mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 19:32:16 +00:00
4396f5d9d2
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200345 91177308-0d34-0410-b5e6-96231b3b80d8
2915 lines
101 KiB
C++
2915 lines
101 KiB
C++
//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/X86BaseInfo.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCParser/MCAsmLexer.h"
|
|
#include "llvm/MC/MCParser/MCAsmParser.h"
|
|
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/MCTargetAsmParser.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
struct X86Operand;
|
|
|
|
static const char OpPrecedence[] = {
|
|
0, // IC_OR
|
|
1, // IC_AND
|
|
2, // IC_PLUS
|
|
2, // IC_MINUS
|
|
3, // IC_MULTIPLY
|
|
3, // IC_DIVIDE
|
|
4, // IC_RPAREN
|
|
5, // IC_LPAREN
|
|
0, // IC_IMM
|
|
0 // IC_REGISTER
|
|
};
|
|
|
|
class X86AsmParser : public MCTargetAsmParser {
|
|
MCSubtargetInfo &STI;
|
|
MCAsmParser &Parser;
|
|
ParseInstructionInfo *InstInfo;
|
|
private:
|
|
SMLoc consumeToken() {
|
|
SMLoc Result = Parser.getTok().getLoc();
|
|
Parser.Lex();
|
|
return Result;
|
|
}
|
|
|
|
enum InfixCalculatorTok {
|
|
IC_OR = 0,
|
|
IC_AND,
|
|
IC_PLUS,
|
|
IC_MINUS,
|
|
IC_MULTIPLY,
|
|
IC_DIVIDE,
|
|
IC_RPAREN,
|
|
IC_LPAREN,
|
|
IC_IMM,
|
|
IC_REGISTER
|
|
};
|
|
|
|
class InfixCalculator {
|
|
typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
|
|
SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
|
|
SmallVector<ICToken, 4> PostfixStack;
|
|
|
|
public:
|
|
int64_t popOperand() {
|
|
assert (!PostfixStack.empty() && "Poped an empty stack!");
|
|
ICToken Op = PostfixStack.pop_back_val();
|
|
assert ((Op.first == IC_IMM || Op.first == IC_REGISTER)
|
|
&& "Expected and immediate or register!");
|
|
return Op.second;
|
|
}
|
|
void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
|
|
assert ((Op == IC_IMM || Op == IC_REGISTER) &&
|
|
"Unexpected operand!");
|
|
PostfixStack.push_back(std::make_pair(Op, Val));
|
|
}
|
|
|
|
void popOperator() { InfixOperatorStack.pop_back(); }
|
|
void pushOperator(InfixCalculatorTok Op) {
|
|
// Push the new operator if the stack is empty.
|
|
if (InfixOperatorStack.empty()) {
|
|
InfixOperatorStack.push_back(Op);
|
|
return;
|
|
}
|
|
|
|
// Push the new operator if it has a higher precedence than the operator
|
|
// on the top of the stack or the operator on the top of the stack is a
|
|
// left parentheses.
|
|
unsigned Idx = InfixOperatorStack.size() - 1;
|
|
InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
|
|
if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
|
|
InfixOperatorStack.push_back(Op);
|
|
return;
|
|
}
|
|
|
|
// The operator on the top of the stack has higher precedence than the
|
|
// new operator.
|
|
unsigned ParenCount = 0;
|
|
while (1) {
|
|
// Nothing to process.
|
|
if (InfixOperatorStack.empty())
|
|
break;
|
|
|
|
Idx = InfixOperatorStack.size() - 1;
|
|
StackOp = InfixOperatorStack[Idx];
|
|
if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
|
|
break;
|
|
|
|
// If we have an even parentheses count and we see a left parentheses,
|
|
// then stop processing.
|
|
if (!ParenCount && StackOp == IC_LPAREN)
|
|
break;
|
|
|
|
if (StackOp == IC_RPAREN) {
|
|
++ParenCount;
|
|
InfixOperatorStack.pop_back();
|
|
} else if (StackOp == IC_LPAREN) {
|
|
--ParenCount;
|
|
InfixOperatorStack.pop_back();
|
|
} else {
|
|
InfixOperatorStack.pop_back();
|
|
PostfixStack.push_back(std::make_pair(StackOp, 0));
|
|
}
|
|
}
|
|
// Push the new operator.
|
|
InfixOperatorStack.push_back(Op);
|
|
}
|
|
int64_t execute() {
|
|
// Push any remaining operators onto the postfix stack.
|
|
while (!InfixOperatorStack.empty()) {
|
|
InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
|
|
if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
|
|
PostfixStack.push_back(std::make_pair(StackOp, 0));
|
|
}
|
|
|
|
if (PostfixStack.empty())
|
|
return 0;
|
|
|
|
SmallVector<ICToken, 16> OperandStack;
|
|
for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
|
|
ICToken Op = PostfixStack[i];
|
|
if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
|
|
OperandStack.push_back(Op);
|
|
} else {
|
|
assert (OperandStack.size() > 1 && "Too few operands.");
|
|
int64_t Val;
|
|
ICToken Op2 = OperandStack.pop_back_val();
|
|
ICToken Op1 = OperandStack.pop_back_val();
|
|
switch (Op.first) {
|
|
default:
|
|
report_fatal_error("Unexpected operator!");
|
|
break;
|
|
case IC_PLUS:
|
|
Val = Op1.second + Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_MINUS:
|
|
Val = Op1.second - Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_MULTIPLY:
|
|
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Multiply operation with an immediate and a register!");
|
|
Val = Op1.second * Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_DIVIDE:
|
|
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Divide operation with an immediate and a register!");
|
|
assert (Op2.second != 0 && "Division by zero!");
|
|
Val = Op1.second / Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_OR:
|
|
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Or operation with an immediate and a register!");
|
|
Val = Op1.second | Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_AND:
|
|
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"And operation with an immediate and a register!");
|
|
Val = Op1.second & Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
assert (OperandStack.size() == 1 && "Expected a single result.");
|
|
return OperandStack.pop_back_val().second;
|
|
}
|
|
};
|
|
|
|
enum IntelExprState {
|
|
IES_OR,
|
|
IES_AND,
|
|
IES_PLUS,
|
|
IES_MINUS,
|
|
IES_MULTIPLY,
|
|
IES_DIVIDE,
|
|
IES_LBRAC,
|
|
IES_RBRAC,
|
|
IES_LPAREN,
|
|
IES_RPAREN,
|
|
IES_REGISTER,
|
|
IES_INTEGER,
|
|
IES_IDENTIFIER,
|
|
IES_ERROR
|
|
};
|
|
|
|
class IntelExprStateMachine {
|
|
IntelExprState State, PrevState;
|
|
unsigned BaseReg, IndexReg, TmpReg, Scale;
|
|
int64_t Imm;
|
|
const MCExpr *Sym;
|
|
StringRef SymName;
|
|
bool StopOnLBrac, AddImmPrefix;
|
|
InfixCalculator IC;
|
|
InlineAsmIdentifierInfo Info;
|
|
public:
|
|
IntelExprStateMachine(int64_t imm, bool stoponlbrac, bool addimmprefix) :
|
|
State(IES_PLUS), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), TmpReg(0),
|
|
Scale(1), Imm(imm), Sym(0), StopOnLBrac(stoponlbrac),
|
|
AddImmPrefix(addimmprefix) { Info.clear(); }
|
|
|
|
unsigned getBaseReg() { return BaseReg; }
|
|
unsigned getIndexReg() { return IndexReg; }
|
|
unsigned getScale() { return Scale; }
|
|
const MCExpr *getSym() { return Sym; }
|
|
StringRef getSymName() { return SymName; }
|
|
int64_t getImm() { return Imm + IC.execute(); }
|
|
bool isValidEndState() {
|
|
return State == IES_RBRAC || State == IES_INTEGER;
|
|
}
|
|
bool getStopOnLBrac() { return StopOnLBrac; }
|
|
bool getAddImmPrefix() { return AddImmPrefix; }
|
|
bool hadError() { return State == IES_ERROR; }
|
|
|
|
InlineAsmIdentifierInfo &getIdentifierInfo() {
|
|
return Info;
|
|
}
|
|
|
|
void onOr() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_OR;
|
|
IC.pushOperator(IC_OR);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onAnd() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_AND;
|
|
IC.pushOperator(IC_AND);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onPlus() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_PLUS;
|
|
IC.pushOperator(IC_PLUS);
|
|
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
|
|
// If we already have a BaseReg, then assume this is the IndexReg with
|
|
// a scale of 1.
|
|
if (!BaseReg) {
|
|
BaseReg = TmpReg;
|
|
} else {
|
|
assert (!IndexReg && "BaseReg/IndexReg already set!");
|
|
IndexReg = TmpReg;
|
|
Scale = 1;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onMinus() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_PLUS:
|
|
case IES_MULTIPLY:
|
|
case IES_DIVIDE:
|
|
case IES_LPAREN:
|
|
case IES_RPAREN:
|
|
case IES_LBRAC:
|
|
case IES_RBRAC:
|
|
case IES_INTEGER:
|
|
case IES_REGISTER:
|
|
State = IES_MINUS;
|
|
// Only push the minus operator if it is not a unary operator.
|
|
if (!(CurrState == IES_PLUS || CurrState == IES_MINUS ||
|
|
CurrState == IES_MULTIPLY || CurrState == IES_DIVIDE ||
|
|
CurrState == IES_LPAREN || CurrState == IES_LBRAC))
|
|
IC.pushOperator(IC_MINUS);
|
|
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
|
|
// If we already have a BaseReg, then assume this is the IndexReg with
|
|
// a scale of 1.
|
|
if (!BaseReg) {
|
|
BaseReg = TmpReg;
|
|
} else {
|
|
assert (!IndexReg && "BaseReg/IndexReg already set!");
|
|
IndexReg = TmpReg;
|
|
Scale = 1;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onRegister(unsigned Reg) {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_PLUS:
|
|
case IES_LPAREN:
|
|
State = IES_REGISTER;
|
|
TmpReg = Reg;
|
|
IC.pushOperand(IC_REGISTER);
|
|
break;
|
|
case IES_MULTIPLY:
|
|
// Index Register - Scale * Register
|
|
if (PrevState == IES_INTEGER) {
|
|
assert (!IndexReg && "IndexReg already set!");
|
|
State = IES_REGISTER;
|
|
IndexReg = Reg;
|
|
// Get the scale and replace the 'Scale * Register' with '0'.
|
|
Scale = IC.popOperand();
|
|
IC.pushOperand(IC_IMM);
|
|
IC.popOperator();
|
|
} else {
|
|
State = IES_ERROR;
|
|
}
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName) {
|
|
PrevState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_PLUS:
|
|
case IES_MINUS:
|
|
State = IES_INTEGER;
|
|
Sym = SymRef;
|
|
SymName = SymRefName;
|
|
IC.pushOperand(IC_IMM);
|
|
break;
|
|
}
|
|
}
|
|
bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_PLUS:
|
|
case IES_MINUS:
|
|
case IES_OR:
|
|
case IES_AND:
|
|
case IES_DIVIDE:
|
|
case IES_MULTIPLY:
|
|
case IES_LPAREN:
|
|
State = IES_INTEGER;
|
|
if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
|
|
// Index Register - Register * Scale
|
|
assert (!IndexReg && "IndexReg already set!");
|
|
IndexReg = TmpReg;
|
|
Scale = TmpInt;
|
|
if(Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
|
|
ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
|
|
return true;
|
|
}
|
|
// Get the scale and replace the 'Register * Scale' with '0'.
|
|
IC.popOperator();
|
|
} else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
|
|
PrevState == IES_OR || PrevState == IES_AND ||
|
|
PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
|
|
PrevState == IES_LPAREN || PrevState == IES_LBRAC) &&
|
|
CurrState == IES_MINUS) {
|
|
// Unary minus. No need to pop the minus operand because it was never
|
|
// pushed.
|
|
IC.pushOperand(IC_IMM, -TmpInt); // Push -Imm.
|
|
} else {
|
|
IC.pushOperand(IC_IMM, TmpInt);
|
|
}
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
return false;
|
|
}
|
|
void onStar() {
|
|
PrevState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_REGISTER:
|
|
case IES_RPAREN:
|
|
State = IES_MULTIPLY;
|
|
IC.pushOperator(IC_MULTIPLY);
|
|
break;
|
|
}
|
|
}
|
|
void onDivide() {
|
|
PrevState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
State = IES_DIVIDE;
|
|
IC.pushOperator(IC_DIVIDE);
|
|
break;
|
|
}
|
|
}
|
|
void onLBrac() {
|
|
PrevState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_RBRAC:
|
|
State = IES_PLUS;
|
|
IC.pushOperator(IC_PLUS);
|
|
break;
|
|
}
|
|
}
|
|
void onRBrac() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_REGISTER:
|
|
case IES_RPAREN:
|
|
State = IES_RBRAC;
|
|
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
|
|
// If we already have a BaseReg, then assume this is the IndexReg with
|
|
// a scale of 1.
|
|
if (!BaseReg) {
|
|
BaseReg = TmpReg;
|
|
} else {
|
|
assert (!IndexReg && "BaseReg/IndexReg already set!");
|
|
IndexReg = TmpReg;
|
|
Scale = 1;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onLParen() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_PLUS:
|
|
case IES_MINUS:
|
|
case IES_OR:
|
|
case IES_AND:
|
|
case IES_MULTIPLY:
|
|
case IES_DIVIDE:
|
|
case IES_LPAREN:
|
|
// FIXME: We don't handle this type of unary minus, yet.
|
|
if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
|
|
PrevState == IES_OR || PrevState == IES_AND ||
|
|
PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
|
|
PrevState == IES_LPAREN || PrevState == IES_LBRAC) &&
|
|
CurrState == IES_MINUS) {
|
|
State = IES_ERROR;
|
|
break;
|
|
}
|
|
State = IES_LPAREN;
|
|
IC.pushOperator(IC_LPAREN);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onRParen() {
|
|
PrevState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_REGISTER:
|
|
case IES_RPAREN:
|
|
State = IES_RPAREN;
|
|
IC.pushOperator(IC_RPAREN);
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
|
|
MCAsmParser &getParser() const { return Parser; }
|
|
|
|
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
|
|
|
|
bool Error(SMLoc L, const Twine &Msg,
|
|
ArrayRef<SMRange> Ranges = None,
|
|
bool MatchingInlineAsm = false) {
|
|
if (MatchingInlineAsm) return true;
|
|
return Parser.Error(L, Msg, Ranges);
|
|
}
|
|
|
|
X86Operand *ErrorOperand(SMLoc Loc, StringRef Msg) {
|
|
Error(Loc, Msg);
|
|
return 0;
|
|
}
|
|
|
|
X86Operand *DefaultMemSIOperand(SMLoc Loc);
|
|
X86Operand *DefaultMemDIOperand(SMLoc Loc);
|
|
X86Operand *ParseOperand();
|
|
X86Operand *ParseATTOperand();
|
|
X86Operand *ParseIntelOperand();
|
|
X86Operand *ParseIntelOffsetOfOperator();
|
|
bool ParseIntelDotOperator(const MCExpr *Disp, const MCExpr *&NewDisp);
|
|
X86Operand *ParseIntelOperator(unsigned OpKind);
|
|
X86Operand *ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start, unsigned Size);
|
|
X86Operand *ParseIntelMemOperand(int64_t ImmDisp, SMLoc StartLoc,
|
|
unsigned Size);
|
|
bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
|
|
X86Operand *ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
|
|
int64_t ImmDisp, unsigned Size);
|
|
bool ParseIntelIdentifier(const MCExpr *&Val, StringRef &Identifier,
|
|
InlineAsmIdentifierInfo &Info,
|
|
bool IsUnevaluatedOperand, SMLoc &End);
|
|
|
|
X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
|
|
|
|
X86Operand *CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp,
|
|
unsigned BaseReg, unsigned IndexReg,
|
|
unsigned Scale, SMLoc Start, SMLoc End,
|
|
unsigned Size, StringRef Identifier,
|
|
InlineAsmIdentifierInfo &Info);
|
|
|
|
bool ParseDirectiveWord(unsigned Size, SMLoc L);
|
|
bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
|
|
|
|
bool processInstruction(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
|
|
|
|
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
|
|
MCStreamer &Out, unsigned &ErrorInfo,
|
|
bool MatchingInlineAsm);
|
|
|
|
/// doSrcDstMatch - Returns true if operands are matching in their
|
|
/// word size (%si and %di, %esi and %edi, etc.). Order depends on
|
|
/// the parsing mode (Intel vs. AT&T).
|
|
bool doSrcDstMatch(X86Operand &Op1, X86Operand &Op2);
|
|
|
|
bool is64BitMode() const {
|
|
// FIXME: Can tablegen auto-generate this?
|
|
return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
|
|
}
|
|
bool is32BitMode() const {
|
|
// FIXME: Can tablegen auto-generate this?
|
|
return (STI.getFeatureBits() & X86::Mode32Bit) != 0;
|
|
}
|
|
bool is16BitMode() const {
|
|
// FIXME: Can tablegen auto-generate this?
|
|
return (STI.getFeatureBits() & X86::Mode16Bit) != 0;
|
|
}
|
|
void SwitchMode(uint64_t mode) {
|
|
uint64_t oldMode = STI.getFeatureBits() &
|
|
(X86::Mode64Bit | X86::Mode32Bit | X86::Mode16Bit);
|
|
unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(oldMode | mode));
|
|
setAvailableFeatures(FB);
|
|
assert(mode == (STI.getFeatureBits() &
|
|
(X86::Mode64Bit | X86::Mode32Bit | X86::Mode16Bit)));
|
|
}
|
|
|
|
bool isParsingIntelSyntax() {
|
|
return getParser().getAssemblerDialect();
|
|
}
|
|
|
|
/// @name Auto-generated Matcher Functions
|
|
/// {
|
|
|
|
#define GET_ASSEMBLER_HEADER
|
|
#include "X86GenAsmMatcher.inc"
|
|
|
|
/// }
|
|
|
|
public:
|
|
X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
|
|
const MCInstrInfo &MII)
|
|
: MCTargetAsmParser(), STI(sti), Parser(parser), InstInfo(0) {
|
|
|
|
// Initialize the set of available features.
|
|
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
|
|
}
|
|
virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
|
|
|
|
virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
|
|
SMLoc NameLoc,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
|
|
|
|
virtual bool ParseDirective(AsmToken DirectiveID);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// @name Auto-generated Match Functions
|
|
/// {
|
|
|
|
static unsigned MatchRegisterName(StringRef Name);
|
|
|
|
/// }
|
|
|
|
static bool isImmSExti16i8Value(uint64_t Value) {
|
|
return (( Value <= 0x000000000000007FULL)||
|
|
(0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
|
|
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
|
|
}
|
|
|
|
static bool isImmSExti32i8Value(uint64_t Value) {
|
|
return (( Value <= 0x000000000000007FULL)||
|
|
(0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
|
|
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
|
|
}
|
|
|
|
static bool isImmZExtu32u8Value(uint64_t Value) {
|
|
return (Value <= 0x00000000000000FFULL);
|
|
}
|
|
|
|
static bool isImmSExti64i8Value(uint64_t Value) {
|
|
return (( Value <= 0x000000000000007FULL)||
|
|
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
|
|
}
|
|
|
|
static bool isImmSExti64i32Value(uint64_t Value) {
|
|
return (( Value <= 0x000000007FFFFFFFULL)||
|
|
(0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
|
|
}
|
|
namespace {
|
|
|
|
/// X86Operand - Instances of this class represent a parsed X86 machine
|
|
/// instruction.
|
|
struct X86Operand : public MCParsedAsmOperand {
|
|
enum KindTy {
|
|
Token,
|
|
Register,
|
|
Immediate,
|
|
Memory
|
|
} Kind;
|
|
|
|
SMLoc StartLoc, EndLoc;
|
|
SMLoc OffsetOfLoc;
|
|
StringRef SymName;
|
|
void *OpDecl;
|
|
bool AddressOf;
|
|
|
|
struct TokOp {
|
|
const char *Data;
|
|
unsigned Length;
|
|
};
|
|
|
|
struct RegOp {
|
|
unsigned RegNo;
|
|
};
|
|
|
|
struct ImmOp {
|
|
const MCExpr *Val;
|
|
};
|
|
|
|
struct MemOp {
|
|
unsigned SegReg;
|
|
const MCExpr *Disp;
|
|
unsigned BaseReg;
|
|
unsigned IndexReg;
|
|
unsigned Scale;
|
|
unsigned Size;
|
|
};
|
|
|
|
union {
|
|
struct TokOp Tok;
|
|
struct RegOp Reg;
|
|
struct ImmOp Imm;
|
|
struct MemOp Mem;
|
|
};
|
|
|
|
X86Operand(KindTy K, SMLoc Start, SMLoc End)
|
|
: Kind(K), StartLoc(Start), EndLoc(End) {}
|
|
|
|
StringRef getSymName() { return SymName; }
|
|
void *getOpDecl() { return OpDecl; }
|
|
|
|
/// getStartLoc - Get the location of the first token of this operand.
|
|
SMLoc getStartLoc() const { return StartLoc; }
|
|
/// getEndLoc - Get the location of the last token of this operand.
|
|
SMLoc getEndLoc() const { return EndLoc; }
|
|
/// getLocRange - Get the range between the first and last token of this
|
|
/// operand.
|
|
SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
|
|
/// getOffsetOfLoc - Get the location of the offset operator.
|
|
SMLoc getOffsetOfLoc() const { return OffsetOfLoc; }
|
|
|
|
virtual void print(raw_ostream &OS) const {}
|
|
|
|
StringRef getToken() const {
|
|
assert(Kind == Token && "Invalid access!");
|
|
return StringRef(Tok.Data, Tok.Length);
|
|
}
|
|
void setTokenValue(StringRef Value) {
|
|
assert(Kind == Token && "Invalid access!");
|
|
Tok.Data = Value.data();
|
|
Tok.Length = Value.size();
|
|
}
|
|
|
|
unsigned getReg() const {
|
|
assert(Kind == Register && "Invalid access!");
|
|
return Reg.RegNo;
|
|
}
|
|
|
|
const MCExpr *getImm() const {
|
|
assert(Kind == Immediate && "Invalid access!");
|
|
return Imm.Val;
|
|
}
|
|
|
|
const MCExpr *getMemDisp() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.Disp;
|
|
}
|
|
unsigned getMemSegReg() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.SegReg;
|
|
}
|
|
unsigned getMemBaseReg() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.BaseReg;
|
|
}
|
|
unsigned getMemIndexReg() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.IndexReg;
|
|
}
|
|
unsigned getMemScale() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.Scale;
|
|
}
|
|
|
|
bool isToken() const {return Kind == Token; }
|
|
|
|
bool isImm() const { return Kind == Immediate; }
|
|
|
|
bool isImmSExti16i8() const {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// If this isn't a constant expr, just assume it fits and let relaxation
|
|
// handle it.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE)
|
|
return true;
|
|
|
|
// Otherwise, check the value is in a range that makes sense for this
|
|
// extension.
|
|
return isImmSExti16i8Value(CE->getValue());
|
|
}
|
|
bool isImmSExti32i8() const {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// If this isn't a constant expr, just assume it fits and let relaxation
|
|
// handle it.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE)
|
|
return true;
|
|
|
|
// Otherwise, check the value is in a range that makes sense for this
|
|
// extension.
|
|
return isImmSExti32i8Value(CE->getValue());
|
|
}
|
|
bool isImmZExtu32u8() const {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// If this isn't a constant expr, just assume it fits and let relaxation
|
|
// handle it.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE)
|
|
return true;
|
|
|
|
// Otherwise, check the value is in a range that makes sense for this
|
|
// extension.
|
|
return isImmZExtu32u8Value(CE->getValue());
|
|
}
|
|
bool isImmSExti64i8() const {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// If this isn't a constant expr, just assume it fits and let relaxation
|
|
// handle it.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE)
|
|
return true;
|
|
|
|
// Otherwise, check the value is in a range that makes sense for this
|
|
// extension.
|
|
return isImmSExti64i8Value(CE->getValue());
|
|
}
|
|
bool isImmSExti64i32() const {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// If this isn't a constant expr, just assume it fits and let relaxation
|
|
// handle it.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE)
|
|
return true;
|
|
|
|
// Otherwise, check the value is in a range that makes sense for this
|
|
// extension.
|
|
return isImmSExti64i32Value(CE->getValue());
|
|
}
|
|
|
|
bool isOffsetOf() const {
|
|
return OffsetOfLoc.getPointer();
|
|
}
|
|
|
|
bool needAddressOf() const {
|
|
return AddressOf;
|
|
}
|
|
|
|
bool isMem() const { return Kind == Memory; }
|
|
bool isMem8() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 8);
|
|
}
|
|
bool isMem16() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 16);
|
|
}
|
|
bool isMem32() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 32);
|
|
}
|
|
bool isMem64() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 64);
|
|
}
|
|
bool isMem80() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 80);
|
|
}
|
|
bool isMem128() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 128);
|
|
}
|
|
bool isMem256() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 256);
|
|
}
|
|
bool isMem512() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 512);
|
|
}
|
|
|
|
bool isMemVX32() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
|
|
getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
|
|
}
|
|
bool isMemVY32() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
|
|
getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
|
|
}
|
|
bool isMemVX64() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
|
|
getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
|
|
}
|
|
bool isMemVY64() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
|
|
getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
|
|
}
|
|
bool isMemVZ32() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
|
|
getMemIndexReg() >= X86::ZMM0 && getMemIndexReg() <= X86::ZMM31;
|
|
}
|
|
bool isMemVZ64() const {
|
|
return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
|
|
getMemIndexReg() >= X86::ZMM0 && getMemIndexReg() <= X86::ZMM31;
|
|
}
|
|
|
|
bool isAbsMem() const {
|
|
return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
|
|
!getMemIndexReg() && getMemScale() == 1;
|
|
}
|
|
|
|
bool isSrcIdx() const {
|
|
return !getMemIndexReg() && getMemScale() == 1 &&
|
|
(getMemBaseReg() == X86::RSI || getMemBaseReg() == X86::ESI ||
|
|
getMemBaseReg() == X86::SI) && isa<MCConstantExpr>(getMemDisp()) &&
|
|
cast<MCConstantExpr>(getMemDisp())->getValue() == 0;
|
|
}
|
|
bool isSrcIdx8() const {
|
|
return isMem8() && isSrcIdx();
|
|
}
|
|
bool isSrcIdx16() const {
|
|
return isMem16() && isSrcIdx();
|
|
}
|
|
bool isSrcIdx32() const {
|
|
return isMem32() && isSrcIdx();
|
|
}
|
|
bool isSrcIdx64() const {
|
|
return isMem64() && isSrcIdx();
|
|
}
|
|
|
|
bool isDstIdx() const {
|
|
return !getMemIndexReg() && getMemScale() == 1 &&
|
|
(getMemSegReg() == 0 || getMemSegReg() == X86::ES) &&
|
|
(getMemBaseReg() == X86::RDI || getMemBaseReg() == X86::EDI ||
|
|
getMemBaseReg() == X86::DI) && isa<MCConstantExpr>(getMemDisp()) &&
|
|
cast<MCConstantExpr>(getMemDisp())->getValue() == 0;
|
|
}
|
|
bool isDstIdx8() const {
|
|
return isMem8() && isDstIdx();
|
|
}
|
|
bool isDstIdx16() const {
|
|
return isMem16() && isDstIdx();
|
|
}
|
|
bool isDstIdx32() const {
|
|
return isMem32() && isDstIdx();
|
|
}
|
|
bool isDstIdx64() const {
|
|
return isMem64() && isDstIdx();
|
|
}
|
|
|
|
bool isMemOffs8() const {
|
|
return Kind == Memory && !getMemBaseReg() &&
|
|
!getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 8);
|
|
}
|
|
bool isMemOffs16() const {
|
|
return Kind == Memory && !getMemBaseReg() &&
|
|
!getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 16);
|
|
}
|
|
bool isMemOffs32() const {
|
|
return Kind == Memory && !getMemBaseReg() &&
|
|
!getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 32);
|
|
}
|
|
bool isMemOffs64() const {
|
|
return Kind == Memory && !getMemBaseReg() &&
|
|
!getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 64);
|
|
}
|
|
|
|
bool isReg() const { return Kind == Register; }
|
|
|
|
bool isGR32orGR64() const {
|
|
return Kind == Register &&
|
|
(X86MCRegisterClasses[X86::GR32RegClassID].contains(getReg()) ||
|
|
X86MCRegisterClasses[X86::GR64RegClassID].contains(getReg()));
|
|
}
|
|
|
|
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
|
|
// Add as immediates when possible.
|
|
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
|
|
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
|
|
else
|
|
Inst.addOperand(MCOperand::CreateExpr(Expr));
|
|
}
|
|
|
|
void addRegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(getReg()));
|
|
}
|
|
|
|
static unsigned getGR32FromGR64(unsigned RegNo) {
|
|
switch (RegNo) {
|
|
default: llvm_unreachable("Unexpected register");
|
|
case X86::RAX: return X86::EAX;
|
|
case X86::RCX: return X86::ECX;
|
|
case X86::RDX: return X86::EDX;
|
|
case X86::RBX: return X86::EBX;
|
|
case X86::RBP: return X86::EBP;
|
|
case X86::RSP: return X86::ESP;
|
|
case X86::RSI: return X86::ESI;
|
|
case X86::RDI: return X86::EDI;
|
|
case X86::R8: return X86::R8D;
|
|
case X86::R9: return X86::R9D;
|
|
case X86::R10: return X86::R10D;
|
|
case X86::R11: return X86::R11D;
|
|
case X86::R12: return X86::R12D;
|
|
case X86::R13: return X86::R13D;
|
|
case X86::R14: return X86::R14D;
|
|
case X86::R15: return X86::R15D;
|
|
case X86::RIP: return X86::EIP;
|
|
}
|
|
}
|
|
|
|
void addGR32orGR64Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
unsigned RegNo = getReg();
|
|
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo))
|
|
RegNo = getGR32FromGR64(RegNo);
|
|
Inst.addOperand(MCOperand::CreateReg(RegNo));
|
|
}
|
|
|
|
void addImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
addExpr(Inst, getImm());
|
|
}
|
|
|
|
void addMemOperands(MCInst &Inst, unsigned N) const {
|
|
assert((N == 5) && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
|
|
Inst.addOperand(MCOperand::CreateImm(getMemScale()));
|
|
Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
|
|
addExpr(Inst, getMemDisp());
|
|
Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
|
|
}
|
|
|
|
void addAbsMemOperands(MCInst &Inst, unsigned N) const {
|
|
assert((N == 1) && "Invalid number of operands!");
|
|
// Add as immediates when possible.
|
|
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
|
|
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
|
|
else
|
|
Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
|
|
}
|
|
|
|
void addSrcIdxOperands(MCInst &Inst, unsigned N) const {
|
|
assert((N == 2) && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
|
|
Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
|
|
}
|
|
void addDstIdxOperands(MCInst &Inst, unsigned N) const {
|
|
assert((N == 1) && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
|
|
}
|
|
|
|
void addMemOffsOperands(MCInst &Inst, unsigned N) const {
|
|
assert((N == 2) && "Invalid number of operands!");
|
|
// Add as immediates when possible.
|
|
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
|
|
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
|
|
else
|
|
Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
|
|
Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
|
|
}
|
|
|
|
static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
|
|
SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size());
|
|
X86Operand *Res = new X86Operand(Token, Loc, EndLoc);
|
|
Res->Tok.Data = Str.data();
|
|
Res->Tok.Length = Str.size();
|
|
return Res;
|
|
}
|
|
|
|
static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc,
|
|
bool AddressOf = false,
|
|
SMLoc OffsetOfLoc = SMLoc(),
|
|
StringRef SymName = StringRef(),
|
|
void *OpDecl = 0) {
|
|
X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
|
|
Res->Reg.RegNo = RegNo;
|
|
Res->AddressOf = AddressOf;
|
|
Res->OffsetOfLoc = OffsetOfLoc;
|
|
Res->SymName = SymName;
|
|
Res->OpDecl = OpDecl;
|
|
return Res;
|
|
}
|
|
|
|
static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){
|
|
X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
|
|
Res->Imm.Val = Val;
|
|
return Res;
|
|
}
|
|
|
|
/// Create an absolute memory operand.
|
|
static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc,
|
|
unsigned Size = 0, StringRef SymName = StringRef(),
|
|
void *OpDecl = 0) {
|
|
X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
|
|
Res->Mem.SegReg = 0;
|
|
Res->Mem.Disp = Disp;
|
|
Res->Mem.BaseReg = 0;
|
|
Res->Mem.IndexReg = 0;
|
|
Res->Mem.Scale = 1;
|
|
Res->Mem.Size = Size;
|
|
Res->SymName = SymName;
|
|
Res->OpDecl = OpDecl;
|
|
Res->AddressOf = false;
|
|
return Res;
|
|
}
|
|
|
|
/// Create a generalized memory operand.
|
|
static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
|
|
unsigned BaseReg, unsigned IndexReg,
|
|
unsigned Scale, SMLoc StartLoc, SMLoc EndLoc,
|
|
unsigned Size = 0,
|
|
StringRef SymName = StringRef(),
|
|
void *OpDecl = 0) {
|
|
// We should never just have a displacement, that should be parsed as an
|
|
// absolute memory operand.
|
|
assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
|
|
|
|
// The scale should always be one of {1,2,4,8}.
|
|
assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
|
|
"Invalid scale!");
|
|
X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
|
|
Res->Mem.SegReg = SegReg;
|
|
Res->Mem.Disp = Disp;
|
|
Res->Mem.BaseReg = BaseReg;
|
|
Res->Mem.IndexReg = IndexReg;
|
|
Res->Mem.Scale = Scale;
|
|
Res->Mem.Size = Size;
|
|
Res->SymName = SymName;
|
|
Res->OpDecl = OpDecl;
|
|
Res->AddressOf = false;
|
|
return Res;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
static bool CheckBaseRegAndIndexReg(unsigned BaseReg, unsigned IndexReg,
|
|
StringRef &ErrMsg) {
|
|
// If we have both a base register and an index register make sure they are
|
|
// both 64-bit or 32-bit registers.
|
|
// To support VSIB, IndexReg can be 128-bit or 256-bit registers.
|
|
if (BaseReg != 0 && IndexReg != 0) {
|
|
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
|
|
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
|
|
X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) &&
|
|
IndexReg != X86::RIZ) {
|
|
ErrMsg = "base register is 64-bit, but index register is not";
|
|
return true;
|
|
}
|
|
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
|
|
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
|
|
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) &&
|
|
IndexReg != X86::EIZ){
|
|
ErrMsg = "base register is 32-bit, but index register is not";
|
|
return true;
|
|
}
|
|
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
|
|
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
|
|
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
|
|
ErrMsg = "base register is 16-bit, but index register is not";
|
|
return true;
|
|
}
|
|
if (((BaseReg == X86::BX || BaseReg == X86::BP) &&
|
|
IndexReg != X86::SI && IndexReg != X86::DI) ||
|
|
((BaseReg == X86::SI || BaseReg == X86::DI) &&
|
|
IndexReg != X86::BX && IndexReg != X86::BP)) {
|
|
ErrMsg = "invalid 16-bit base/index register combination";
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool X86AsmParser::doSrcDstMatch(X86Operand &Op1, X86Operand &Op2)
|
|
{
|
|
// Return true and let a normal complaint about bogus operands happen.
|
|
if (!Op1.isMem() || !Op2.isMem())
|
|
return true;
|
|
|
|
// Actually these might be the other way round if Intel syntax is
|
|
// being used. It doesn't matter.
|
|
unsigned diReg = Op1.Mem.BaseReg;
|
|
unsigned siReg = Op2.Mem.BaseReg;
|
|
|
|
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(siReg))
|
|
return X86MCRegisterClasses[X86::GR16RegClassID].contains(diReg);
|
|
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(siReg))
|
|
return X86MCRegisterClasses[X86::GR32RegClassID].contains(diReg);
|
|
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(siReg))
|
|
return X86MCRegisterClasses[X86::GR64RegClassID].contains(diReg);
|
|
// Again, return true and let another error happen.
|
|
return true;
|
|
}
|
|
|
|
bool X86AsmParser::ParseRegister(unsigned &RegNo,
|
|
SMLoc &StartLoc, SMLoc &EndLoc) {
|
|
RegNo = 0;
|
|
const AsmToken &PercentTok = Parser.getTok();
|
|
StartLoc = PercentTok.getLoc();
|
|
|
|
// If we encounter a %, ignore it. This code handles registers with and
|
|
// without the prefix, unprefixed registers can occur in cfi directives.
|
|
if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
|
|
Parser.Lex(); // Eat percent token.
|
|
|
|
const AsmToken &Tok = Parser.getTok();
|
|
EndLoc = Tok.getEndLoc();
|
|
|
|
if (Tok.isNot(AsmToken::Identifier)) {
|
|
if (isParsingIntelSyntax()) return true;
|
|
return Error(StartLoc, "invalid register name",
|
|
SMRange(StartLoc, EndLoc));
|
|
}
|
|
|
|
RegNo = MatchRegisterName(Tok.getString());
|
|
|
|
// If the match failed, try the register name as lowercase.
|
|
if (RegNo == 0)
|
|
RegNo = MatchRegisterName(Tok.getString().lower());
|
|
|
|
if (!is64BitMode()) {
|
|
// FIXME: This should be done using Requires<Not64BitMode> and
|
|
// Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
|
|
// checked.
|
|
// FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
|
|
// REX prefix.
|
|
if (RegNo == X86::RIZ ||
|
|
X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
|
|
X86II::isX86_64NonExtLowByteReg(RegNo) ||
|
|
X86II::isX86_64ExtendedReg(RegNo))
|
|
return Error(StartLoc, "register %"
|
|
+ Tok.getString() + " is only available in 64-bit mode",
|
|
SMRange(StartLoc, EndLoc));
|
|
}
|
|
|
|
// Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
|
|
if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
|
|
RegNo = X86::ST0;
|
|
Parser.Lex(); // Eat 'st'
|
|
|
|
// Check to see if we have '(4)' after %st.
|
|
if (getLexer().isNot(AsmToken::LParen))
|
|
return false;
|
|
// Lex the paren.
|
|
getParser().Lex();
|
|
|
|
const AsmToken &IntTok = Parser.getTok();
|
|
if (IntTok.isNot(AsmToken::Integer))
|
|
return Error(IntTok.getLoc(), "expected stack index");
|
|
switch (IntTok.getIntVal()) {
|
|
case 0: RegNo = X86::ST0; break;
|
|
case 1: RegNo = X86::ST1; break;
|
|
case 2: RegNo = X86::ST2; break;
|
|
case 3: RegNo = X86::ST3; break;
|
|
case 4: RegNo = X86::ST4; break;
|
|
case 5: RegNo = X86::ST5; break;
|
|
case 6: RegNo = X86::ST6; break;
|
|
case 7: RegNo = X86::ST7; break;
|
|
default: return Error(IntTok.getLoc(), "invalid stack index");
|
|
}
|
|
|
|
if (getParser().Lex().isNot(AsmToken::RParen))
|
|
return Error(Parser.getTok().getLoc(), "expected ')'");
|
|
|
|
EndLoc = Parser.getTok().getEndLoc();
|
|
Parser.Lex(); // Eat ')'
|
|
return false;
|
|
}
|
|
|
|
EndLoc = Parser.getTok().getEndLoc();
|
|
|
|
// If this is "db[0-7]", match it as an alias
|
|
// for dr[0-7].
|
|
if (RegNo == 0 && Tok.getString().size() == 3 &&
|
|
Tok.getString().startswith("db")) {
|
|
switch (Tok.getString()[2]) {
|
|
case '0': RegNo = X86::DR0; break;
|
|
case '1': RegNo = X86::DR1; break;
|
|
case '2': RegNo = X86::DR2; break;
|
|
case '3': RegNo = X86::DR3; break;
|
|
case '4': RegNo = X86::DR4; break;
|
|
case '5': RegNo = X86::DR5; break;
|
|
case '6': RegNo = X86::DR6; break;
|
|
case '7': RegNo = X86::DR7; break;
|
|
}
|
|
|
|
if (RegNo != 0) {
|
|
EndLoc = Parser.getTok().getEndLoc();
|
|
Parser.Lex(); // Eat it.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (RegNo == 0) {
|
|
if (isParsingIntelSyntax()) return true;
|
|
return Error(StartLoc, "invalid register name",
|
|
SMRange(StartLoc, EndLoc));
|
|
}
|
|
|
|
Parser.Lex(); // Eat identifier token.
|
|
return false;
|
|
}
|
|
|
|
X86Operand *X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
|
|
unsigned basereg =
|
|
is64BitMode() ? X86::RSI : (is32BitMode() ? X86::ESI : X86::SI);
|
|
const MCExpr *Disp = MCConstantExpr::Create(0, getContext());
|
|
return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/basereg,
|
|
/*IndexReg=*/0, /*Scale=*/1, Loc, Loc, 0);
|
|
}
|
|
|
|
X86Operand *X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
|
|
unsigned basereg =
|
|
is64BitMode() ? X86::RDI : (is32BitMode() ? X86::EDI : X86::DI);
|
|
const MCExpr *Disp = MCConstantExpr::Create(0, getContext());
|
|
return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/basereg,
|
|
/*IndexReg=*/0, /*Scale=*/1, Loc, Loc, 0);
|
|
}
|
|
|
|
X86Operand *X86AsmParser::ParseOperand() {
|
|
if (isParsingIntelSyntax())
|
|
return ParseIntelOperand();
|
|
return ParseATTOperand();
|
|
}
|
|
|
|
/// getIntelMemOperandSize - Return intel memory operand size.
|
|
static unsigned getIntelMemOperandSize(StringRef OpStr) {
|
|
unsigned Size = StringSwitch<unsigned>(OpStr)
|
|
.Cases("BYTE", "byte", 8)
|
|
.Cases("WORD", "word", 16)
|
|
.Cases("DWORD", "dword", 32)
|
|
.Cases("QWORD", "qword", 64)
|
|
.Cases("XWORD", "xword", 80)
|
|
.Cases("XMMWORD", "xmmword", 128)
|
|
.Cases("YMMWORD", "ymmword", 256)
|
|
.Cases("ZMMWORD", "zmmword", 512)
|
|
.Cases("OPAQUE", "opaque", -1U) // needs to be non-zero, but doesn't matter
|
|
.Default(0);
|
|
return Size;
|
|
}
|
|
|
|
X86Operand *
|
|
X86AsmParser::CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp,
|
|
unsigned BaseReg, unsigned IndexReg,
|
|
unsigned Scale, SMLoc Start, SMLoc End,
|
|
unsigned Size, StringRef Identifier,
|
|
InlineAsmIdentifierInfo &Info){
|
|
if (isa<MCSymbolRefExpr>(Disp)) {
|
|
// If this is not a VarDecl then assume it is a FuncDecl or some other label
|
|
// reference. We need an 'r' constraint here, so we need to create register
|
|
// operand to ensure proper matching. Just pick a GPR based on the size of
|
|
// a pointer.
|
|
if (!Info.IsVarDecl) {
|
|
unsigned RegNo =
|
|
is64BitMode() ? X86::RBX : (is32BitMode() ? X86::EBX : X86::BX);
|
|
return X86Operand::CreateReg(RegNo, Start, End, /*AddressOf=*/true,
|
|
SMLoc(), Identifier, Info.OpDecl);
|
|
}
|
|
if (!Size) {
|
|
Size = Info.Type * 8; // Size is in terms of bits in this context.
|
|
if (Size)
|
|
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, Start,
|
|
/*Len=*/0, Size));
|
|
}
|
|
}
|
|
|
|
// When parsing inline assembly we set the base register to a non-zero value
|
|
// if we don't know the actual value at this time. This is necessary to
|
|
// get the matching correct in some cases.
|
|
BaseReg = BaseReg ? BaseReg : 1;
|
|
return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
|
|
End, Size, Identifier, Info.OpDecl);
|
|
}
|
|
|
|
static void
|
|
RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> *AsmRewrites,
|
|
StringRef SymName, int64_t ImmDisp,
|
|
int64_t FinalImmDisp, SMLoc &BracLoc,
|
|
SMLoc &StartInBrac, SMLoc &End) {
|
|
// Remove the '[' and ']' from the IR string.
|
|
AsmRewrites->push_back(AsmRewrite(AOK_Skip, BracLoc, 1));
|
|
AsmRewrites->push_back(AsmRewrite(AOK_Skip, End, 1));
|
|
|
|
// If ImmDisp is non-zero, then we parsed a displacement before the
|
|
// bracketed expression (i.e., ImmDisp [ BaseReg + Scale*IndexReg + Disp])
|
|
// If ImmDisp doesn't match the displacement computed by the state machine
|
|
// then we have an additional displacement in the bracketed expression.
|
|
if (ImmDisp != FinalImmDisp) {
|
|
if (ImmDisp) {
|
|
// We have an immediate displacement before the bracketed expression.
|
|
// Adjust this to match the final immediate displacement.
|
|
bool Found = false;
|
|
for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
|
|
E = AsmRewrites->end(); I != E; ++I) {
|
|
if ((*I).Loc.getPointer() > BracLoc.getPointer())
|
|
continue;
|
|
if ((*I).Kind == AOK_ImmPrefix || (*I).Kind == AOK_Imm) {
|
|
assert (!Found && "ImmDisp already rewritten.");
|
|
(*I).Kind = AOK_Imm;
|
|
(*I).Len = BracLoc.getPointer() - (*I).Loc.getPointer();
|
|
(*I).Val = FinalImmDisp;
|
|
Found = true;
|
|
break;
|
|
}
|
|
}
|
|
assert (Found && "Unable to rewrite ImmDisp.");
|
|
(void)Found;
|
|
} else {
|
|
// We have a symbolic and an immediate displacement, but no displacement
|
|
// before the bracketed expression. Put the immediate displacement
|
|
// before the bracketed expression.
|
|
AsmRewrites->push_back(AsmRewrite(AOK_Imm, BracLoc, 0, FinalImmDisp));
|
|
}
|
|
}
|
|
// Remove all the ImmPrefix rewrites within the brackets.
|
|
for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
|
|
E = AsmRewrites->end(); I != E; ++I) {
|
|
if ((*I).Loc.getPointer() < StartInBrac.getPointer())
|
|
continue;
|
|
if ((*I).Kind == AOK_ImmPrefix)
|
|
(*I).Kind = AOK_Delete;
|
|
}
|
|
const char *SymLocPtr = SymName.data();
|
|
// Skip everything before the symbol.
|
|
if (unsigned Len = SymLocPtr - StartInBrac.getPointer()) {
|
|
assert(Len > 0 && "Expected a non-negative length.");
|
|
AsmRewrites->push_back(AsmRewrite(AOK_Skip, StartInBrac, Len));
|
|
}
|
|
// Skip everything after the symbol.
|
|
if (unsigned Len = End.getPointer() - (SymLocPtr + SymName.size())) {
|
|
SMLoc Loc = SMLoc::getFromPointer(SymLocPtr + SymName.size());
|
|
assert(Len > 0 && "Expected a non-negative length.");
|
|
AsmRewrites->push_back(AsmRewrite(AOK_Skip, Loc, Len));
|
|
}
|
|
}
|
|
|
|
bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
|
|
bool Done = false;
|
|
while (!Done) {
|
|
bool UpdateLocLex = true;
|
|
|
|
// The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an
|
|
// identifier. Don't try an parse it as a register.
|
|
if (Tok.getString().startswith("."))
|
|
break;
|
|
|
|
// If we're parsing an immediate expression, we don't expect a '['.
|
|
if (SM.getStopOnLBrac() && getLexer().getKind() == AsmToken::LBrac)
|
|
break;
|
|
|
|
switch (getLexer().getKind()) {
|
|
default: {
|
|
if (SM.isValidEndState()) {
|
|
Done = true;
|
|
break;
|
|
}
|
|
return Error(Tok.getLoc(), "unknown token in expression");
|
|
}
|
|
case AsmToken::EndOfStatement: {
|
|
Done = true;
|
|
break;
|
|
}
|
|
case AsmToken::Identifier: {
|
|
// This could be a register or a symbolic displacement.
|
|
unsigned TmpReg;
|
|
const MCExpr *Val;
|
|
SMLoc IdentLoc = Tok.getLoc();
|
|
StringRef Identifier = Tok.getString();
|
|
if(!ParseRegister(TmpReg, IdentLoc, End)) {
|
|
SM.onRegister(TmpReg);
|
|
UpdateLocLex = false;
|
|
break;
|
|
} else {
|
|
if (!isParsingInlineAsm()) {
|
|
if (getParser().parsePrimaryExpr(Val, End))
|
|
return Error(Tok.getLoc(), "Unexpected identifier!");
|
|
} else {
|
|
InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
|
|
if (ParseIntelIdentifier(Val, Identifier, Info,
|
|
/*Unevaluated=*/false, End))
|
|
return true;
|
|
}
|
|
SM.onIdentifierExpr(Val, Identifier);
|
|
UpdateLocLex = false;
|
|
break;
|
|
}
|
|
return Error(Tok.getLoc(), "Unexpected identifier!");
|
|
}
|
|
case AsmToken::Integer: {
|
|
StringRef ErrMsg;
|
|
if (isParsingInlineAsm() && SM.getAddImmPrefix())
|
|
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix,
|
|
Tok.getLoc()));
|
|
// Look for 'b' or 'f' following an Integer as a directional label
|
|
SMLoc Loc = getTok().getLoc();
|
|
int64_t IntVal = getTok().getIntVal();
|
|
End = consumeToken();
|
|
UpdateLocLex = false;
|
|
if (getLexer().getKind() == AsmToken::Identifier) {
|
|
StringRef IDVal = getTok().getString();
|
|
if (IDVal == "f" || IDVal == "b") {
|
|
MCSymbol *Sym =
|
|
getContext().GetDirectionalLocalSymbol(IntVal,
|
|
IDVal == "f" ? 1 : 0);
|
|
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
|
|
const MCExpr *Val =
|
|
MCSymbolRefExpr::Create(Sym, Variant, getContext());
|
|
if (IDVal == "b" && Sym->isUndefined())
|
|
return Error(Loc, "invalid reference to undefined symbol");
|
|
StringRef Identifier = Sym->getName();
|
|
SM.onIdentifierExpr(Val, Identifier);
|
|
End = consumeToken();
|
|
} else {
|
|
if (SM.onInteger(IntVal, ErrMsg))
|
|
return Error(Loc, ErrMsg);
|
|
}
|
|
} else {
|
|
if (SM.onInteger(IntVal, ErrMsg))
|
|
return Error(Loc, ErrMsg);
|
|
}
|
|
break;
|
|
}
|
|
case AsmToken::Plus: SM.onPlus(); break;
|
|
case AsmToken::Minus: SM.onMinus(); break;
|
|
case AsmToken::Star: SM.onStar(); break;
|
|
case AsmToken::Slash: SM.onDivide(); break;
|
|
case AsmToken::Pipe: SM.onOr(); break;
|
|
case AsmToken::Amp: SM.onAnd(); break;
|
|
case AsmToken::LBrac: SM.onLBrac(); break;
|
|
case AsmToken::RBrac: SM.onRBrac(); break;
|
|
case AsmToken::LParen: SM.onLParen(); break;
|
|
case AsmToken::RParen: SM.onRParen(); break;
|
|
}
|
|
if (SM.hadError())
|
|
return Error(Tok.getLoc(), "unknown token in expression");
|
|
|
|
if (!Done && UpdateLocLex)
|
|
End = consumeToken();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
X86Operand *X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
|
|
int64_t ImmDisp,
|
|
unsigned Size) {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
SMLoc BracLoc = Tok.getLoc(), End = Tok.getEndLoc();
|
|
if (getLexer().isNot(AsmToken::LBrac))
|
|
return ErrorOperand(BracLoc, "Expected '[' token!");
|
|
Parser.Lex(); // Eat '['
|
|
|
|
SMLoc StartInBrac = Tok.getLoc();
|
|
// Parse [ Symbol + ImmDisp ] and [ BaseReg + Scale*IndexReg + ImmDisp ]. We
|
|
// may have already parsed an immediate displacement before the bracketed
|
|
// expression.
|
|
IntelExprStateMachine SM(ImmDisp, /*StopOnLBrac=*/false, /*AddImmPrefix=*/true);
|
|
if (ParseIntelExpression(SM, End))
|
|
return 0;
|
|
|
|
const MCExpr *Disp;
|
|
if (const MCExpr *Sym = SM.getSym()) {
|
|
// A symbolic displacement.
|
|
Disp = Sym;
|
|
if (isParsingInlineAsm())
|
|
RewriteIntelBracExpression(InstInfo->AsmRewrites, SM.getSymName(),
|
|
ImmDisp, SM.getImm(), BracLoc, StartInBrac,
|
|
End);
|
|
} else {
|
|
// An immediate displacement only.
|
|
Disp = MCConstantExpr::Create(SM.getImm(), getContext());
|
|
}
|
|
|
|
// Parse the dot operator (e.g., [ebx].foo.bar).
|
|
if (Tok.getString().startswith(".")) {
|
|
const MCExpr *NewDisp;
|
|
if (ParseIntelDotOperator(Disp, NewDisp))
|
|
return 0;
|
|
|
|
End = Tok.getEndLoc();
|
|
Parser.Lex(); // Eat the field.
|
|
Disp = NewDisp;
|
|
}
|
|
|
|
int BaseReg = SM.getBaseReg();
|
|
int IndexReg = SM.getIndexReg();
|
|
int Scale = SM.getScale();
|
|
if (!isParsingInlineAsm()) {
|
|
// handle [-42]
|
|
if (!BaseReg && !IndexReg) {
|
|
if (!SegReg)
|
|
return X86Operand::CreateMem(Disp, Start, End, Size);
|
|
else
|
|
return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, Start, End, Size);
|
|
}
|
|
StringRef ErrMsg;
|
|
if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
|
|
Error(StartInBrac, ErrMsg);
|
|
return 0;
|
|
}
|
|
return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
|
|
End, Size);
|
|
}
|
|
|
|
InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
|
|
return CreateMemForInlineAsm(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
|
|
End, Size, SM.getSymName(), Info);
|
|
}
|
|
|
|
// Inline assembly may use variable names with namespace alias qualifiers.
|
|
bool X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
|
|
StringRef &Identifier,
|
|
InlineAsmIdentifierInfo &Info,
|
|
bool IsUnevaluatedOperand, SMLoc &End) {
|
|
assert (isParsingInlineAsm() && "Expected to be parsing inline assembly.");
|
|
Val = 0;
|
|
|
|
StringRef LineBuf(Identifier.data());
|
|
SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
|
|
|
|
const AsmToken &Tok = Parser.getTok();
|
|
|
|
// Advance the token stream until the end of the current token is
|
|
// after the end of what the frontend claimed.
|
|
const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
|
|
while (true) {
|
|
End = Tok.getEndLoc();
|
|
getLexer().Lex();
|
|
|
|
assert(End.getPointer() <= EndPtr && "frontend claimed part of a token?");
|
|
if (End.getPointer() == EndPtr) break;
|
|
}
|
|
|
|
// Create the symbol reference.
|
|
Identifier = LineBuf;
|
|
MCSymbol *Sym = getContext().GetOrCreateSymbol(Identifier);
|
|
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
|
|
Val = MCSymbolRefExpr::Create(Sym, Variant, getParser().getContext());
|
|
return false;
|
|
}
|
|
|
|
/// \brief Parse intel style segment override.
|
|
X86Operand *X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg,
|
|
SMLoc Start,
|
|
unsigned Size) {
|
|
assert(SegReg != 0 && "Tried to parse a segment override without a segment!");
|
|
const AsmToken &Tok = Parser.getTok(); // Eat colon.
|
|
if (Tok.isNot(AsmToken::Colon))
|
|
return ErrorOperand(Tok.getLoc(), "Expected ':' token!");
|
|
Parser.Lex(); // Eat ':'
|
|
|
|
int64_t ImmDisp = 0;
|
|
if (getLexer().is(AsmToken::Integer)) {
|
|
ImmDisp = Tok.getIntVal();
|
|
AsmToken ImmDispToken = Parser.Lex(); // Eat the integer.
|
|
|
|
if (isParsingInlineAsm())
|
|
InstInfo->AsmRewrites->push_back(
|
|
AsmRewrite(AOK_ImmPrefix, ImmDispToken.getLoc()));
|
|
|
|
if (getLexer().isNot(AsmToken::LBrac)) {
|
|
// An immediate following a 'segment register', 'colon' token sequence can
|
|
// be followed by a bracketed expression. If it isn't we know we have our
|
|
// final segment override.
|
|
const MCExpr *Disp = MCConstantExpr::Create(ImmDisp, getContext());
|
|
return X86Operand::CreateMem(SegReg, Disp, /*BaseReg=*/0, /*IndexReg=*/0,
|
|
/*Scale=*/1, Start, ImmDispToken.getEndLoc(),
|
|
Size);
|
|
}
|
|
}
|
|
|
|
if (getLexer().is(AsmToken::LBrac))
|
|
return ParseIntelBracExpression(SegReg, Start, ImmDisp, Size);
|
|
|
|
const MCExpr *Val;
|
|
SMLoc End;
|
|
if (!isParsingInlineAsm()) {
|
|
if (getParser().parsePrimaryExpr(Val, End))
|
|
return ErrorOperand(Tok.getLoc(), "unknown token in expression");
|
|
|
|
return X86Operand::CreateMem(Val, Start, End, Size);
|
|
}
|
|
|
|
InlineAsmIdentifierInfo Info;
|
|
StringRef Identifier = Tok.getString();
|
|
if (ParseIntelIdentifier(Val, Identifier, Info,
|
|
/*Unevaluated=*/false, End))
|
|
return 0;
|
|
return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0,/*IndexReg=*/0,
|
|
/*Scale=*/1, Start, End, Size, Identifier, Info);
|
|
}
|
|
|
|
/// ParseIntelMemOperand - Parse intel style memory operand.
|
|
X86Operand *X86AsmParser::ParseIntelMemOperand(int64_t ImmDisp, SMLoc Start,
|
|
unsigned Size) {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
SMLoc End;
|
|
|
|
// Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
|
|
if (getLexer().is(AsmToken::LBrac))
|
|
return ParseIntelBracExpression(/*SegReg=*/0, Start, ImmDisp, Size);
|
|
|
|
const MCExpr *Val;
|
|
if (!isParsingInlineAsm()) {
|
|
if (getParser().parsePrimaryExpr(Val, End))
|
|
return ErrorOperand(Tok.getLoc(), "unknown token in expression");
|
|
|
|
return X86Operand::CreateMem(Val, Start, End, Size);
|
|
}
|
|
|
|
InlineAsmIdentifierInfo Info;
|
|
StringRef Identifier = Tok.getString();
|
|
if (ParseIntelIdentifier(Val, Identifier, Info,
|
|
/*Unevaluated=*/false, End))
|
|
return 0;
|
|
return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0, /*IndexReg=*/0,
|
|
/*Scale=*/1, Start, End, Size, Identifier, Info);
|
|
}
|
|
|
|
/// Parse the '.' operator.
|
|
bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
|
|
const MCExpr *&NewDisp) {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
int64_t OrigDispVal, DotDispVal;
|
|
|
|
// FIXME: Handle non-constant expressions.
|
|
if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp))
|
|
OrigDispVal = OrigDisp->getValue();
|
|
else
|
|
return Error(Tok.getLoc(), "Non-constant offsets are not supported!");
|
|
|
|
// Drop the '.'.
|
|
StringRef DotDispStr = Tok.getString().drop_front(1);
|
|
|
|
// .Imm gets lexed as a real.
|
|
if (Tok.is(AsmToken::Real)) {
|
|
APInt DotDisp;
|
|
DotDispStr.getAsInteger(10, DotDisp);
|
|
DotDispVal = DotDisp.getZExtValue();
|
|
} else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
|
|
unsigned DotDisp;
|
|
std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
|
|
if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
|
|
DotDisp))
|
|
return Error(Tok.getLoc(), "Unable to lookup field reference!");
|
|
DotDispVal = DotDisp;
|
|
} else
|
|
return Error(Tok.getLoc(), "Unexpected token type!");
|
|
|
|
if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
|
|
SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data());
|
|
unsigned Len = DotDispStr.size();
|
|
unsigned Val = OrigDispVal + DotDispVal;
|
|
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_DotOperator, Loc, Len,
|
|
Val));
|
|
}
|
|
|
|
NewDisp = MCConstantExpr::Create(OrigDispVal + DotDispVal, getContext());
|
|
return false;
|
|
}
|
|
|
|
/// Parse the 'offset' operator. This operator is used to specify the
|
|
/// location rather then the content of a variable.
|
|
X86Operand *X86AsmParser::ParseIntelOffsetOfOperator() {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
SMLoc OffsetOfLoc = Tok.getLoc();
|
|
Parser.Lex(); // Eat offset.
|
|
|
|
const MCExpr *Val;
|
|
InlineAsmIdentifierInfo Info;
|
|
SMLoc Start = Tok.getLoc(), End;
|
|
StringRef Identifier = Tok.getString();
|
|
if (ParseIntelIdentifier(Val, Identifier, Info,
|
|
/*Unevaluated=*/false, End))
|
|
return 0;
|
|
|
|
// Don't emit the offset operator.
|
|
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Skip, OffsetOfLoc, 7));
|
|
|
|
// The offset operator will have an 'r' constraint, thus we need to create
|
|
// register operand to ensure proper matching. Just pick a GPR based on
|
|
// the size of a pointer.
|
|
unsigned RegNo =
|
|
is64BitMode() ? X86::RBX : (is32BitMode() ? X86::EBX : X86::BX);
|
|
return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
|
|
OffsetOfLoc, Identifier, Info.OpDecl);
|
|
}
|
|
|
|
enum IntelOperatorKind {
|
|
IOK_LENGTH,
|
|
IOK_SIZE,
|
|
IOK_TYPE
|
|
};
|
|
|
|
/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator
|
|
/// returns the number of elements in an array. It returns the value 1 for
|
|
/// non-array variables. The SIZE operator returns the size of a C or C++
|
|
/// variable. A variable's size is the product of its LENGTH and TYPE. The
|
|
/// TYPE operator returns the size of a C or C++ type or variable. If the
|
|
/// variable is an array, TYPE returns the size of a single element.
|
|
X86Operand *X86AsmParser::ParseIntelOperator(unsigned OpKind) {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
SMLoc TypeLoc = Tok.getLoc();
|
|
Parser.Lex(); // Eat operator.
|
|
|
|
const MCExpr *Val = 0;
|
|
InlineAsmIdentifierInfo Info;
|
|
SMLoc Start = Tok.getLoc(), End;
|
|
StringRef Identifier = Tok.getString();
|
|
if (ParseIntelIdentifier(Val, Identifier, Info,
|
|
/*Unevaluated=*/true, End))
|
|
return 0;
|
|
|
|
if (!Info.OpDecl)
|
|
return ErrorOperand(Start, "unable to lookup expression");
|
|
|
|
unsigned CVal = 0;
|
|
switch(OpKind) {
|
|
default: llvm_unreachable("Unexpected operand kind!");
|
|
case IOK_LENGTH: CVal = Info.Length; break;
|
|
case IOK_SIZE: CVal = Info.Size; break;
|
|
case IOK_TYPE: CVal = Info.Type; break;
|
|
}
|
|
|
|
// Rewrite the type operator and the C or C++ type or variable in terms of an
|
|
// immediate. E.g. TYPE foo -> $$4
|
|
unsigned Len = End.getPointer() - TypeLoc.getPointer();
|
|
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, TypeLoc, Len, CVal));
|
|
|
|
const MCExpr *Imm = MCConstantExpr::Create(CVal, getContext());
|
|
return X86Operand::CreateImm(Imm, Start, End);
|
|
}
|
|
|
|
X86Operand *X86AsmParser::ParseIntelOperand() {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
SMLoc Start, End;
|
|
|
|
// Offset, length, type and size operators.
|
|
if (isParsingInlineAsm()) {
|
|
StringRef AsmTokStr = Tok.getString();
|
|
if (AsmTokStr == "offset" || AsmTokStr == "OFFSET")
|
|
return ParseIntelOffsetOfOperator();
|
|
if (AsmTokStr == "length" || AsmTokStr == "LENGTH")
|
|
return ParseIntelOperator(IOK_LENGTH);
|
|
if (AsmTokStr == "size" || AsmTokStr == "SIZE")
|
|
return ParseIntelOperator(IOK_SIZE);
|
|
if (AsmTokStr == "type" || AsmTokStr == "TYPE")
|
|
return ParseIntelOperator(IOK_TYPE);
|
|
}
|
|
|
|
unsigned Size = getIntelMemOperandSize(Tok.getString());
|
|
if (Size) {
|
|
Parser.Lex(); // Eat operand size (e.g., byte, word).
|
|
if (Tok.getString() != "PTR" && Tok.getString() != "ptr")
|
|
return ErrorOperand(Start, "Expected 'PTR' or 'ptr' token!");
|
|
Parser.Lex(); // Eat ptr.
|
|
}
|
|
Start = Tok.getLoc();
|
|
|
|
// Immediate.
|
|
if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Minus) ||
|
|
getLexer().is(AsmToken::LParen)) {
|
|
AsmToken StartTok = Tok;
|
|
IntelExprStateMachine SM(/*Imm=*/0, /*StopOnLBrac=*/true,
|
|
/*AddImmPrefix=*/false);
|
|
if (ParseIntelExpression(SM, End))
|
|
return 0;
|
|
|
|
int64_t Imm = SM.getImm();
|
|
if (isParsingInlineAsm()) {
|
|
unsigned Len = Tok.getLoc().getPointer() - Start.getPointer();
|
|
if (StartTok.getString().size() == Len)
|
|
// Just add a prefix if this wasn't a complex immediate expression.
|
|
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix, Start));
|
|
else
|
|
// Otherwise, rewrite the complex expression as a single immediate.
|
|
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, Start, Len, Imm));
|
|
}
|
|
|
|
if (getLexer().isNot(AsmToken::LBrac)) {
|
|
// If a directional label (ie. 1f or 2b) was parsed above from
|
|
// ParseIntelExpression() then SM.getSym() was set to a pointer to
|
|
// to the MCExpr with the directional local symbol and this is a
|
|
// memory operand not an immediate operand.
|
|
if (SM.getSym())
|
|
return X86Operand::CreateMem(SM.getSym(), Start, End, Size);
|
|
|
|
const MCExpr *ImmExpr = MCConstantExpr::Create(Imm, getContext());
|
|
return X86Operand::CreateImm(ImmExpr, Start, End);
|
|
}
|
|
|
|
// Only positive immediates are valid.
|
|
if (Imm < 0)
|
|
return ErrorOperand(Start, "expected a positive immediate displacement "
|
|
"before bracketed expr.");
|
|
|
|
// Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
|
|
return ParseIntelMemOperand(Imm, Start, Size);
|
|
}
|
|
|
|
// Register.
|
|
unsigned RegNo = 0;
|
|
if (!ParseRegister(RegNo, Start, End)) {
|
|
// If this is a segment register followed by a ':', then this is the start
|
|
// of a segment override, otherwise this is a normal register reference.
|
|
if (getLexer().isNot(AsmToken::Colon))
|
|
return X86Operand::CreateReg(RegNo, Start, End);
|
|
|
|
return ParseIntelSegmentOverride(/*SegReg=*/RegNo, Start, Size);
|
|
}
|
|
|
|
// Memory operand.
|
|
return ParseIntelMemOperand(/*Disp=*/0, Start, Size);
|
|
}
|
|
|
|
X86Operand *X86AsmParser::ParseATTOperand() {
|
|
switch (getLexer().getKind()) {
|
|
default:
|
|
// Parse a memory operand with no segment register.
|
|
return ParseMemOperand(0, Parser.getTok().getLoc());
|
|
case AsmToken::Percent: {
|
|
// Read the register.
|
|
unsigned RegNo;
|
|
SMLoc Start, End;
|
|
if (ParseRegister(RegNo, Start, End)) return 0;
|
|
if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
|
|
Error(Start, "%eiz and %riz can only be used as index registers",
|
|
SMRange(Start, End));
|
|
return 0;
|
|
}
|
|
|
|
// If this is a segment register followed by a ':', then this is the start
|
|
// of a memory reference, otherwise this is a normal register reference.
|
|
if (getLexer().isNot(AsmToken::Colon))
|
|
return X86Operand::CreateReg(RegNo, Start, End);
|
|
|
|
getParser().Lex(); // Eat the colon.
|
|
return ParseMemOperand(RegNo, Start);
|
|
}
|
|
case AsmToken::Dollar: {
|
|
// $42 -> immediate.
|
|
SMLoc Start = Parser.getTok().getLoc(), End;
|
|
Parser.Lex();
|
|
const MCExpr *Val;
|
|
if (getParser().parseExpression(Val, End))
|
|
return 0;
|
|
return X86Operand::CreateImm(Val, Start, End);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix
|
|
/// has already been parsed if present.
|
|
X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
|
|
|
|
// We have to disambiguate a parenthesized expression "(4+5)" from the start
|
|
// of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
|
|
// only way to do this without lookahead is to eat the '(' and see what is
|
|
// after it.
|
|
const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
|
|
if (getLexer().isNot(AsmToken::LParen)) {
|
|
SMLoc ExprEnd;
|
|
if (getParser().parseExpression(Disp, ExprEnd)) return 0;
|
|
|
|
// After parsing the base expression we could either have a parenthesized
|
|
// memory address or not. If not, return now. If so, eat the (.
|
|
if (getLexer().isNot(AsmToken::LParen)) {
|
|
// Unless we have a segment register, treat this as an immediate.
|
|
if (SegReg == 0)
|
|
return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
|
|
return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
|
|
}
|
|
|
|
// Eat the '('.
|
|
Parser.Lex();
|
|
} else {
|
|
// Okay, we have a '('. We don't know if this is an expression or not, but
|
|
// so we have to eat the ( to see beyond it.
|
|
SMLoc LParenLoc = Parser.getTok().getLoc();
|
|
Parser.Lex(); // Eat the '('.
|
|
|
|
if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
|
|
// Nothing to do here, fall into the code below with the '(' part of the
|
|
// memory operand consumed.
|
|
} else {
|
|
SMLoc ExprEnd;
|
|
|
|
// It must be an parenthesized expression, parse it now.
|
|
if (getParser().parseParenExpression(Disp, ExprEnd))
|
|
return 0;
|
|
|
|
// After parsing the base expression we could either have a parenthesized
|
|
// memory address or not. If not, return now. If so, eat the (.
|
|
if (getLexer().isNot(AsmToken::LParen)) {
|
|
// Unless we have a segment register, treat this as an immediate.
|
|
if (SegReg == 0)
|
|
return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
|
|
return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
|
|
}
|
|
|
|
// Eat the '('.
|
|
Parser.Lex();
|
|
}
|
|
}
|
|
|
|
// If we reached here, then we just ate the ( of the memory operand. Process
|
|
// the rest of the memory operand.
|
|
unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
|
|
SMLoc IndexLoc, BaseLoc;
|
|
|
|
if (getLexer().is(AsmToken::Percent)) {
|
|
SMLoc StartLoc, EndLoc;
|
|
BaseLoc = Parser.getTok().getLoc();
|
|
if (ParseRegister(BaseReg, StartLoc, EndLoc)) return 0;
|
|
if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
|
|
Error(StartLoc, "eiz and riz can only be used as index registers",
|
|
SMRange(StartLoc, EndLoc));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (getLexer().is(AsmToken::Comma)) {
|
|
Parser.Lex(); // Eat the comma.
|
|
IndexLoc = Parser.getTok().getLoc();
|
|
|
|
// Following the comma we should have either an index register, or a scale
|
|
// value. We don't support the later form, but we want to parse it
|
|
// correctly.
|
|
//
|
|
// Not that even though it would be completely consistent to support syntax
|
|
// like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
|
|
if (getLexer().is(AsmToken::Percent)) {
|
|
SMLoc L;
|
|
if (ParseRegister(IndexReg, L, L)) return 0;
|
|
|
|
if (getLexer().isNot(AsmToken::RParen)) {
|
|
// Parse the scale amount:
|
|
// ::= ',' [scale-expression]
|
|
if (getLexer().isNot(AsmToken::Comma)) {
|
|
Error(Parser.getTok().getLoc(),
|
|
"expected comma in scale expression");
|
|
return 0;
|
|
}
|
|
Parser.Lex(); // Eat the comma.
|
|
|
|
if (getLexer().isNot(AsmToken::RParen)) {
|
|
SMLoc Loc = Parser.getTok().getLoc();
|
|
|
|
int64_t ScaleVal;
|
|
if (getParser().parseAbsoluteExpression(ScaleVal)){
|
|
Error(Loc, "expected scale expression");
|
|
return 0;
|
|
}
|
|
|
|
// Validate the scale amount.
|
|
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
|
|
ScaleVal != 1) {
|
|
Error(Loc, "scale factor in 16-bit address must be 1");
|
|
return 0;
|
|
}
|
|
if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
|
|
Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
|
|
return 0;
|
|
}
|
|
Scale = (unsigned)ScaleVal;
|
|
}
|
|
}
|
|
} else if (getLexer().isNot(AsmToken::RParen)) {
|
|
// A scale amount without an index is ignored.
|
|
// index.
|
|
SMLoc Loc = Parser.getTok().getLoc();
|
|
|
|
int64_t Value;
|
|
if (getParser().parseAbsoluteExpression(Value))
|
|
return 0;
|
|
|
|
if (Value != 1)
|
|
Warning(Loc, "scale factor without index register is ignored");
|
|
Scale = 1;
|
|
}
|
|
}
|
|
|
|
// Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
|
|
if (getLexer().isNot(AsmToken::RParen)) {
|
|
Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
|
|
return 0;
|
|
}
|
|
SMLoc MemEnd = Parser.getTok().getEndLoc();
|
|
Parser.Lex(); // Eat the ')'.
|
|
|
|
// Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
|
|
// and then only in non-64-bit modes. Except for DX, which is a special case
|
|
// because an unofficial form of in/out instructions uses it.
|
|
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
|
|
(is64BitMode() || (BaseReg != X86::BX && BaseReg != X86::BP &&
|
|
BaseReg != X86::SI && BaseReg != X86::DI)) &&
|
|
BaseReg != X86::DX) {
|
|
Error(BaseLoc, "invalid 16-bit base register");
|
|
return 0;
|
|
}
|
|
if (BaseReg == 0 &&
|
|
X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
|
|
Error(IndexLoc, "16-bit memory operand may not include only index register");
|
|
return 0;
|
|
}
|
|
|
|
StringRef ErrMsg;
|
|
if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
|
|
Error(BaseLoc, ErrMsg);
|
|
return 0;
|
|
}
|
|
|
|
return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
|
|
MemStart, MemEnd);
|
|
}
|
|
|
|
bool X86AsmParser::
|
|
ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
InstInfo = &Info;
|
|
StringRef PatchedName = Name;
|
|
|
|
// FIXME: Hack to recognize setneb as setne.
|
|
if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
|
|
PatchedName != "setb" && PatchedName != "setnb")
|
|
PatchedName = PatchedName.substr(0, Name.size()-1);
|
|
|
|
// FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
|
|
const MCExpr *ExtraImmOp = 0;
|
|
if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
|
|
(PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
|
|
PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
|
|
bool IsVCMP = PatchedName[0] == 'v';
|
|
unsigned SSECCIdx = IsVCMP ? 4 : 3;
|
|
unsigned SSEComparisonCode = StringSwitch<unsigned>(
|
|
PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
|
|
.Case("eq", 0x00)
|
|
.Case("lt", 0x01)
|
|
.Case("le", 0x02)
|
|
.Case("unord", 0x03)
|
|
.Case("neq", 0x04)
|
|
.Case("nlt", 0x05)
|
|
.Case("nle", 0x06)
|
|
.Case("ord", 0x07)
|
|
/* AVX only from here */
|
|
.Case("eq_uq", 0x08)
|
|
.Case("nge", 0x09)
|
|
.Case("ngt", 0x0A)
|
|
.Case("false", 0x0B)
|
|
.Case("neq_oq", 0x0C)
|
|
.Case("ge", 0x0D)
|
|
.Case("gt", 0x0E)
|
|
.Case("true", 0x0F)
|
|
.Case("eq_os", 0x10)
|
|
.Case("lt_oq", 0x11)
|
|
.Case("le_oq", 0x12)
|
|
.Case("unord_s", 0x13)
|
|
.Case("neq_us", 0x14)
|
|
.Case("nlt_uq", 0x15)
|
|
.Case("nle_uq", 0x16)
|
|
.Case("ord_s", 0x17)
|
|
.Case("eq_us", 0x18)
|
|
.Case("nge_uq", 0x19)
|
|
.Case("ngt_uq", 0x1A)
|
|
.Case("false_os", 0x1B)
|
|
.Case("neq_os", 0x1C)
|
|
.Case("ge_oq", 0x1D)
|
|
.Case("gt_oq", 0x1E)
|
|
.Case("true_us", 0x1F)
|
|
.Default(~0U);
|
|
if (SSEComparisonCode != ~0U && (IsVCMP || SSEComparisonCode < 8)) {
|
|
ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
|
|
getParser().getContext());
|
|
if (PatchedName.endswith("ss")) {
|
|
PatchedName = IsVCMP ? "vcmpss" : "cmpss";
|
|
} else if (PatchedName.endswith("sd")) {
|
|
PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
|
|
} else if (PatchedName.endswith("ps")) {
|
|
PatchedName = IsVCMP ? "vcmpps" : "cmpps";
|
|
} else {
|
|
assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
|
|
PatchedName = IsVCMP ? "vcmppd" : "cmppd";
|
|
}
|
|
}
|
|
}
|
|
|
|
Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
|
|
|
|
if (ExtraImmOp && !isParsingIntelSyntax())
|
|
Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
|
|
|
|
// Determine whether this is an instruction prefix.
|
|
bool isPrefix =
|
|
Name == "lock" || Name == "rep" ||
|
|
Name == "repe" || Name == "repz" ||
|
|
Name == "repne" || Name == "repnz" ||
|
|
Name == "rex64" || Name == "data16";
|
|
|
|
|
|
// This does the actual operand parsing. Don't parse any more if we have a
|
|
// prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
|
|
// just want to parse the "lock" as the first instruction and the "incl" as
|
|
// the next one.
|
|
if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
|
|
|
|
// Parse '*' modifier.
|
|
if (getLexer().is(AsmToken::Star))
|
|
Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
|
|
|
|
// Read the first operand.
|
|
if (X86Operand *Op = ParseOperand())
|
|
Operands.push_back(Op);
|
|
else {
|
|
Parser.eatToEndOfStatement();
|
|
return true;
|
|
}
|
|
|
|
while (getLexer().is(AsmToken::Comma)) {
|
|
Parser.Lex(); // Eat the comma.
|
|
|
|
// Parse and remember the operand.
|
|
if (X86Operand *Op = ParseOperand())
|
|
Operands.push_back(Op);
|
|
else {
|
|
Parser.eatToEndOfStatement();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (STI.getFeatureBits() & X86::FeatureAVX512) {
|
|
// Parse mask register {%k1}
|
|
if (getLexer().is(AsmToken::LCurly)) {
|
|
Operands.push_back(X86Operand::CreateToken("{", consumeToken()));
|
|
if (X86Operand *Op = ParseOperand()) {
|
|
Operands.push_back(Op);
|
|
if (!getLexer().is(AsmToken::RCurly)) {
|
|
SMLoc Loc = getLexer().getLoc();
|
|
Parser.eatToEndOfStatement();
|
|
return Error(Loc, "Expected } at this point");
|
|
}
|
|
Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
|
|
} else {
|
|
Parser.eatToEndOfStatement();
|
|
return true;
|
|
}
|
|
}
|
|
// TODO: add parsing of broadcasts {1to8}, {1to16}
|
|
// Parse "zeroing non-masked" semantic {z}
|
|
if (getLexer().is(AsmToken::LCurly)) {
|
|
Operands.push_back(X86Operand::CreateToken("{z}", consumeToken()));
|
|
if (!getLexer().is(AsmToken::Identifier) || getLexer().getTok().getIdentifier() != "z") {
|
|
SMLoc Loc = getLexer().getLoc();
|
|
Parser.eatToEndOfStatement();
|
|
return Error(Loc, "Expected z at this point");
|
|
}
|
|
Parser.Lex(); // Eat the z
|
|
if (!getLexer().is(AsmToken::RCurly)) {
|
|
SMLoc Loc = getLexer().getLoc();
|
|
Parser.eatToEndOfStatement();
|
|
return Error(Loc, "Expected } at this point");
|
|
}
|
|
Parser.Lex(); // Eat the }
|
|
}
|
|
}
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
SMLoc Loc = getLexer().getLoc();
|
|
Parser.eatToEndOfStatement();
|
|
return Error(Loc, "unexpected token in argument list");
|
|
}
|
|
}
|
|
|
|
if (getLexer().is(AsmToken::EndOfStatement))
|
|
Parser.Lex(); // Consume the EndOfStatement
|
|
else if (isPrefix && getLexer().is(AsmToken::Slash))
|
|
Parser.Lex(); // Consume the prefix separator Slash
|
|
|
|
if (ExtraImmOp && isParsingIntelSyntax())
|
|
Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
|
|
|
|
// This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
|
|
// "outb %al, %dx". Out doesn't take a memory form, but this is a widely
|
|
// documented form in various unofficial manuals, so a lot of code uses it.
|
|
if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
|
|
Operands.size() == 3) {
|
|
X86Operand &Op = *(X86Operand*)Operands.back();
|
|
if (Op.isMem() && Op.Mem.SegReg == 0 &&
|
|
isa<MCConstantExpr>(Op.Mem.Disp) &&
|
|
cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
|
|
Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
|
|
SMLoc Loc = Op.getEndLoc();
|
|
Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
|
|
delete &Op;
|
|
}
|
|
}
|
|
// Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
|
|
if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
|
|
Operands.size() == 3) {
|
|
X86Operand &Op = *(X86Operand*)Operands.begin()[1];
|
|
if (Op.isMem() && Op.Mem.SegReg == 0 &&
|
|
isa<MCConstantExpr>(Op.Mem.Disp) &&
|
|
cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
|
|
Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
|
|
SMLoc Loc = Op.getEndLoc();
|
|
Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
|
|
delete &Op;
|
|
}
|
|
}
|
|
|
|
// Append default arguments to "ins[bwld]"
|
|
if (Name.startswith("ins") && Operands.size() == 1 &&
|
|
(Name == "insb" || Name == "insw" || Name == "insl" ||
|
|
Name == "insd" )) {
|
|
if (isParsingIntelSyntax()) {
|
|
Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
|
|
Operands.push_back(DefaultMemDIOperand(NameLoc));
|
|
} else {
|
|
Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
|
|
Operands.push_back(DefaultMemDIOperand(NameLoc));
|
|
}
|
|
}
|
|
|
|
// Append default arguments to "outs[bwld]"
|
|
if (Name.startswith("outs") && Operands.size() == 1 &&
|
|
(Name == "outsb" || Name == "outsw" || Name == "outsl" ||
|
|
Name == "outsd" )) {
|
|
if (isParsingIntelSyntax()) {
|
|
Operands.push_back(DefaultMemSIOperand(NameLoc));
|
|
Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
|
|
} else {
|
|
Operands.push_back(DefaultMemSIOperand(NameLoc));
|
|
Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
|
|
}
|
|
}
|
|
|
|
// Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
|
|
// values of $SIREG according to the mode. It would be nice if this
|
|
// could be achieved with InstAlias in the tables.
|
|
if (Name.startswith("lods") && Operands.size() == 1 &&
|
|
(Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
|
|
Name == "lodsl" || Name == "lodsd" || Name == "lodsq"))
|
|
Operands.push_back(DefaultMemSIOperand(NameLoc));
|
|
|
|
// Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
|
|
// values of $DIREG according to the mode. It would be nice if this
|
|
// could be achieved with InstAlias in the tables.
|
|
if (Name.startswith("stos") && Operands.size() == 1 &&
|
|
(Name == "stos" || Name == "stosb" || Name == "stosw" ||
|
|
Name == "stosl" || Name == "stosd" || Name == "stosq"))
|
|
Operands.push_back(DefaultMemDIOperand(NameLoc));
|
|
|
|
// Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
|
|
// values of $DIREG according to the mode. It would be nice if this
|
|
// could be achieved with InstAlias in the tables.
|
|
if (Name.startswith("scas") && Operands.size() == 1 &&
|
|
(Name == "scas" || Name == "scasb" || Name == "scasw" ||
|
|
Name == "scasl" || Name == "scasd" || Name == "scasq"))
|
|
Operands.push_back(DefaultMemDIOperand(NameLoc));
|
|
|
|
// Add default SI and DI operands to "cmps[bwlq]".
|
|
if (Name.startswith("cmps") &&
|
|
(Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
|
|
Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
|
|
if (Operands.size() == 1) {
|
|
if (isParsingIntelSyntax()) {
|
|
Operands.push_back(DefaultMemSIOperand(NameLoc));
|
|
Operands.push_back(DefaultMemDIOperand(NameLoc));
|
|
} else {
|
|
Operands.push_back(DefaultMemDIOperand(NameLoc));
|
|
Operands.push_back(DefaultMemSIOperand(NameLoc));
|
|
}
|
|
} else if (Operands.size() == 3) {
|
|
X86Operand &Op = *(X86Operand*)Operands.begin()[1];
|
|
X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
|
|
if (!doSrcDstMatch(Op, Op2))
|
|
return Error(Op.getStartLoc(),
|
|
"mismatching source and destination index registers");
|
|
}
|
|
}
|
|
|
|
// Add default SI and DI operands to "movs[bwlq]".
|
|
if ((Name.startswith("movs") &&
|
|
(Name == "movs" || Name == "movsb" || Name == "movsw" ||
|
|
Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
|
|
(Name.startswith("smov") &&
|
|
(Name == "smov" || Name == "smovb" || Name == "smovw" ||
|
|
Name == "smovl" || Name == "smovd" || Name == "smovq"))) {
|
|
if (Operands.size() == 1) {
|
|
if (Name == "movsd")
|
|
Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
|
|
if (isParsingIntelSyntax()) {
|
|
Operands.push_back(DefaultMemDIOperand(NameLoc));
|
|
Operands.push_back(DefaultMemSIOperand(NameLoc));
|
|
} else {
|
|
Operands.push_back(DefaultMemSIOperand(NameLoc));
|
|
Operands.push_back(DefaultMemDIOperand(NameLoc));
|
|
}
|
|
} else if (Operands.size() == 3) {
|
|
X86Operand &Op = *(X86Operand*)Operands.begin()[1];
|
|
X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
|
|
if (!doSrcDstMatch(Op, Op2))
|
|
return Error(Op.getStartLoc(),
|
|
"mismatching source and destination index registers");
|
|
}
|
|
}
|
|
|
|
// FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to
|
|
// "shift <op>".
|
|
if ((Name.startswith("shr") || Name.startswith("sar") ||
|
|
Name.startswith("shl") || Name.startswith("sal") ||
|
|
Name.startswith("rcl") || Name.startswith("rcr") ||
|
|
Name.startswith("rol") || Name.startswith("ror")) &&
|
|
Operands.size() == 3) {
|
|
if (isParsingIntelSyntax()) {
|
|
// Intel syntax
|
|
X86Operand *Op1 = static_cast<X86Operand*>(Operands[2]);
|
|
if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
|
|
cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
|
|
delete Operands[2];
|
|
Operands.pop_back();
|
|
}
|
|
} else {
|
|
X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
|
|
if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
|
|
cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
|
|
delete Operands[1];
|
|
Operands.erase(Operands.begin() + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Transforms "int $3" into "int3" as a size optimization. We can't write an
|
|
// instalias with an immediate operand yet.
|
|
if (Name == "int" && Operands.size() == 2) {
|
|
X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
|
|
if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
|
|
cast<MCConstantExpr>(Op1->getImm())->getValue() == 3) {
|
|
delete Operands[1];
|
|
Operands.erase(Operands.begin() + 1);
|
|
static_cast<X86Operand*>(Operands[0])->setTokenValue("int3");
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool convertToSExti8(MCInst &Inst, unsigned Opcode, unsigned Reg,
|
|
bool isCmp) {
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(Opcode);
|
|
if (!isCmp)
|
|
TmpInst.addOperand(MCOperand::CreateReg(Reg));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Reg));
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
static bool convert16i16to16ri8(MCInst &Inst, unsigned Opcode,
|
|
bool isCmp = false) {
|
|
if (!Inst.getOperand(0).isImm() ||
|
|
!isImmSExti16i8Value(Inst.getOperand(0).getImm()))
|
|
return false;
|
|
|
|
return convertToSExti8(Inst, Opcode, X86::AX, isCmp);
|
|
}
|
|
|
|
static bool convert32i32to32ri8(MCInst &Inst, unsigned Opcode,
|
|
bool isCmp = false) {
|
|
if (!Inst.getOperand(0).isImm() ||
|
|
!isImmSExti32i8Value(Inst.getOperand(0).getImm()))
|
|
return false;
|
|
|
|
return convertToSExti8(Inst, Opcode, X86::EAX, isCmp);
|
|
}
|
|
|
|
static bool convert64i32to64ri8(MCInst &Inst, unsigned Opcode,
|
|
bool isCmp = false) {
|
|
if (!Inst.getOperand(0).isImm() ||
|
|
!isImmSExti64i8Value(Inst.getOperand(0).getImm()))
|
|
return false;
|
|
|
|
return convertToSExti8(Inst, Opcode, X86::RAX, isCmp);
|
|
}
|
|
|
|
bool X86AsmParser::
|
|
processInstruction(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Ops) {
|
|
switch (Inst.getOpcode()) {
|
|
default: return false;
|
|
case X86::AND16i16: return convert16i16to16ri8(Inst, X86::AND16ri8);
|
|
case X86::AND32i32: return convert32i32to32ri8(Inst, X86::AND32ri8);
|
|
case X86::AND64i32: return convert64i32to64ri8(Inst, X86::AND64ri8);
|
|
case X86::XOR16i16: return convert16i16to16ri8(Inst, X86::XOR16ri8);
|
|
case X86::XOR32i32: return convert32i32to32ri8(Inst, X86::XOR32ri8);
|
|
case X86::XOR64i32: return convert64i32to64ri8(Inst, X86::XOR64ri8);
|
|
case X86::OR16i16: return convert16i16to16ri8(Inst, X86::OR16ri8);
|
|
case X86::OR32i32: return convert32i32to32ri8(Inst, X86::OR32ri8);
|
|
case X86::OR64i32: return convert64i32to64ri8(Inst, X86::OR64ri8);
|
|
case X86::CMP16i16: return convert16i16to16ri8(Inst, X86::CMP16ri8, true);
|
|
case X86::CMP32i32: return convert32i32to32ri8(Inst, X86::CMP32ri8, true);
|
|
case X86::CMP64i32: return convert64i32to64ri8(Inst, X86::CMP64ri8, true);
|
|
case X86::ADD16i16: return convert16i16to16ri8(Inst, X86::ADD16ri8);
|
|
case X86::ADD32i32: return convert32i32to32ri8(Inst, X86::ADD32ri8);
|
|
case X86::ADD64i32: return convert64i32to64ri8(Inst, X86::ADD64ri8);
|
|
case X86::SUB16i16: return convert16i16to16ri8(Inst, X86::SUB16ri8);
|
|
case X86::SUB32i32: return convert32i32to32ri8(Inst, X86::SUB32ri8);
|
|
case X86::SUB64i32: return convert64i32to64ri8(Inst, X86::SUB64ri8);
|
|
case X86::ADC16i16: return convert16i16to16ri8(Inst, X86::ADC16ri8);
|
|
case X86::ADC32i32: return convert32i32to32ri8(Inst, X86::ADC32ri8);
|
|
case X86::ADC64i32: return convert64i32to64ri8(Inst, X86::ADC64ri8);
|
|
case X86::SBB16i16: return convert16i16to16ri8(Inst, X86::SBB16ri8);
|
|
case X86::SBB32i32: return convert32i32to32ri8(Inst, X86::SBB32ri8);
|
|
case X86::SBB64i32: return convert64i32to64ri8(Inst, X86::SBB64ri8);
|
|
case X86::VMOVAPDrr:
|
|
case X86::VMOVAPDYrr:
|
|
case X86::VMOVAPSrr:
|
|
case X86::VMOVAPSYrr:
|
|
case X86::VMOVDQArr:
|
|
case X86::VMOVDQAYrr:
|
|
case X86::VMOVDQUrr:
|
|
case X86::VMOVDQUYrr:
|
|
case X86::VMOVUPDrr:
|
|
case X86::VMOVUPDYrr:
|
|
case X86::VMOVUPSrr:
|
|
case X86::VMOVUPSYrr: {
|
|
if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
|
|
!X86II::isX86_64ExtendedReg(Inst.getOperand(1).getReg()))
|
|
return false;
|
|
|
|
unsigned NewOpc;
|
|
switch (Inst.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
|
|
case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
|
|
case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
|
|
case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
|
|
case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
|
|
case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
|
|
case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
|
|
case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
|
|
case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
|
|
case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
|
|
case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
|
|
case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
|
|
}
|
|
Inst.setOpcode(NewOpc);
|
|
return true;
|
|
}
|
|
case X86::VMOVSDrr:
|
|
case X86::VMOVSSrr: {
|
|
if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
|
|
!X86II::isX86_64ExtendedReg(Inst.getOperand(2).getReg()))
|
|
return false;
|
|
unsigned NewOpc;
|
|
switch (Inst.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
|
|
case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
|
|
}
|
|
Inst.setOpcode(NewOpc);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const char *getSubtargetFeatureName(unsigned Val);
|
|
bool X86AsmParser::
|
|
MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
|
|
MCStreamer &Out, unsigned &ErrorInfo,
|
|
bool MatchingInlineAsm) {
|
|
assert(!Operands.empty() && "Unexpect empty operand list!");
|
|
X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
|
|
assert(Op->isToken() && "Leading operand should always be a mnemonic!");
|
|
ArrayRef<SMRange> EmptyRanges = None;
|
|
|
|
// First, handle aliases that expand to multiple instructions.
|
|
// FIXME: This should be replaced with a real .td file alias mechanism.
|
|
// Also, MatchInstructionImpl should actually *do* the EmitInstruction
|
|
// call.
|
|
if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" ||
|
|
Op->getToken() == "fstsww" || Op->getToken() == "fstcww" ||
|
|
Op->getToken() == "finit" || Op->getToken() == "fsave" ||
|
|
Op->getToken() == "fstenv" || Op->getToken() == "fclex") {
|
|
MCInst Inst;
|
|
Inst.setOpcode(X86::WAIT);
|
|
Inst.setLoc(IDLoc);
|
|
if (!MatchingInlineAsm)
|
|
Out.EmitInstruction(Inst, STI);
|
|
|
|
const char *Repl =
|
|
StringSwitch<const char*>(Op->getToken())
|
|
.Case("finit", "fninit")
|
|
.Case("fsave", "fnsave")
|
|
.Case("fstcw", "fnstcw")
|
|
.Case("fstcww", "fnstcw")
|
|
.Case("fstenv", "fnstenv")
|
|
.Case("fstsw", "fnstsw")
|
|
.Case("fstsww", "fnstsw")
|
|
.Case("fclex", "fnclex")
|
|
.Default(0);
|
|
assert(Repl && "Unknown wait-prefixed instruction");
|
|
delete Operands[0];
|
|
Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
|
|
}
|
|
|
|
bool WasOriginallyInvalidOperand = false;
|
|
MCInst Inst;
|
|
|
|
// First, try a direct match.
|
|
switch (MatchInstructionImpl(Operands, Inst,
|
|
ErrorInfo, MatchingInlineAsm,
|
|
isParsingIntelSyntax())) {
|
|
default: break;
|
|
case Match_Success:
|
|
// Some instructions need post-processing to, for example, tweak which
|
|
// encoding is selected. Loop on it while changes happen so the
|
|
// individual transformations can chain off each other.
|
|
if (!MatchingInlineAsm)
|
|
while (processInstruction(Inst, Operands))
|
|
;
|
|
|
|
Inst.setLoc(IDLoc);
|
|
if (!MatchingInlineAsm)
|
|
Out.EmitInstruction(Inst, STI);
|
|
Opcode = Inst.getOpcode();
|
|
return false;
|
|
case Match_MissingFeature: {
|
|
assert(ErrorInfo && "Unknown missing feature!");
|
|
// Special case the error message for the very common case where only
|
|
// a single subtarget feature is missing.
|
|
std::string Msg = "instruction requires:";
|
|
unsigned Mask = 1;
|
|
for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
|
|
if (ErrorInfo & Mask) {
|
|
Msg += " ";
|
|
Msg += getSubtargetFeatureName(ErrorInfo & Mask);
|
|
}
|
|
Mask <<= 1;
|
|
}
|
|
return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
|
|
}
|
|
case Match_InvalidOperand:
|
|
WasOriginallyInvalidOperand = true;
|
|
break;
|
|
case Match_MnemonicFail:
|
|
break;
|
|
}
|
|
|
|
// FIXME: Ideally, we would only attempt suffix matches for things which are
|
|
// valid prefixes, and we could just infer the right unambiguous
|
|
// type. However, that requires substantially more matcher support than the
|
|
// following hack.
|
|
|
|
// Change the operand to point to a temporary token.
|
|
StringRef Base = Op->getToken();
|
|
SmallString<16> Tmp;
|
|
Tmp += Base;
|
|
Tmp += ' ';
|
|
Op->setTokenValue(Tmp.str());
|
|
|
|
// If this instruction starts with an 'f', then it is a floating point stack
|
|
// instruction. These come in up to three forms for 32-bit, 64-bit, and
|
|
// 80-bit floating point, which use the suffixes s,l,t respectively.
|
|
//
|
|
// Otherwise, we assume that this may be an integer instruction, which comes
|
|
// in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
|
|
const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
|
|
|
|
// Check for the various suffix matches.
|
|
Tmp[Base.size()] = Suffixes[0];
|
|
unsigned ErrorInfoIgnore;
|
|
unsigned ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
|
|
unsigned Match1, Match2, Match3, Match4;
|
|
|
|
Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
|
|
MatchingInlineAsm, isParsingIntelSyntax());
|
|
// If this returned as a missing feature failure, remember that.
|
|
if (Match1 == Match_MissingFeature)
|
|
ErrorInfoMissingFeature = ErrorInfoIgnore;
|
|
Tmp[Base.size()] = Suffixes[1];
|
|
Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
|
|
MatchingInlineAsm, isParsingIntelSyntax());
|
|
// If this returned as a missing feature failure, remember that.
|
|
if (Match2 == Match_MissingFeature)
|
|
ErrorInfoMissingFeature = ErrorInfoIgnore;
|
|
Tmp[Base.size()] = Suffixes[2];
|
|
Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
|
|
MatchingInlineAsm, isParsingIntelSyntax());
|
|
// If this returned as a missing feature failure, remember that.
|
|
if (Match3 == Match_MissingFeature)
|
|
ErrorInfoMissingFeature = ErrorInfoIgnore;
|
|
Tmp[Base.size()] = Suffixes[3];
|
|
Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
|
|
MatchingInlineAsm, isParsingIntelSyntax());
|
|
// If this returned as a missing feature failure, remember that.
|
|
if (Match4 == Match_MissingFeature)
|
|
ErrorInfoMissingFeature = ErrorInfoIgnore;
|
|
|
|
// Restore the old token.
|
|
Op->setTokenValue(Base);
|
|
|
|
// If exactly one matched, then we treat that as a successful match (and the
|
|
// instruction will already have been filled in correctly, since the failing
|
|
// matches won't have modified it).
|
|
unsigned NumSuccessfulMatches =
|
|
(Match1 == Match_Success) + (Match2 == Match_Success) +
|
|
(Match3 == Match_Success) + (Match4 == Match_Success);
|
|
if (NumSuccessfulMatches == 1) {
|
|
Inst.setLoc(IDLoc);
|
|
if (!MatchingInlineAsm)
|
|
Out.EmitInstruction(Inst, STI);
|
|
Opcode = Inst.getOpcode();
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, the match failed, try to produce a decent error message.
|
|
|
|
// If we had multiple suffix matches, then identify this as an ambiguous
|
|
// match.
|
|
if (NumSuccessfulMatches > 1) {
|
|
char MatchChars[4];
|
|
unsigned NumMatches = 0;
|
|
if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
|
|
if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
|
|
if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
|
|
if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];
|
|
|
|
SmallString<126> Msg;
|
|
raw_svector_ostream OS(Msg);
|
|
OS << "ambiguous instructions require an explicit suffix (could be ";
|
|
for (unsigned i = 0; i != NumMatches; ++i) {
|
|
if (i != 0)
|
|
OS << ", ";
|
|
if (i + 1 == NumMatches)
|
|
OS << "or ";
|
|
OS << "'" << Base << MatchChars[i] << "'";
|
|
}
|
|
OS << ")";
|
|
Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
|
|
return true;
|
|
}
|
|
|
|
// Okay, we know that none of the variants matched successfully.
|
|
|
|
// If all of the instructions reported an invalid mnemonic, then the original
|
|
// mnemonic was invalid.
|
|
if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
|
|
(Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
|
|
if (!WasOriginallyInvalidOperand) {
|
|
ArrayRef<SMRange> Ranges = MatchingInlineAsm ? EmptyRanges :
|
|
Op->getLocRange();
|
|
return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
|
|
Ranges, MatchingInlineAsm);
|
|
}
|
|
|
|
// Recover location info for the operand if we know which was the problem.
|
|
if (ErrorInfo != ~0U) {
|
|
if (ErrorInfo >= Operands.size())
|
|
return Error(IDLoc, "too few operands for instruction",
|
|
EmptyRanges, MatchingInlineAsm);
|
|
|
|
X86Operand *Operand = (X86Operand*)Operands[ErrorInfo];
|
|
if (Operand->getStartLoc().isValid()) {
|
|
SMRange OperandRange = Operand->getLocRange();
|
|
return Error(Operand->getStartLoc(), "invalid operand for instruction",
|
|
OperandRange, MatchingInlineAsm);
|
|
}
|
|
}
|
|
|
|
return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
|
|
MatchingInlineAsm);
|
|
}
|
|
|
|
// If one instruction matched with a missing feature, report this as a
|
|
// missing feature.
|
|
if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
|
|
(Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
|
|
std::string Msg = "instruction requires:";
|
|
unsigned Mask = 1;
|
|
for (unsigned i = 0; i < (sizeof(ErrorInfoMissingFeature)*8-1); ++i) {
|
|
if (ErrorInfoMissingFeature & Mask) {
|
|
Msg += " ";
|
|
Msg += getSubtargetFeatureName(ErrorInfoMissingFeature & Mask);
|
|
}
|
|
Mask <<= 1;
|
|
}
|
|
return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
|
|
}
|
|
|
|
// If one instruction matched with an invalid operand, report this as an
|
|
// operand failure.
|
|
if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
|
|
(Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
|
|
Error(IDLoc, "invalid operand for instruction", EmptyRanges,
|
|
MatchingInlineAsm);
|
|
return true;
|
|
}
|
|
|
|
// If all of these were an outright failure, report it in a useless way.
|
|
Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
|
|
EmptyRanges, MatchingInlineAsm);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
|
|
StringRef IDVal = DirectiveID.getIdentifier();
|
|
if (IDVal == ".word")
|
|
return ParseDirectiveWord(2, DirectiveID.getLoc());
|
|
else if (IDVal.startswith(".code"))
|
|
return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
|
|
else if (IDVal.startswith(".att_syntax")) {
|
|
getParser().setAssemblerDialect(0);
|
|
return false;
|
|
} else if (IDVal.startswith(".intel_syntax")) {
|
|
getParser().setAssemblerDialect(1);
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
// FIXME: Handle noprefix
|
|
if (Parser.getTok().getString() == "noprefix")
|
|
Parser.Lex();
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// ParseDirectiveWord
|
|
/// ::= .word [ expression (, expression)* ]
|
|
bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
for (;;) {
|
|
const MCExpr *Value;
|
|
if (getParser().parseExpression(Value))
|
|
return false;
|
|
|
|
getParser().getStreamer().EmitValue(Value, Size);
|
|
|
|
if (getLexer().is(AsmToken::EndOfStatement))
|
|
break;
|
|
|
|
// FIXME: Improve diagnostic.
|
|
if (getLexer().isNot(AsmToken::Comma)) {
|
|
Error(L, "unexpected token in directive");
|
|
return false;
|
|
}
|
|
Parser.Lex();
|
|
}
|
|
}
|
|
|
|
Parser.Lex();
|
|
return false;
|
|
}
|
|
|
|
/// ParseDirectiveCode
|
|
/// ::= .code16 | .code32 | .code64
|
|
bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
|
|
if (IDVal == ".code16") {
|
|
Parser.Lex();
|
|
if (!is16BitMode()) {
|
|
SwitchMode(X86::Mode16Bit);
|
|
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
|
|
}
|
|
} else if (IDVal == ".code32") {
|
|
Parser.Lex();
|
|
if (!is32BitMode()) {
|
|
SwitchMode(X86::Mode32Bit);
|
|
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
|
|
}
|
|
} else if (IDVal == ".code64") {
|
|
Parser.Lex();
|
|
if (!is64BitMode()) {
|
|
SwitchMode(X86::Mode64Bit);
|
|
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
|
|
}
|
|
} else {
|
|
Error(L, "unknown directive " + IDVal);
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Force static initialization.
|
|
extern "C" void LLVMInitializeX86AsmParser() {
|
|
RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target);
|
|
RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target);
|
|
}
|
|
|
|
#define GET_REGISTER_MATCHER
|
|
#define GET_MATCHER_IMPLEMENTATION
|
|
#define GET_SUBTARGET_FEATURE_NAME
|
|
#include "X86GenAsmMatcher.inc"
|