llvm-6502/unittests/ExecutionEngine/JIT/JITTest.cpp
Chris Lattner 456fdaf0ce instead of migrating it to the MC instruction encoder, just
rip out the implementation of X86InstrInfo::GetInstSizeInBytes.
The code being ripped out just implemented a copy and hacked up
version of the (old) instruction encoder, and is buggy and 
terrible in other ways.  Since "GetInstSizeInBytes" is really 
only there to support the JIT's "NeedsExactSize" hook (which
noone is using), just rip out the code.  I will rip out the
NeedsExactSize hook next.

This resolves rdar://7617809 - switch X86InstrInfo::GetInstSizeInBytes to use X86MCCodeEmitter



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109149 91177308-0d34-0410-b5e6-96231b3b80d8
2010-07-22 21:05:13 +00:00

782 lines
28 KiB
C++

//===- JITTest.cpp - Unit tests for the JIT -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "gtest/gtest.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/BasicBlock.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Constant.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/Function.h"
#include "llvm/GlobalValue.h"
#include "llvm/GlobalVariable.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TypeBuilder.h"
#include "llvm/Target/TargetSelect.h"
#include "llvm/Type.h"
#include <vector>
using namespace llvm;
namespace {
Function *makeReturnGlobal(std::string Name, GlobalVariable *G, Module *M) {
std::vector<const Type*> params;
const FunctionType *FTy = FunctionType::get(G->getType()->getElementType(),
params, false);
Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
BasicBlock *Entry = BasicBlock::Create(M->getContext(), "entry", F);
IRBuilder<> builder(Entry);
Value *Load = builder.CreateLoad(G);
const Type *GTy = G->getType()->getElementType();
Value *Add = builder.CreateAdd(Load, ConstantInt::get(GTy, 1LL));
builder.CreateStore(Add, G);
builder.CreateRet(Add);
return F;
}
std::string DumpFunction(const Function *F) {
std::string Result;
raw_string_ostream(Result) << "" << *F;
return Result;
}
class RecordingJITMemoryManager : public JITMemoryManager {
const OwningPtr<JITMemoryManager> Base;
public:
RecordingJITMemoryManager()
: Base(JITMemoryManager::CreateDefaultMemManager()) {
stubsAllocated = 0;
}
void setSizeRequired(bool Required) { SizeRequired = Required; }
virtual void setMemoryWritable() { Base->setMemoryWritable(); }
virtual void setMemoryExecutable() { Base->setMemoryExecutable(); }
virtual void setPoisonMemory(bool poison) { Base->setPoisonMemory(poison); }
virtual void AllocateGOT() { Base->AllocateGOT(); }
virtual uint8_t *getGOTBase() const { return Base->getGOTBase(); }
struct StartFunctionBodyCall {
StartFunctionBodyCall(uint8_t *Result, const Function *F,
uintptr_t ActualSize, uintptr_t ActualSizeResult)
: Result(Result), F(F), F_dump(DumpFunction(F)),
ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
uint8_t *Result;
const Function *F;
std::string F_dump;
uintptr_t ActualSize;
uintptr_t ActualSizeResult;
};
std::vector<StartFunctionBodyCall> startFunctionBodyCalls;
virtual uint8_t *startFunctionBody(const Function *F,
uintptr_t &ActualSize) {
uintptr_t InitialActualSize = ActualSize;
uint8_t *Result = Base->startFunctionBody(F, ActualSize);
startFunctionBodyCalls.push_back(
StartFunctionBodyCall(Result, F, InitialActualSize, ActualSize));
return Result;
}
int stubsAllocated;
virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
unsigned Alignment) {
stubsAllocated++;
return Base->allocateStub(F, StubSize, Alignment);
}
struct EndFunctionBodyCall {
EndFunctionBodyCall(const Function *F, uint8_t *FunctionStart,
uint8_t *FunctionEnd)
: F(F), F_dump(DumpFunction(F)),
FunctionStart(FunctionStart), FunctionEnd(FunctionEnd) {}
const Function *F;
std::string F_dump;
uint8_t *FunctionStart;
uint8_t *FunctionEnd;
};
std::vector<EndFunctionBodyCall> endFunctionBodyCalls;
virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart,
uint8_t *FunctionEnd) {
endFunctionBodyCalls.push_back(
EndFunctionBodyCall(F, FunctionStart, FunctionEnd));
Base->endFunctionBody(F, FunctionStart, FunctionEnd);
}
virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
return Base->allocateSpace(Size, Alignment);
}
virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
return Base->allocateGlobal(Size, Alignment);
}
struct DeallocateFunctionBodyCall {
DeallocateFunctionBodyCall(const void *Body) : Body(Body) {}
const void *Body;
};
std::vector<DeallocateFunctionBodyCall> deallocateFunctionBodyCalls;
virtual void deallocateFunctionBody(void *Body) {
deallocateFunctionBodyCalls.push_back(DeallocateFunctionBodyCall(Body));
Base->deallocateFunctionBody(Body);
}
struct DeallocateExceptionTableCall {
DeallocateExceptionTableCall(const void *ET) : ET(ET) {}
const void *ET;
};
std::vector<DeallocateExceptionTableCall> deallocateExceptionTableCalls;
virtual void deallocateExceptionTable(void *ET) {
deallocateExceptionTableCalls.push_back(DeallocateExceptionTableCall(ET));
Base->deallocateExceptionTable(ET);
}
struct StartExceptionTableCall {
StartExceptionTableCall(uint8_t *Result, const Function *F,
uintptr_t ActualSize, uintptr_t ActualSizeResult)
: Result(Result), F(F), F_dump(DumpFunction(F)),
ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
uint8_t *Result;
const Function *F;
std::string F_dump;
uintptr_t ActualSize;
uintptr_t ActualSizeResult;
};
std::vector<StartExceptionTableCall> startExceptionTableCalls;
virtual uint8_t* startExceptionTable(const Function* F,
uintptr_t &ActualSize) {
uintptr_t InitialActualSize = ActualSize;
uint8_t *Result = Base->startExceptionTable(F, ActualSize);
startExceptionTableCalls.push_back(
StartExceptionTableCall(Result, F, InitialActualSize, ActualSize));
return Result;
}
struct EndExceptionTableCall {
EndExceptionTableCall(const Function *F, uint8_t *TableStart,
uint8_t *TableEnd, uint8_t* FrameRegister)
: F(F), F_dump(DumpFunction(F)),
TableStart(TableStart), TableEnd(TableEnd),
FrameRegister(FrameRegister) {}
const Function *F;
std::string F_dump;
uint8_t *TableStart;
uint8_t *TableEnd;
uint8_t *FrameRegister;
};
std::vector<EndExceptionTableCall> endExceptionTableCalls;
virtual void endExceptionTable(const Function *F, uint8_t *TableStart,
uint8_t *TableEnd, uint8_t* FrameRegister) {
endExceptionTableCalls.push_back(
EndExceptionTableCall(F, TableStart, TableEnd, FrameRegister));
return Base->endExceptionTable(F, TableStart, TableEnd, FrameRegister);
}
};
bool LoadAssemblyInto(Module *M, const char *assembly) {
SMDiagnostic Error;
bool success =
NULL != ParseAssemblyString(assembly, M, Error, M->getContext());
std::string errMsg;
raw_string_ostream os(errMsg);
Error.Print("", os);
EXPECT_TRUE(success) << os.str();
return success;
}
class JITTest : public testing::Test {
protected:
virtual void SetUp() {
M = new Module("<main>", Context);
RJMM = new RecordingJITMemoryManager;
RJMM->setPoisonMemory(true);
std::string Error;
TheJIT.reset(EngineBuilder(M).setEngineKind(EngineKind::JIT)
.setJITMemoryManager(RJMM)
.setErrorStr(&Error).create());
ASSERT_TRUE(TheJIT.get() != NULL) << Error;
}
void LoadAssembly(const char *assembly) {
LoadAssemblyInto(M, assembly);
}
LLVMContext Context;
Module *M; // Owned by ExecutionEngine.
RecordingJITMemoryManager *RJMM;
OwningPtr<ExecutionEngine> TheJIT;
};
// Regression test for a bug. The JIT used to allocate globals inside the same
// memory block used for the function, and when the function code was freed,
// the global was left in the same place. This test allocates a function
// that uses and global, deallocates it, and then makes sure that the global
// stays alive after that.
TEST(JIT, GlobalInFunction) {
LLVMContext context;
Module *M = new Module("<main>", context);
JITMemoryManager *MemMgr = JITMemoryManager::CreateDefaultMemManager();
// Tell the memory manager to poison freed memory so that accessing freed
// memory is more easily tested.
MemMgr->setPoisonMemory(true);
std::string Error;
OwningPtr<ExecutionEngine> JIT(EngineBuilder(M)
.setEngineKind(EngineKind::JIT)
.setErrorStr(&Error)
.setJITMemoryManager(MemMgr)
// The next line enables the fix:
.setAllocateGVsWithCode(false)
.create());
ASSERT_EQ(Error, "");
// Create a global variable.
const Type *GTy = Type::getInt32Ty(context);
GlobalVariable *G = new GlobalVariable(
*M,
GTy,
false, // Not constant.
GlobalValue::InternalLinkage,
Constant::getNullValue(GTy),
"myglobal");
// Make a function that points to a global.
Function *F1 = makeReturnGlobal("F1", G, M);
// Get the pointer to the native code to force it to JIT the function and
// allocate space for the global.
void (*F1Ptr)() =
reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F1));
// Since F1 was codegen'd, a pointer to G should be available.
int32_t *GPtr = (int32_t*)JIT->getPointerToGlobalIfAvailable(G);
ASSERT_NE((int32_t*)NULL, GPtr);
EXPECT_EQ(0, *GPtr);
// F1() should increment G.
F1Ptr();
EXPECT_EQ(1, *GPtr);
// Make a second function identical to the first, referring to the same
// global.
Function *F2 = makeReturnGlobal("F2", G, M);
void (*F2Ptr)() =
reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F2));
// F2() should increment G.
F2Ptr();
EXPECT_EQ(2, *GPtr);
// Deallocate F1.
JIT->freeMachineCodeForFunction(F1);
// F2() should *still* increment G.
F2Ptr();
EXPECT_EQ(3, *GPtr);
}
int PlusOne(int arg) {
return arg + 1;
}
TEST_F(JITTest, FarCallToKnownFunction) {
// x86-64 can only make direct calls to functions within 32 bits of
// the current PC. To call anything farther away, we have to load
// the address into a register and call through the register. The
// current JIT does this by allocating a stub for any far call.
// There was a bug in which the JIT tried to emit a direct call when
// the target was already in the JIT's global mappings and lazy
// compilation was disabled.
Function *KnownFunction = Function::Create(
TypeBuilder<int(int), false>::get(Context),
GlobalValue::ExternalLinkage, "known", M);
TheJIT->addGlobalMapping(KnownFunction, (void*)(intptr_t)PlusOne);
// int test() { return known(7); }
Function *TestFunction = Function::Create(
TypeBuilder<int(), false>::get(Context),
GlobalValue::ExternalLinkage, "test", M);
BasicBlock *Entry = BasicBlock::Create(Context, "entry", TestFunction);
IRBuilder<> Builder(Entry);
Value *result = Builder.CreateCall(
KnownFunction,
ConstantInt::get(TypeBuilder<int, false>::get(Context), 7));
Builder.CreateRet(result);
TheJIT->DisableLazyCompilation(true);
int (*TestFunctionPtr)() = reinterpret_cast<int(*)()>(
(intptr_t)TheJIT->getPointerToFunction(TestFunction));
// This used to crash in trying to call PlusOne().
EXPECT_EQ(8, TestFunctionPtr());
}
// Test a function C which calls A and B which call each other.
TEST_F(JITTest, NonLazyCompilationStillNeedsStubs) {
TheJIT->DisableLazyCompilation(true);
const FunctionType *Func1Ty =
cast<FunctionType>(TypeBuilder<void(void), false>::get(Context));
std::vector<const Type*> arg_types;
arg_types.push_back(Type::getInt1Ty(Context));
const FunctionType *FuncTy = FunctionType::get(
Type::getVoidTy(Context), arg_types, false);
Function *Func1 = Function::Create(Func1Ty, Function::ExternalLinkage,
"func1", M);
Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
"func2", M);
Function *Func3 = Function::Create(FuncTy, Function::InternalLinkage,
"func3", M);
BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
BasicBlock *True2 = BasicBlock::Create(Context, "cond_true", Func2);
BasicBlock *False2 = BasicBlock::Create(Context, "cond_false", Func2);
BasicBlock *Block3 = BasicBlock::Create(Context, "block3", Func3);
BasicBlock *True3 = BasicBlock::Create(Context, "cond_true", Func3);
BasicBlock *False3 = BasicBlock::Create(Context, "cond_false", Func3);
// Make Func1 call Func2(0) and Func3(0).
IRBuilder<> Builder(Block1);
Builder.CreateCall(Func2, ConstantInt::getTrue(Context));
Builder.CreateCall(Func3, ConstantInt::getTrue(Context));
Builder.CreateRetVoid();
// void Func2(bool b) { if (b) { Func3(false); return; } return; }
Builder.SetInsertPoint(Block2);
Builder.CreateCondBr(Func2->arg_begin(), True2, False2);
Builder.SetInsertPoint(True2);
Builder.CreateCall(Func3, ConstantInt::getFalse(Context));
Builder.CreateRetVoid();
Builder.SetInsertPoint(False2);
Builder.CreateRetVoid();
// void Func3(bool b) { if (b) { Func2(false); return; } return; }
Builder.SetInsertPoint(Block3);
Builder.CreateCondBr(Func3->arg_begin(), True3, False3);
Builder.SetInsertPoint(True3);
Builder.CreateCall(Func2, ConstantInt::getFalse(Context));
Builder.CreateRetVoid();
Builder.SetInsertPoint(False3);
Builder.CreateRetVoid();
// Compile the function to native code
void (*F1Ptr)() =
reinterpret_cast<void(*)()>((intptr_t)TheJIT->getPointerToFunction(Func1));
F1Ptr();
}
// Regression test for PR5162. This used to trigger an AssertingVH inside the
// JIT's Function to stub mapping.
TEST_F(JITTest, NonLazyLeaksNoStubs) {
TheJIT->DisableLazyCompilation(true);
// Create two functions with a single basic block each.
const FunctionType *FuncTy =
cast<FunctionType>(TypeBuilder<int(), false>::get(Context));
Function *Func1 = Function::Create(FuncTy, Function::ExternalLinkage,
"func1", M);
Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
"func2", M);
BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
// The first function calls the second and returns the result
IRBuilder<> Builder(Block1);
Value *Result = Builder.CreateCall(Func2);
Builder.CreateRet(Result);
// The second function just returns a constant
Builder.SetInsertPoint(Block2);
Builder.CreateRet(ConstantInt::get(TypeBuilder<int, false>::get(Context),42));
// Compile the function to native code
(void)TheJIT->getPointerToFunction(Func1);
// Free the JIT state for the functions
TheJIT->freeMachineCodeForFunction(Func1);
TheJIT->freeMachineCodeForFunction(Func2);
// Delete the first function (and show that is has no users)
EXPECT_EQ(Func1->getNumUses(), 0u);
Func1->eraseFromParent();
// Delete the second function (and show that it has no users - it had one,
// func1 but that's gone now)
EXPECT_EQ(Func2->getNumUses(), 0u);
Func2->eraseFromParent();
}
TEST_F(JITTest, ModuleDeletion) {
TheJIT->DisableLazyCompilation(false);
LoadAssembly("define void @main() { "
" call i32 @computeVal() "
" ret void "
"} "
" "
"define internal i32 @computeVal() { "
" ret i32 0 "
"} ");
Function *func = M->getFunction("main");
TheJIT->getPointerToFunction(func);
TheJIT->removeModule(M);
delete M;
SmallPtrSet<const void*, 2> FunctionsDeallocated;
for (unsigned i = 0, e = RJMM->deallocateFunctionBodyCalls.size();
i != e; ++i) {
FunctionsDeallocated.insert(RJMM->deallocateFunctionBodyCalls[i].Body);
}
for (unsigned i = 0, e = RJMM->startFunctionBodyCalls.size(); i != e; ++i) {
EXPECT_TRUE(FunctionsDeallocated.count(
RJMM->startFunctionBodyCalls[i].Result))
<< "Function leaked: \n" << RJMM->startFunctionBodyCalls[i].F_dump;
}
EXPECT_EQ(RJMM->startFunctionBodyCalls.size(),
RJMM->deallocateFunctionBodyCalls.size());
SmallPtrSet<const void*, 2> ExceptionTablesDeallocated;
unsigned NumTablesDeallocated = 0;
for (unsigned i = 0, e = RJMM->deallocateExceptionTableCalls.size();
i != e; ++i) {
ExceptionTablesDeallocated.insert(
RJMM->deallocateExceptionTableCalls[i].ET);
if (RJMM->deallocateExceptionTableCalls[i].ET != NULL) {
// If JITEmitDebugInfo is off, we'll "deallocate" NULL, which doesn't
// appear in startExceptionTableCalls.
NumTablesDeallocated++;
}
}
for (unsigned i = 0, e = RJMM->startExceptionTableCalls.size(); i != e; ++i) {
EXPECT_TRUE(ExceptionTablesDeallocated.count(
RJMM->startExceptionTableCalls[i].Result))
<< "Function's exception table leaked: \n"
<< RJMM->startExceptionTableCalls[i].F_dump;
}
EXPECT_EQ(RJMM->startExceptionTableCalls.size(),
NumTablesDeallocated);
}
// ARM and PPC still emit stubs for calls since the target may be too far away
// to call directly. This #if can probably be removed when
// http://llvm.org/PR5201 is fixed.
#if !defined(__arm__) && !defined(__powerpc__) && !defined(__ppc__)
typedef int (*FooPtr) ();
TEST_F(JITTest, NoStubs) {
LoadAssembly("define void @bar() {"
"entry: "
"ret void"
"}"
" "
"define i32 @foo() {"
"entry:"
"call void @bar()"
"ret i32 undef"
"}"
" "
"define i32 @main() {"
"entry:"
"%0 = call i32 @foo()"
"call void @bar()"
"ret i32 undef"
"}");
Function *foo = M->getFunction("foo");
uintptr_t tmp = (uintptr_t)(TheJIT->getPointerToFunction(foo));
FooPtr ptr = (FooPtr)(tmp);
(ptr)();
// We should now allocate no more stubs, we have the code to foo
// and the existing stub for bar.
int stubsBefore = RJMM->stubsAllocated;
Function *func = M->getFunction("main");
TheJIT->getPointerToFunction(func);
Function *bar = M->getFunction("bar");
TheJIT->getPointerToFunction(bar);
ASSERT_EQ(stubsBefore, RJMM->stubsAllocated);
}
#endif // !ARM && !PPC
TEST_F(JITTest, FunctionPointersOutliveTheirCreator) {
TheJIT->DisableLazyCompilation(true);
LoadAssembly("define i8()* @get_foo_addr() { "
" ret i8()* @foo "
"} "
" "
"define i8 @foo() { "
" ret i8 42 "
"} ");
Function *F_get_foo_addr = M->getFunction("get_foo_addr");
typedef char(*fooT)();
fooT (*get_foo_addr)() = reinterpret_cast<fooT(*)()>(
(intptr_t)TheJIT->getPointerToFunction(F_get_foo_addr));
fooT foo_addr = get_foo_addr();
// Now free get_foo_addr. This should not free the machine code for foo or
// any call stub returned as foo's canonical address.
TheJIT->freeMachineCodeForFunction(F_get_foo_addr);
// Check by calling the reported address of foo.
EXPECT_EQ(42, foo_addr());
// The reported address should also be the same as the result of a subsequent
// getPointerToFunction(foo).
#if 0
// Fails until PR5126 is fixed:
Function *F_foo = M->getFunction("foo");
fooT foo = reinterpret_cast<fooT>(
(intptr_t)TheJIT->getPointerToFunction(F_foo));
EXPECT_EQ((intptr_t)foo, (intptr_t)foo_addr);
#endif
}
// ARM doesn't have an implementation of replaceMachineCodeForFunction(), so
// recompileAndRelinkFunction doesn't work.
#if !defined(__arm__)
TEST_F(JITTest, FunctionIsRecompiledAndRelinked) {
Function *F = Function::Create(TypeBuilder<int(void), false>::get(Context),
GlobalValue::ExternalLinkage, "test", M);
BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
IRBuilder<> Builder(Entry);
Value *Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 1);
Builder.CreateRet(Val);
TheJIT->DisableLazyCompilation(true);
// Compile the function once, and make sure it works.
int (*OrigFPtr)() = reinterpret_cast<int(*)()>(
(intptr_t)TheJIT->recompileAndRelinkFunction(F));
EXPECT_EQ(1, OrigFPtr());
// Now change the function to return a different value.
Entry->eraseFromParent();
BasicBlock *NewEntry = BasicBlock::Create(Context, "new_entry", F);
Builder.SetInsertPoint(NewEntry);
Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 2);
Builder.CreateRet(Val);
// Recompile it, which should produce a new function pointer _and_ update the
// old one.
int (*NewFPtr)() = reinterpret_cast<int(*)()>(
(intptr_t)TheJIT->recompileAndRelinkFunction(F));
EXPECT_EQ(2, NewFPtr())
<< "The new pointer should call the new version of the function";
EXPECT_EQ(2, OrigFPtr())
<< "The old pointer's target should now jump to the new version";
}
#endif // !defined(__arm__)
} // anonymous namespace
// This variable is intentionally defined differently in the statically-compiled
// program from the IR input to the JIT to assert that the JIT doesn't use its
// definition.
extern "C" int32_t JITTest_AvailableExternallyGlobal;
int32_t JITTest_AvailableExternallyGlobal = 42;
namespace {
TEST_F(JITTest, AvailableExternallyGlobalIsntEmitted) {
TheJIT->DisableLazyCompilation(true);
LoadAssembly("@JITTest_AvailableExternallyGlobal = "
" available_externally global i32 7 "
" "
"define i32 @loader() { "
" %result = load i32* @JITTest_AvailableExternallyGlobal "
" ret i32 %result "
"} ");
Function *loaderIR = M->getFunction("loader");
int32_t (*loader)() = reinterpret_cast<int32_t(*)()>(
(intptr_t)TheJIT->getPointerToFunction(loaderIR));
EXPECT_EQ(42, loader()) << "func should return 42 from the external global,"
<< " not 7 from the IR version.";
}
} // anonymous namespace
// This function is intentionally defined differently in the statically-compiled
// program from the IR input to the JIT to assert that the JIT doesn't use its
// definition.
extern "C" int32_t JITTest_AvailableExternallyFunction() {
return 42;
}
namespace {
TEST_F(JITTest, AvailableExternallyFunctionIsntCompiled) {
TheJIT->DisableLazyCompilation(true);
LoadAssembly("define available_externally i32 "
" @JITTest_AvailableExternallyFunction() { "
" ret i32 7 "
"} "
" "
"define i32 @func() { "
" %result = tail call i32 "
" @JITTest_AvailableExternallyFunction() "
" ret i32 %result "
"} ");
Function *funcIR = M->getFunction("func");
int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
(intptr_t)TheJIT->getPointerToFunction(funcIR));
EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
<< " not 7 from the IR version.";
}
TEST_F(JITTest, EscapedLazyStubStillCallable) {
TheJIT->DisableLazyCompilation(false);
LoadAssembly("define internal i32 @stubbed() { "
" ret i32 42 "
"} "
" "
"define i32()* @get_stub() { "
" ret i32()* @stubbed "
"} ");
typedef int32_t(*StubTy)();
// Call get_stub() to get the address of @stubbed without actually JITting it.
Function *get_stubIR = M->getFunction("get_stub");
StubTy (*get_stub)() = reinterpret_cast<StubTy(*)()>(
(intptr_t)TheJIT->getPointerToFunction(get_stubIR));
StubTy stubbed = get_stub();
// Now get_stubIR is the only reference to stubbed's stub.
get_stubIR->eraseFromParent();
// Now there are no references inside the JIT, but we've got a pointer outside
// it. The stub should be callable and return the right value.
EXPECT_EQ(42, stubbed());
}
// Converts the LLVM assembly to bitcode and returns it in a std::string. An
// empty string indicates an error.
std::string AssembleToBitcode(LLVMContext &Context, const char *Assembly) {
Module TempModule("TempModule", Context);
if (!LoadAssemblyInto(&TempModule, Assembly)) {
return "";
}
std::string Result;
raw_string_ostream OS(Result);
WriteBitcodeToFile(&TempModule, OS);
OS.flush();
return Result;
}
// Returns a newly-created ExecutionEngine that reads the bitcode in 'Bitcode'
// lazily. The associated Module (owned by the ExecutionEngine) is returned in
// M. Both will be NULL on an error. Bitcode must live at least as long as the
// ExecutionEngine.
ExecutionEngine *getJITFromBitcode(
LLVMContext &Context, const std::string &Bitcode, Module *&M) {
// c_str() is null-terminated like MemoryBuffer::getMemBuffer requires.
MemoryBuffer *BitcodeBuffer =
MemoryBuffer::getMemBuffer(Bitcode, "Bitcode for test");
std::string errMsg;
M = getLazyBitcodeModule(BitcodeBuffer, Context, &errMsg);
if (M == NULL) {
ADD_FAILURE() << errMsg;
delete BitcodeBuffer;
return NULL;
}
ExecutionEngine *TheJIT = EngineBuilder(M)
.setEngineKind(EngineKind::JIT)
.setErrorStr(&errMsg)
.create();
if (TheJIT == NULL) {
ADD_FAILURE() << errMsg;
delete M;
M = NULL;
return NULL;
}
return TheJIT;
}
TEST(LazyLoadedJITTest, MaterializableAvailableExternallyFunctionIsntCompiled) {
LLVMContext Context;
const std::string Bitcode =
AssembleToBitcode(Context,
"define available_externally i32 "
" @JITTest_AvailableExternallyFunction() { "
" ret i32 7 "
"} "
" "
"define i32 @func() { "
" %result = tail call i32 "
" @JITTest_AvailableExternallyFunction() "
" ret i32 %result "
"} ");
ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
Module *M;
OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
TheJIT->DisableLazyCompilation(true);
Function *funcIR = M->getFunction("func");
Function *availableFunctionIR =
M->getFunction("JITTest_AvailableExternallyFunction");
// Double-check that the available_externally function is still unmaterialized
// when getPointerToFunction needs to find out if it's available_externally.
EXPECT_TRUE(availableFunctionIR->isMaterializable());
int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
(intptr_t)TheJIT->getPointerToFunction(funcIR));
EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
<< " not 7 from the IR version.";
}
TEST(LazyLoadedJITTest, EagerCompiledRecursionThroughGhost) {
LLVMContext Context;
const std::string Bitcode =
AssembleToBitcode(Context,
"define i32 @recur1(i32 %a) { "
" %zero = icmp eq i32 %a, 0 "
" br i1 %zero, label %done, label %notdone "
"done: "
" ret i32 3 "
"notdone: "
" %am1 = sub i32 %a, 1 "
" %result = call i32 @recur2(i32 %am1) "
" ret i32 %result "
"} "
" "
"define i32 @recur2(i32 %b) { "
" %result = call i32 @recur1(i32 %b) "
" ret i32 %result "
"} ");
ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
Module *M;
OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
TheJIT->DisableLazyCompilation(true);
Function *recur1IR = M->getFunction("recur1");
Function *recur2IR = M->getFunction("recur2");
EXPECT_TRUE(recur1IR->isMaterializable());
EXPECT_TRUE(recur2IR->isMaterializable());
int32_t (*recur1)(int32_t) = reinterpret_cast<int32_t(*)(int32_t)>(
(intptr_t)TheJIT->getPointerToFunction(recur1IR));
EXPECT_EQ(3, recur1(4));
}
// This code is copied from JITEventListenerTest, but it only runs once for all
// the tests in this directory. Everything seems fine, but that's strange
// behavior.
class JITEnvironment : public testing::Environment {
virtual void SetUp() {
// Required to create a JIT.
InitializeNativeTarget();
}
};
testing::Environment* const jit_env =
testing::AddGlobalTestEnvironment(new JITEnvironment);
}