llvm-6502/include/llvm/CodeGen/LiveIntervalAnalysis.h
Matthias Braun 4f3b5e8c92 Represent RegUnit liveness with LiveRange instance
Previously LiveInterval has been used, but having a spill weight and
register number is unnecessary for a register unit.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192397 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-10 21:29:02 +00:00

408 lines
15 KiB
C++

//===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass. Given some numbering of
// each the machine instructions (in this implemention depth-first order) an
// interval [i, j) is said to be a live interval for register v if there is no
// instruction with number j' > j such that v is live at j' and there is no
// instruction with number i' < i such that v is live at i'. In this
// implementation intervals can have holes, i.e. an interval might look like
// [1,20), [50,65), [1000,1001).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
#define LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <cmath>
#include <iterator>
namespace llvm {
class AliasAnalysis;
class BitVector;
class BlockFrequency;
class LiveRangeCalc;
class LiveVariables;
class MachineDominatorTree;
class MachineLoopInfo;
class TargetRegisterInfo;
class MachineRegisterInfo;
class TargetInstrInfo;
class TargetRegisterClass;
class VirtRegMap;
class LiveIntervals : public MachineFunctionPass {
MachineFunction* MF;
MachineRegisterInfo* MRI;
const TargetMachine* TM;
const TargetRegisterInfo* TRI;
const TargetInstrInfo* TII;
AliasAnalysis *AA;
SlotIndexes* Indexes;
MachineDominatorTree *DomTree;
LiveRangeCalc *LRCalc;
/// Special pool allocator for VNInfo's (LiveInterval val#).
///
VNInfo::Allocator VNInfoAllocator;
/// Live interval pointers for all the virtual registers.
IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
/// RegMaskSlots - Sorted list of instructions with register mask operands.
/// Always use the 'r' slot, RegMasks are normal clobbers, not early
/// clobbers.
SmallVector<SlotIndex, 8> RegMaskSlots;
/// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
/// pointer to the corresponding register mask. This pointer can be
/// recomputed as:
///
/// MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
/// unsigned OpNum = findRegMaskOperand(MI);
/// RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
///
/// This is kept in a separate vector partly because some standard
/// libraries don't support lower_bound() with mixed objects, partly to
/// improve locality when searching in RegMaskSlots.
/// Also see the comment in LiveInterval::find().
SmallVector<const uint32_t*, 8> RegMaskBits;
/// For each basic block number, keep (begin, size) pairs indexing into the
/// RegMaskSlots and RegMaskBits arrays.
/// Note that basic block numbers may not be layout contiguous, that's why
/// we can't just keep track of the first register mask in each basic
/// block.
SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
/// Keeps a live range set for each register unit to track fixed physreg
/// interference.
SmallVector<LiveRange*, 0> RegUnitRanges;
public:
static char ID; // Pass identification, replacement for typeid
LiveIntervals();
virtual ~LiveIntervals();
// Calculate the spill weight to assign to a single instruction.
static float getSpillWeight(bool isDef, bool isUse, BlockFrequency freq);
LiveInterval &getInterval(unsigned Reg) {
if (hasInterval(Reg))
return *VirtRegIntervals[Reg];
else
return createAndComputeVirtRegInterval(Reg);
}
const LiveInterval &getInterval(unsigned Reg) const {
return const_cast<LiveIntervals*>(this)->getInterval(Reg);
}
bool hasInterval(unsigned Reg) const {
return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg];
}
// Interval creation.
LiveInterval &createEmptyInterval(unsigned Reg) {
assert(!hasInterval(Reg) && "Interval already exists!");
VirtRegIntervals.grow(Reg);
VirtRegIntervals[Reg] = createInterval(Reg);
return *VirtRegIntervals[Reg];
}
LiveInterval &createAndComputeVirtRegInterval(unsigned Reg) {
LiveInterval &LI = createEmptyInterval(Reg);
computeVirtRegInterval(LI);
return LI;
}
// Interval removal.
void removeInterval(unsigned Reg) {
delete VirtRegIntervals[Reg];
VirtRegIntervals[Reg] = 0;
}
/// Given a register and an instruction, adds a live segment from that
/// instruction to the end of its MBB.
LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
MachineInstr* startInst);
/// shrinkToUses - After removing some uses of a register, shrink its live
/// range to just the remaining uses. This method does not compute reaching
/// defs for new uses, and it doesn't remove dead defs.
/// Dead PHIDef values are marked as unused.
/// New dead machine instructions are added to the dead vector.
/// Return true if the interval may have been separated into multiple
/// connected components.
bool shrinkToUses(LiveInterval *li,
SmallVectorImpl<MachineInstr*> *dead = 0);
/// extendToIndices - Extend the live range of LI to reach all points in
/// Indices. The points in the Indices array must be jointly dominated by
/// existing defs in LI. PHI-defs are added as needed to maintain SSA form.
///
/// If a SlotIndex in Indices is the end index of a basic block, LI will be
/// extended to be live out of the basic block.
///
/// See also LiveRangeCalc::extend().
void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices);
/// pruneValue - If an LI value is live at Kill, prune its live range by
/// removing any liveness reachable from Kill. Add live range end points to
/// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
/// value's live range.
///
/// Calling pruneValue() and extendToIndices() can be used to reconstruct
/// SSA form after adding defs to a virtual register.
void pruneValue(LiveInterval *LI, SlotIndex Kill,
SmallVectorImpl<SlotIndex> *EndPoints);
SlotIndexes *getSlotIndexes() const {
return Indexes;
}
AliasAnalysis *getAliasAnalysis() const {
return AA;
}
/// isNotInMIMap - returns true if the specified machine instr has been
/// removed or was never entered in the map.
bool isNotInMIMap(const MachineInstr* Instr) const {
return !Indexes->hasIndex(Instr);
}
/// Returns the base index of the given instruction.
SlotIndex getInstructionIndex(const MachineInstr *instr) const {
return Indexes->getInstructionIndex(instr);
}
/// Returns the instruction associated with the given index.
MachineInstr* getInstructionFromIndex(SlotIndex index) const {
return Indexes->getInstructionFromIndex(index);
}
/// Return the first index in the given basic block.
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
return Indexes->getMBBStartIdx(mbb);
}
/// Return the last index in the given basic block.
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
return Indexes->getMBBEndIdx(mbb);
}
bool isLiveInToMBB(const LiveRange &LR,
const MachineBasicBlock *mbb) const {
return LR.liveAt(getMBBStartIdx(mbb));
}
bool isLiveOutOfMBB(const LiveRange &LR,
const MachineBasicBlock *mbb) const {
return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
}
MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
return Indexes->getMBBFromIndex(index);
}
void insertMBBInMaps(MachineBasicBlock *MBB) {
Indexes->insertMBBInMaps(MBB);
assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
"Blocks must be added in order.");
RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
}
SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) {
return Indexes->insertMachineInstrInMaps(MI);
}
void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
MachineBasicBlock::iterator E) {
for (MachineBasicBlock::iterator I = B; I != E; ++I)
Indexes->insertMachineInstrInMaps(I);
}
void RemoveMachineInstrFromMaps(MachineInstr *MI) {
Indexes->removeMachineInstrFromMaps(MI);
}
void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) {
Indexes->replaceMachineInstrInMaps(MI, NewMI);
}
bool findLiveInMBBs(SlotIndex Start, SlotIndex End,
SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
return Indexes->findLiveInMBBs(Start, End, MBBs);
}
VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory();
/// runOnMachineFunction - pass entry point
virtual bool runOnMachineFunction(MachineFunction&);
/// print - Implement the dump method.
virtual void print(raw_ostream &O, const Module* = 0) const;
/// intervalIsInOneMBB - If LI is confined to a single basic block, return
/// a pointer to that block. If LI is live in to or out of any block,
/// return NULL.
MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
/// Returns true if VNI is killed by any PHI-def values in LI.
/// This may conservatively return true to avoid expensive computations.
bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
/// addKillFlags - Add kill flags to any instruction that kills a virtual
/// register.
void addKillFlags(const VirtRegMap*);
/// handleMove - call this method to notify LiveIntervals that
/// instruction 'mi' has been moved within a basic block. This will update
/// the live intervals for all operands of mi. Moves between basic blocks
/// are not supported.
///
/// \param UpdateFlags Update live intervals for nonallocatable physregs.
void handleMove(MachineInstr* MI, bool UpdateFlags = false);
/// moveIntoBundle - Update intervals for operands of MI so that they
/// begin/end on the SlotIndex for BundleStart.
///
/// \param UpdateFlags Update live intervals for nonallocatable physregs.
///
/// Requires MI and BundleStart to have SlotIndexes, and assumes
/// existing liveness is accurate. BundleStart should be the first
/// instruction in the Bundle.
void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart,
bool UpdateFlags = false);
/// repairIntervalsInRange - Update live intervals for instructions in a
/// range of iterators. It is intended for use after target hooks that may
/// insert or remove instructions, and is only efficient for a small number
/// of instructions.
///
/// OrigRegs is a vector of registers that were originally used by the
/// instructions in the range between the two iterators.
///
/// Currently, the only only changes that are supported are simple removal
/// and addition of uses.
void repairIntervalsInRange(MachineBasicBlock *MBB,
MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End,
ArrayRef<unsigned> OrigRegs);
// Register mask functions.
//
// Machine instructions may use a register mask operand to indicate that a
// large number of registers are clobbered by the instruction. This is
// typically used for calls.
//
// For compile time performance reasons, these clobbers are not recorded in
// the live intervals for individual physical registers. Instead,
// LiveIntervalAnalysis maintains a sorted list of instructions with
// register mask operands.
/// getRegMaskSlots - Returns a sorted array of slot indices of all
/// instructions with register mask operands.
ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
/// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all
/// instructions with register mask operands in the basic block numbered
/// MBBNum.
ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
return getRegMaskSlots().slice(P.first, P.second);
}
/// getRegMaskBits() - Returns an array of register mask pointers
/// corresponding to getRegMaskSlots().
ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
/// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding
/// to getRegMaskSlotsInBlock(MBBNum).
ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
return getRegMaskBits().slice(P.first, P.second);
}
/// checkRegMaskInterference - Test if LI is live across any register mask
/// instructions, and compute a bit mask of physical registers that are not
/// clobbered by any of them.
///
/// Returns false if LI doesn't cross any register mask instructions. In
/// that case, the bit vector is not filled in.
bool checkRegMaskInterference(LiveInterval &LI,
BitVector &UsableRegs);
// Register unit functions.
//
// Fixed interference occurs when MachineInstrs use physregs directly
// instead of virtual registers. This typically happens when passing
// arguments to a function call, or when instructions require operands in
// fixed registers.
//
// Each physreg has one or more register units, see MCRegisterInfo. We
// track liveness per register unit to handle aliasing registers more
// efficiently.
/// getRegUnit - Return the live range for Unit.
/// It will be computed if it doesn't exist.
LiveRange &getRegUnit(unsigned Unit) {
LiveRange *LR = RegUnitRanges[Unit];
if (!LR) {
// Compute missing ranges on demand.
RegUnitRanges[Unit] = LR = new LiveRange();
computeRegUnitRange(*LR, Unit);
}
return *LR;
}
/// getCachedRegUnit - Return the live range for Unit if it has already
/// been computed, or NULL if it hasn't been computed yet.
LiveRange *getCachedRegUnit(unsigned Unit) {
return RegUnitRanges[Unit];
}
const LiveRange *getCachedRegUnit(unsigned Unit) const {
return RegUnitRanges[Unit];
}
private:
/// Compute live intervals for all virtual registers.
void computeVirtRegs();
/// Compute RegMaskSlots and RegMaskBits.
void computeRegMasks();
static LiveInterval* createInterval(unsigned Reg);
void printInstrs(raw_ostream &O) const;
void dumpInstrs() const;
void computeLiveInRegUnits();
void computeRegUnitRange(LiveRange&, unsigned Unit);
void computeVirtRegInterval(LiveInterval&);
class HMEditor;
};
} // End llvm namespace
#endif