llvm-6502/lib/Target/ARM/ARMHazardRecognizer.cpp
Bob Wilson 84c5eed15b This patch combines several changes from Evan Cheng for rdar://8659675.
Making use of VFP / NEON floating point multiply-accumulate / subtraction is
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
   of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
   additional pipeline stall. So it's frequently better to single codegen
   vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
   stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
   vmla + vmla is very bad. But this isn't ideal either:
     vmul
     vadd
     vmla
   Instead, we want to expand the second vmla:
     vmla
     vmul
     vadd
   Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
   faster.

Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.

A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
   compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
   fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
   vmla / vmls will trigger one of the special hazards.

Enable these fp vmlx codegen changes for Cortex-A9.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129775 91177308-0d34-0410-b5e6-96231b3b80d8
2011-04-19 18:11:57 +00:00

121 lines
3.8 KiB
C++

//===-- ARMHazardRecognizer.cpp - ARM postra hazard recognizer ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ARMHazardRecognizer.h"
#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMSubtarget.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
static bool hasRAWHazard(MachineInstr *DefMI, MachineInstr *MI,
const TargetRegisterInfo &TRI) {
// FIXME: Detect integer instructions properly.
const TargetInstrDesc &TID = MI->getDesc();
unsigned Domain = TID.TSFlags & ARMII::DomainMask;
if (TID.mayStore())
return false;
unsigned Opcode = TID.getOpcode();
if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
return false;
if ((Domain & ARMII::DomainVFP) || (Domain & ARMII::DomainNEON))
return MI->readsRegister(DefMI->getOperand(0).getReg(), &TRI);
return false;
}
ScheduleHazardRecognizer::HazardType
ARMHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
assert(Stalls == 0 && "ARM hazards don't support scoreboard lookahead");
MachineInstr *MI = SU->getInstr();
if (!MI->isDebugValue()) {
if (ITBlockSize && MI != ITBlockMIs[ITBlockSize-1])
return Hazard;
// Look for special VMLA / VMLS hazards. A VMUL / VADD / VSUB following
// a VMLA / VMLS will cause 4 cycle stall.
const TargetInstrDesc &TID = MI->getDesc();
if (LastMI && (TID.TSFlags & ARMII::DomainMask) != ARMII::DomainGeneral) {
MachineInstr *DefMI = LastMI;
const TargetInstrDesc &LastTID = LastMI->getDesc();
// Skip over one non-VFP / NEON instruction.
if (!LastTID.isBarrier() &&
// On A9, AGU and NEON/FPU are muxed.
!(STI.isCortexA9() && (LastTID.mayLoad() || LastTID.mayStore())) &&
(LastTID.TSFlags & ARMII::DomainMask) == ARMII::DomainGeneral) {
MachineBasicBlock::iterator I = LastMI;
if (I != LastMI->getParent()->begin()) {
I = llvm::prior(I);
DefMI = &*I;
}
}
if (TII.isFpMLxInstruction(DefMI->getOpcode()) &&
(TII.canCauseFpMLxStall(MI->getOpcode()) ||
hasRAWHazard(DefMI, MI, TRI))) {
// Try to schedule another instruction for the next 4 cycles.
if (FpMLxStalls == 0)
FpMLxStalls = 4;
return Hazard;
}
}
}
return ScoreboardHazardRecognizer::getHazardType(SU, Stalls);
}
void ARMHazardRecognizer::Reset() {
LastMI = 0;
FpMLxStalls = 0;
ITBlockSize = 0;
ScoreboardHazardRecognizer::Reset();
}
void ARMHazardRecognizer::EmitInstruction(SUnit *SU) {
MachineInstr *MI = SU->getInstr();
unsigned Opcode = MI->getOpcode();
if (ITBlockSize) {
--ITBlockSize;
} else if (Opcode == ARM::t2IT) {
unsigned Mask = MI->getOperand(1).getImm();
unsigned NumTZ = CountTrailingZeros_32(Mask);
assert(NumTZ <= 3 && "Invalid IT mask!");
ITBlockSize = 4 - NumTZ;
MachineBasicBlock::iterator I = MI;
for (unsigned i = 0; i < ITBlockSize; ++i) {
// Advance to the next instruction, skipping any dbg_value instructions.
do {
++I;
} while (I->isDebugValue());
ITBlockMIs[ITBlockSize-1-i] = &*I;
}
}
if (!MI->isDebugValue()) {
LastMI = MI;
FpMLxStalls = 0;
}
ScoreboardHazardRecognizer::EmitInstruction(SU);
}
void ARMHazardRecognizer::AdvanceCycle() {
if (FpMLxStalls && --FpMLxStalls == 0)
// Stalled for 4 cycles but still can't schedule any other instructions.
LastMI = 0;
ScoreboardHazardRecognizer::AdvanceCycle();
}
void ARMHazardRecognizer::RecedeCycle() {
llvm_unreachable("reverse ARM hazard checking unsupported");
}