llvm-6502/lib/Target/SparcV9/RegAlloc/LiveRangeInfo.cpp
Ruchira Sasanka efaf9be8a4 Coalesing bug fix - now checks for the same regType instead of the same
regClass since FP class has two reg Types.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1236 91177308-0d34-0410-b5e6-96231b3b80d8
2001-11-10 00:20:24 +00:00

380 lines
11 KiB
C++

#include "llvm/CodeGen/LiveRangeInfo.h"
LiveRangeInfo::LiveRangeInfo(const Method *const M,
const TargetMachine& tm,
vector<RegClass *> &RCL)
: Meth(M), LiveRangeMap(),
TM(tm), RegClassList(RCL),
MRI( tm.getRegInfo()),
CallRetInstrList()
{ }
// union two live ranges into one. The 2nd LR is deleted. Used for coalescing.
// Note: the caller must make sure that L1 and L2 are distinct and both
// LRs don't have suggested colors
void LiveRangeInfo::unionAndUpdateLRs(LiveRange *const L1, LiveRange *L2)
{
assert( L1 != L2);
L1->setUnion( L2 ); // add elements of L2 to L1
ValueSet::iterator L2It;
for( L2It = L2->begin() ; L2It != L2->end(); ++L2It) {
//assert(( L1->getTypeID() == L2->getTypeID()) && "Merge:Different types");
L1->add( *L2It ); // add the var in L2 to L1
LiveRangeMap[ *L2It ] = L1; // now the elements in L2 should map to L1
}
// Now if LROfDef(L1) has a suggested color, it will remain.
// But, if LROfUse(L2) has a suggested color, the new range
// must have the same color.
if(L2->hasSuggestedColor())
L1->setSuggestedColor( L2->getSuggestedColor() );
if( L2->isCallInterference() )
L1->setCallInterference();
delete ( L2 ); // delete L2 as it is no longer needed
}
void LiveRangeInfo::constructLiveRanges()
{
if( DEBUG_RA)
cout << "Consturcting Live Ranges ..." << endl;
// first find the live ranges for all incoming args of the method since
// those LRs start from the start of the method
// get the argument list
const Method::ArgumentListType& ArgList = Meth->getArgumentList();
// get an iterator to arg list
Method::ArgumentListType::const_iterator ArgIt = ArgList.begin();
for( ; ArgIt != ArgList.end() ; ++ArgIt) { // for each argument
LiveRange * ArgRange = new LiveRange(); // creates a new LR and
const Value *const Val = (const Value *) *ArgIt;
assert( Val);
ArgRange->add( Val ); // add the arg (def) to it
LiveRangeMap[ Val ] = ArgRange;
// create a temp machine op to find the register class of value
//const MachineOperand Op(MachineOperand::MO_VirtualRegister);
unsigned rcid = MRI.getRegClassIDOfValue( Val );
ArgRange->setRegClass(RegClassList[ rcid ] );
if( DEBUG_RA > 1) {
cout << " adding LiveRange for argument ";
printValue( (const Value *) *ArgIt); cout << endl;
}
}
// Now suggest hardware registers for these method args
MRI.suggestRegs4MethodArgs(Meth, *this);
// Now find speical LLVM instructions (CALL, RET) and LRs in machine
// instructions.
Method::const_iterator BBI = Meth->begin(); // random iterator for BBs
for( ; BBI != Meth->end(); ++BBI) { // go thru BBs in random order
// Now find all LRs for machine the instructions. A new LR will be created
// only for defs in the machine instr since, we assume that all Values are
// defined before they are used. However, there can be multiple defs for
// the same Value in machine instructions.
// get the iterator for machine instructions
const MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec();
MachineCodeForBasicBlock::const_iterator
MInstIterator = MIVec.begin();
// iterate over all the machine instructions in BB
for( ; MInstIterator != MIVec.end(); MInstIterator++) {
const MachineInstr * MInst = *MInstIterator;
// Now if the machine instruction is a call/return instruction,
// add it to CallRetInstrList for processing its implicit operands
if( (TM.getInstrInfo()).isReturn( MInst->getOpCode()) ||
(TM.getInstrInfo()).isCall( MInst->getOpCode()) )
CallRetInstrList.push_back( MInst );
// iterate over MI operands to find defs
for( MachineInstr::val_op_const_iterator OpI(MInst);!OpI.done(); ++OpI) {
if( DEBUG_RA) {
MachineOperand::MachineOperandType OpTyp =
OpI.getMachineOperand().getOperandType();
if ( OpTyp == MachineOperand::MO_CCRegister) {
cout << "\n**CC reg found. Is Def=" << OpI.isDef() << " Val:";
printValue( OpI.getMachineOperand().getVRegValue() );
cout << endl;
}
}
// create a new LR iff this operand is a def
if( OpI.isDef() ) {
const Value *const Def = *OpI;
// Only instruction values are accepted for live ranges here
if( Def->getValueType() != Value::InstructionVal ) {
cout << "\n**%%Error: Def is not an instruction val. Def=";
printValue( Def ); cout << endl;
continue;
}
LiveRange *DefRange = LiveRangeMap[Def];
// see LR already there (because of multiple defs)
if( !DefRange) { // if it is not in LiveRangeMap
DefRange = new LiveRange(); // creates a new live range and
DefRange->add( Def ); // add the instruction (def) to it
LiveRangeMap[ Def ] = DefRange; // update the map
if( DEBUG_RA > 1) {
cout << " creating a LR for def: ";
printValue(Def); cout << endl;
}
// set the register class of the new live range
//assert( RegClassList.size() );
MachineOperand::MachineOperandType OpTy =
OpI.getMachineOperand().getOperandType();
bool isCC = ( OpTy == MachineOperand::MO_CCRegister);
unsigned rcid = MRI.getRegClassIDOfValue(
OpI.getMachineOperand().getVRegValue(), isCC );
if(isCC && DEBUG_RA) {
cout << "\a**created a LR for a CC reg:";
printValue( OpI.getMachineOperand().getVRegValue() );
}
DefRange->setRegClass( RegClassList[ rcid ] );
}
else {
DefRange->add( Def ); // add the opearand to def range
// update the map - Operand points
// to the merged set
LiveRangeMap[ Def ] = DefRange;
if( DEBUG_RA > 1) {
cout << " added to an existing LR for def: ";
printValue( Def ); cout << endl;
}
}
} // if isDef()
} // for all opereands in machine instructions
} // for all machine instructions in the BB
} // for all BBs in method
// Now we have to suggest clors for call and return arg live ranges.
// Also, if there are implicit defs (e.g., retun value of a call inst)
// they must be added to the live range list
suggestRegs4CallRets();
if( DEBUG_RA)
cout << "Initial Live Ranges constructed!" << endl;
}
// Suggest colors for call and return args.
// Also create new LRs for implicit defs
void LiveRangeInfo::suggestRegs4CallRets()
{
CallRetInstrListType::const_iterator It = CallRetInstrList.begin();
for( ; It != CallRetInstrList.end(); ++It ) {
const MachineInstr *MInst = *It;
MachineOpCode OpCode = MInst->getOpCode();
if( (TM.getInstrInfo()).isReturn(OpCode) )
MRI.suggestReg4RetValue( MInst, *this);
else if( (TM.getInstrInfo()).isCall( OpCode ) )
MRI.suggestRegs4CallArgs( MInst, *this, RegClassList );
else
assert( 0 && "Non call/ret instr in CallRetInstrList" );
}
}
void LiveRangeInfo::coalesceLRs()
{
/* Algorithm:
for each BB in method
for each machine instruction (inst)
for each definition (def) in inst
for each operand (op) of inst that is a use
if the def and op are of the same register type
if the def and op do not interfere //i.e., not simultaneously live
if (degree(LR of def) + degree(LR of op)) <= # avail regs
if both LRs do not have suggested colors
merge2IGNodes(def, op) // i.e., merge 2 LRs
*/
if( DEBUG_RA)
cout << endl << "Coalscing LRs ..." << endl;
Method::const_iterator BBI = Meth->begin(); // random iterator for BBs
for( ; BBI != Meth->end(); ++BBI) { // traverse BBs in random order
// get the iterator for machine instructions
const MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec();
MachineCodeForBasicBlock::const_iterator
MInstIterator = MIVec.begin();
// iterate over all the machine instructions in BB
for( ; MInstIterator != MIVec.end(); ++MInstIterator) {
const MachineInstr * MInst = *MInstIterator;
if( DEBUG_RA > 1) {
cout << " *Iterating over machine instr ";
MInst->dump();
cout << endl;
}
// iterate over MI operands to find defs
for(MachineInstr::val_op_const_iterator DefI(MInst);!DefI.done();++DefI){
if( DefI.isDef() ) { // iff this operand is a def
LiveRange *const LROfDef = getLiveRangeForValue( *DefI );
assert( LROfDef );
RegClass *const RCOfDef = LROfDef->getRegClass();
MachineInstr::val_op_const_iterator UseI(MInst);
for( ; !UseI.done(); ++UseI){ // for all uses
LiveRange *const LROfUse = getLiveRangeForValue( *UseI );
if( ! LROfUse ) { // if LR of use is not found
//don't warn about labels
if (!((*UseI)->getType())->isLabelType() && DEBUG_RA) {
cout<<" !! Warning: No LR for use "; printValue(*UseI);
cout << endl;
}
continue; // ignore and continue
}
if( LROfUse == LROfDef) // nothing to merge if they are same
continue;
//RegClass *const RCOfUse = LROfUse->getRegClass();
//if( RCOfDef == RCOfUse ) { // if the reg classes are the same
if( MRI.getRegType(LROfDef) == MRI.getRegType(LROfUse) ) {
// If the two RegTypes are the same
if( ! RCOfDef->getInterference(LROfDef, LROfUse) ) {
unsigned CombinedDegree =
LROfDef->getUserIGNode()->getNumOfNeighbors() +
LROfUse->getUserIGNode()->getNumOfNeighbors();
if( CombinedDegree <= RCOfDef->getNumOfAvailRegs() ) {
// if both LRs do not have suggested colors
if( ! (LROfDef->hasSuggestedColor() &&
LROfUse->hasSuggestedColor() ) ) {
RCOfDef->mergeIGNodesOfLRs(LROfDef, LROfUse);
unionAndUpdateLRs(LROfDef, LROfUse);
}
} // if combined degree is less than # of regs
} // if def and use do not interfere
}// if reg classes are the same
} // for all uses
} // if def
} // for all defs
} // for all machine instructions
} // for all BBs
if( DEBUG_RA)
cout << endl << "Coalscing Done!" << endl;
}
/*--------------------------- Debug code for printing ---------------*/
void LiveRangeInfo::printLiveRanges()
{
LiveRangeMapType::iterator HMI = LiveRangeMap.begin(); // hash map iterator
cout << endl << "Printing Live Ranges from Hash Map:" << endl;
for( ; HMI != LiveRangeMap.end() ; HMI ++ ) {
if( (*HMI).first && (*HMI).second ) {
cout <<" "; printValue((*HMI).first); cout << "\t: ";
((*HMI).second)->printSet(); cout << endl;
}
}
}