachineInstr *MI, int Op){
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (!MO1.getReg()) {
unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
O << "#"
<< (char)ARM_AM::getAM2Op(MO2.getImm())
<< ImmOffs;
return;
}
O << (char)ARM_AM::getAM2Op(MO2.getImm())
<< TM.getRegisterInfo()->get(MO1.getReg()).Name;
if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()))
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO2.getImmedValue()))
<< " #" << ShImm;
}
void ARMAsmPrinter::printAddrMode3Operand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
assert(MRegisterInfo::isPhysicalRegister(MO1.getReg()));
O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).Name;
if (MO2.getReg()) {
O << ", "
<< (char)ARM_AM::getAM3Op(MO3.getImm())
<< TM.getRegisterInfo()->get(MO2.getReg()).Name
<< "]";
return;
}
if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm()))
O << ", #"
<< (char)ARM_AM::getAM3Op(MO3.getImm())
<< ImmOffs;
O << "]";
}
void ARMAsmPrinter::printAddrMode3OffsetOperand(const MachineInstr *MI, int Op){
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (MO1.getReg()) {
O << (char)ARM_AM::getAM3Op(MO2.getImm())
<< TM.getRegisterInfo()->get(MO1.getReg()).Name;
return;
}
unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
O << "#"
<< (char)ARM_AM::getAM3Op(MO2.getImm())
<< ImmOffs;
}
void ARMAsmPrinter::printAddrMode4Operand(const MachineInstr *MI, int Op,
const char *Modifier) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm());
if (Modifier && strcmp(Modifier, "submode") == 0) {
if (MO1.getReg() == ARM::SP) {
bool isLDM = (MI->getOpcode() == ARM::LDM ||
MI->getOpcode() == ARM::LDM_RET);
O << ARM_AM::getAMSubModeAltStr(Mode, isLDM);
} else
O << ARM_AM::getAMSubModeStr(Mode);
} else {
printOperand(MI, Op);
if (ARM_AM::getAM4WBFlag(MO2.getImm()))
O << "!";
}
}
void ARMAsmPrinter::printAddrMode5Operand(const MachineInstr *MI, int Op,
const char *Modifier) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (!MO1.isRegister()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op);
return;
}
assert(MRegisterInfo::isPhysicalRegister(MO1.getReg()));
if (Modifier && strcmp(Modifier, "submode") == 0) {
ARM_AM::AMSubMode Mode = ARM_AM::getAM5SubMode(MO2.getImm());
if (MO1.getReg() == ARM::SP) {
bool isFLDM = (MI->getOpcode() == ARM::FLDMD ||
MI->getOpcode() == ARM::FLDMS);
O << ARM_AM::getAMSubModeAltStr(Mode, isFLDM);
} else
O << ARM_AM::getAMSubModeStr(Mode);
return;
} else if (Modifier && strcmp(Modifier, "base") == 0) {
// Used for FSTM{D|S} and LSTM{D|S} operations.
O << TM.getRegisterInfo()->get(MO1.getReg()).Name;
if (ARM_AM::getAM5WBFlag(MO2.getImm()))
O << "!";
return;
}
O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).Name;
if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) {
O << ", #"
<< (char)ARM_AM::getAM5Op(MO2.getImm())
<< ImmOffs*4;
}
O << "]";
}
void ARMAsmPrinter::printAddrModePCOperand(const MachineInstr *MI, int Op,
const char *Modifier) {
if (Modifier && strcmp(Modifier, "label") == 0) {
printPCLabel(MI, Op+1);
return;
}
const MachineOperand &MO1 = MI->getOperand(Op);
assert(MRegisterInfo::isPhysicalRegister(MO1.getReg()));
O << "[pc, +" << TM.getRegisterInfo()->get(MO1.getReg()).Name << "]";
}
void
ARMAsmPrinter::printThumbAddrModeRROperand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).Name;
O << ", " << TM.getRegisterInfo()->get(MO2.getReg()).Name << "]";
}
void
ARMAsmPrinter::printThumbAddrModeRI5Operand(const MachineInstr *MI, int Op,
unsigned Scale) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
if (!MO1.isRegister()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op);
return;
}
O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).Name;
if (MO3.getReg())
O << ", " << TM.getRegisterInfo()->get(MO3.getReg()).Name;
else if (unsigned ImmOffs = MO2.getImm()) {
O << ", #" << ImmOffs;
if (Scale > 1)
O << " * " << Scale;
}
O << "]";
}
void
ARMAsmPrinter::printThumbAddrModeS1Operand(const MachineInstr *MI, int Op) {
printThumbAddrModeRI5Operand(MI, Op, 1);
}
void
ARMAsmPrinter::printThumbAddrModeS2Operand(const MachineInstr *MI, int Op) {
printThumbAddrModeRI5Operand(MI, Op, 2);
}
void
ARMAsmPrinter::printThumbAddrModeS4Operand(const MachineInstr *MI, int Op) {
printThumbAddrModeRI5Operand(MI, Op, 4);
}
void ARMAsmPrinter::printThumbAddrModeSPOperand(const MachineInstr *MI,int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).Name;
if (unsigned ImmOffs = MO2.getImm())
O << ", #" << ImmOffs << " * 4";
O << "]";
}
void ARMAsmPrinter::printPredicateOperand(const MachineInstr *MI, int opNum) {
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(opNum).getImmedValue();
if (CC != ARMCC::AL)
O << ARMCondCodeToString(CC);
}
void ARMAsmPrinter::printSBitModifierOperand(const MachineInstr *MI, int opNum){
unsigned Reg = MI->getOperand(opNum).getReg();
if (Reg) {
assert(Reg == ARM::CPSR && "Expect ARM CPSR register!");
O << 's';
}
}
void ARMAsmPrinter::printPCLabel(const MachineInstr *MI, int opNum) {
int Id = (int)MI->getOperand(opNum).getImmedValue();
O << TAI->getPrivateGlobalPrefix() << "PC" << Id;
}
void ARMAsmPrinter::printRegisterList(const MachineInstr *MI, int opNum) {
O << "{";
for (unsigned i = opNum, e = MI->getNumOperands(); i != e; ++i) {
printOperand(MI, i);
if (i != e-1) O << ", ";
}
O << "}";
}
void ARMAsmPrinter::printCPInstOperand(const MachineInstr *MI, int OpNo,
const char *Modifier) {
assert(Modifier && "This operand only works with a modifier!");
// There are two aspects to a CONSTANTPOOL_ENTRY operand, the label and the
// data itself.
if (!strcmp(Modifier, "label")) {
unsigned ID = MI->getOperand(OpNo).getImm();
O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
<< '_' << ID << ":\n";
} else {
assert(!strcmp(Modifier, "cpentry") && "Unknown modifier for CPE");
unsigned CPI = MI->getOperand(OpNo).getConstantPoolIndex();
const MachineConstantPoolEntry &MCPE = // Chasing pointers is fun?
MI->getParent()->getParent()->getConstantPool()->getConstants()[CPI];
if (MCPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
else {
EmitGlobalConstant(MCPE.Val.ConstVal);
// remember to emit the weak reference
if (const GlobalValue *GV = dyn_cast<GlobalValue>(MCPE.Val.ConstVal))
if (GV->hasExternalWeakLinkage())
ExtWeakSymbols.insert(GV);
}
}
}
void ARMAsmPrinter::printJTBlockOperand(const MachineInstr *MI, int OpNo) {
const MachineOperand &MO1 = MI->getOperand(OpNo);
const MachineOperand &MO2 = MI->getOperand(OpNo+1); // Unique Id
unsigned JTI = MO1.getJumpTableIndex();
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << JTI << '_' << MO2.getImmedValue() << ":\n";
const char *JTEntryDirective = TAI->getJumpTableDirective();
if (!JTEntryDirective)
JTEntryDirective = TAI->getData32bitsDirective();
const MachineFunction *MF = MI->getParent()->getParent();
MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
bool UseSet= TAI->getSetDirective() && TM.getRelocationModel() == Reloc::PIC_;
std::set<MachineBasicBlock*> JTSets;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
if (UseSet && JTSets.insert(MBB).second)
printSetLabel(JTI, MO2.getImmedValue(), MBB);
O << JTEntryDirective << ' ';
if (UseSet)
O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< '_' << JTI << '_' << MO2.getImmedValue()
<< "_set_" << MBB->getNumber();
else if (TM.getRelocationModel() == Reloc::PIC_) {
printBasicBlockLabel(MBB, false, false);
// If the arch uses custom Jump Table directives, don't calc relative to JT
if (!TAI->getJumpTableDirective())
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << JTI << '_' << MO2.getImmedValue();
} else
printBasicBlockLabel(MBB, false, false);
if (i != e-1)
O << '\n';
}
}
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode){
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'c': // Don't print "$" before a global var name or constant.
case 'P': // Print a VFP double precision register.
printOperand(MI, OpNo);
return false;
case 'Q':
if (TM.getTargetData()->isLittleEndian())
break;
// Fallthrough
case 'R':
if (TM.getTargetData()->isBigEndian())
break;
// Fallthrough
case 'H': // Write second word of DI / DF reference.
// Verify that this operand has two consecutive registers.
if (!MI->getOperand(OpNo).isRegister() ||
OpNo+1 == MI->getNumOperands() ||
!MI->getOperand(OpNo+1).isRegister())
return true;
++OpNo; // Return the high-part.
}
}
printOperand(MI, OpNo);
return false;
}
void ARMAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
int Opc = MI->getOpcode();
switch (Opc) {
case ARM::CONSTPOOL_ENTRY:
if (!InCPMode && AFI->isThumbFunction()) {
EmitAlignment(2);
InCPMode = true;
}
break;
default: {
if (InCPMode && AFI->isThumbFunction())
InCPMode = false;
switch (Opc) {
case ARM::PICADD:
case ARM::PICLD:
case ARM::PICLDZH:
case ARM::PICLDZB:
case ARM::PICLDH:
case ARM::PICLDB:
case ARM::PICLDSH:
case ARM::PICLDSB:
case ARM::PICSTR:
case ARM::PICSTRH:
case ARM::PICSTRB:
case ARM::tPICADD:
break;
default:
O << "\t";
break;
}
}}
// Call the autogenerated instruction printer routines.
printInstruction(MI);
}
bool ARMAsmPrinter::doInitialization(Module &M) {
// Emit initial debug information.
DW.BeginModule(&M);
bool Result = AsmPrinter::doInitialization(M);
// Darwin wants symbols to be quoted if they have complex names.
if (Subtarget->isTargetDarwin())
Mang->setUseQuotes(true);
return Result;
}
bool ARMAsmPrinter::doFinalization(Module &M) {
const TargetData *TD = TM.getTargetData();
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (!I->hasInitializer()) // External global require no code
continue;
if (EmitSpecialLLVMGlobal(I)) {
if (Subtarget->isTargetDarwin() &&
TM.getRelocationModel() == Reloc::Static) {
if (I->getName() == "llvm.global_ctors")
O << ".reference .constructors_used\n";
else if (I->getName() == "llvm.global_dtors")
O << ".reference .destructors_used\n";
}
continue;
}
std::string name = Mang->getValueName(I);
Constant *C = I->getInitializer();
const Type *Type = C->getType();
unsigned Size = TD->getTypeSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(I);
const char *VisibilityDirective = NULL;
if (I->hasHiddenVisibility())
VisibilityDirective = TAI->getHiddenDirective();
else if (I->hasProtectedVisibility())
VisibilityDirective = TAI->getProtectedDirective();
if (VisibilityDirective)
O << VisibilityDirective << name << "\n";
if (Subtarget->isTargetELF())
O << "\t.type " << name << ",%object\n";
if (C->isNullValue()) {
if (I->hasExternalLinkage()) {
if (const char *Directive = TAI->getZeroFillDirective()) {
O << "\t.globl\t" << name << "\n";
O << Directive << "__DATA__, __common, " << name << ", "
<< Size << ", " << Align << "\n";
continue;
}
}
if (!I->hasSection() &&
(I->hasInternalLinkage() || I->hasWeakLinkage() ||
I->hasLinkOnceLinkage())) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (!NoZerosInBSS && TAI->getBSSSection())
SwitchToDataSection(TAI->getBSSSection(), I);
else
SwitchToDataSection(TAI->getDataSection(), I);
if (TAI->getLCOMMDirective() != NULL) {
if (I->hasInternalLinkage()) {
O << TAI->getLCOMMDirective() << name << "," << Size;
if (Subtarget->isTargetDarwin())
O << "," << Align;
} else
O << TAI->getCOMMDirective() << name << "," << Size;
} else {
if (I->hasInternalLinkage())
O << "\t.local\t" << name << "\n";
O << TAI->getCOMMDirective() << name << "," << Size;
if (TAI->getCOMMDirectiveTakesAlignment())
O << "," << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
O << "\t\t" << TAI->getCommentString() << " " << I->getName() << "\n";
continue;
}
}
switch (I->getLinkage()) {
case GlobalValue::LinkOnceLinkage:
case GlobalValue::WeakLinkage:
if (Subtarget->isTargetDarwin()) {
O << "\t.globl " << name << "\n"
<< "\t.weak_definition " << name << "\n";
SwitchToDataSection("\t.section __DATA,__const_coal,coalesced", I);
} else {
std::string SectionName("\t.section\t.llvm.linkonce.d." +
name +
",\"aw\",%progbits");
SwitchToDataSection(SectionName.c_str(), I);
O << "\t.weak " << name << "\n";
}
break;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
O << "\t.globl " << name << "\n";
// FALL THROUGH
case GlobalValue::InternalLinkage: {
if (I->isConstant()) {
const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
if (TAI->getCStringSection() && CVA && CVA->isCString()) {
SwitchToDataSection(TAI->getCStringSection(), I);
break;
}
}
// FIXME: special handling for ".ctors" & ".dtors" sections
if (I->hasSection() &&
(I->getSection() == ".ctors" ||
I->getSection() == ".dtors")) {
assert(!Subtarget->isTargetDarwin());
std::string SectionName = ".section " + I->getSection();
SectionName += ",\"aw\",%progbits";
SwitchToDataSection(SectionName.c_str());
} else {
if (C->isNullValue() && !NoZerosInBSS && TAI->getBSSSection())
SwitchToDataSection(I->isThreadLocal() ? TAI->getTLSBSSSection() :
TAI->getBSSSection(), I);
else if (!I->isConstant())
SwitchToDataSection(I->isThreadLocal() ? TAI->getTLSDataSection() :
TAI->getDataSection(), I);
else if (I->isThreadLocal())
SwitchToDataSection(TAI->getTLSDataSection());
else {
// Read-only data.
bool HasReloc = C->ContainsRelocations();
if (HasReloc &&
Subtarget->isTargetDarwin() &&
TM.getRelocationModel() != Reloc::Static)
SwitchToDataSection("\t.const_data\n");
else if (!HasReloc && Size == 4 &&
TAI->getFourByteConstantSection())
SwitchToDataSection(TAI->getFourByteConstantSection(), I);
else if (!HasReloc && Size == 8 &&
TAI->getEightByteConstantSection())
SwitchToDataSection(TAI->getEightByteConstantSection(), I);
else if (!HasReloc && Size == 16 &&
TAI->getSixteenByteConstantSection())
SwitchToDataSection(TAI->getSixteenByteConstantSection(), I);
else if (TAI->getReadOnlySection())
SwitchToDataSection(TAI->getReadOnlySection(), I);
else
SwitchToDataSection(TAI->getDataSection(), I);
}
}
break;
}
default:
assert(0 && "Unknown linkage type!");
break;
}
EmitAlignment(Align, I);
O << name << ":\t\t\t\t" << TAI->getCommentString() << " " << I->getName()
<< "\n";
if (TAI->hasDotTypeDotSizeDirective())
O << "\t.size " << name << ", " << Size << "\n";
// If the initializer is a extern weak symbol, remember to emit the weak
// reference!
if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
if (GV->hasExternalWeakLinkage())
ExtWeakSymbols.insert(GV);
EmitGlobalConstant(C);
O << '\n';
}
if (Subtarget->isTargetDarwin()) {
SwitchToDataSection("");
// Output stubs for dynamically-linked functions
unsigned j = 1;
for (std::set<std::string>::iterator i = FnStubs.begin(), e = FnStubs.end();
i != e; ++i, ++j) {
if (TM.getRelocationModel() == Reloc::PIC_)
SwitchToTextSection(".section __TEXT,__picsymbolstub4,symbol_stubs,"
"none,16", 0);
else
SwitchToTextSection(".section __TEXT,__symbol_stub4,symbol_stubs,"
"none,12", 0);
EmitAlignment(2);
O << "\t.code\t32\n";
O << "L" << *i << "$stub:\n";
O << "\t.indirect_symbol " << *i << "\n";
O << "\tldr ip, L" << *i << "$slp\n";
if (TM.getRelocationModel() == Reloc::PIC_) {
O << "L" << *i << "$scv:\n";
O << "\tadd ip, pc, ip\n";
}
O << "\tldr pc, [ip, #0]\n";
O << "L" << *i << "$slp:\n";
if (TM.getRelocationModel() == Reloc::PIC_)
O << "\t.long\tL" << *i << "$lazy_ptr-(L" << *i << "$scv+8)\n";
else
O << "\t.long\tL" << *i << "$lazy_ptr\n";
SwitchToDataSection(".lazy_symbol_pointer", 0);
O << "L" << *i << "$lazy_ptr:\n";
O << "\t.indirect_symbol " << *i << "\n";
O << "\t.long\tdyld_stub_binding_helper\n";
}
O << "\n";
// Output non-lazy-pointers for external and common global variables.
if (GVNonLazyPtrs.begin() != GVNonLazyPtrs.end())
SwitchToDataSection(".non_lazy_symbol_pointer", 0);
for (std::set<std::string>::iterator i = GVNonLazyPtrs.begin(),
e = GVNonLazyPtrs.end(); i != e; ++i) {
O << "L" << *i << "$non_lazy_ptr:\n";
O << "\t.indirect_symbol " << *i << "\n";
O << "\t.long\t0\n";
}
// Emit initial debug information.
DW.EndModule();
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
O << "\t.subsections_via_symbols\n";
} else {
// Emit final debug information for ELF.
DW.EndModule();
}
return AsmPrinter::doFinalization(M);
}