llvm-6502/include/llvm/CodeGen/SelectionDAGNodes.h
2005-09-02 00:14:40 +00:00

1018 lines
36 KiB
C++

//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SDNode class and derived classes, which are used to
// represent the nodes and operations present in a SelectionDAG. These nodes
// and operations are machine code level operations, with some similarities to
// the GCC RTL representation.
//
// Clients should include the SelectionDAG.h file instead of this file directly.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Value.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator"
#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <vector>
namespace llvm {
class SelectionDAG;
class GlobalValue;
class MachineBasicBlock;
class SDNode;
template <typename T> struct simplify_type;
/// ISD namespace - This namespace contains an enum which represents all of the
/// SelectionDAG node types and value types.
///
namespace ISD {
//===--------------------------------------------------------------------===//
/// ISD::NodeType enum - This enum defines all of the operators valid in a
/// SelectionDAG.
///
enum NodeType {
// EntryToken - This is the marker used to indicate the start of the region.
EntryToken,
// Token factor - This node takes multiple tokens as input and produces a
// single token result. This is used to represent the fact that the operand
// operators are independent of each other.
TokenFactor,
// AssertSext, AssertZext - These nodes record if a register contains a
// value that has already been zero or sign extended from a narrower type.
// These nodes take two operands. The first is the node that has already
// been extended, and the second is a value type node indicating the width
// of the extension
AssertSext, AssertZext,
// Various leaf nodes.
Constant, ConstantFP, GlobalAddress, FrameIndex, ConstantPool,
BasicBlock, ExternalSymbol, VALUETYPE, CONDCODE, Register,
// TargetConstant - Like Constant, but the DAG does not do any folding or
// simplification of the constant. This is used by the DAG->DAG selector.
TargetConstant,
// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
// anything else with this node, and this is valid in the target-specific
// dag, turning into a GlobalAddress operand.
TargetGlobalAddress,
TargetFrameIndex,
TargetConstantPool,
// CopyToReg - This node has three operands: a chain, a register number to
// set to this value, and a value.
CopyToReg,
// CopyFromReg - This node indicates that the input value is a virtual or
// physical register that is defined outside of the scope of this
// SelectionDAG. The register is available from the RegSDNode object.
CopyFromReg,
// ImplicitDef - This node indicates that the specified register is
// implicitly defined by some operation (e.g. its a live-in argument). The
// two operands to this are the token chain coming in and the register.
// The only result is the token chain going out.
ImplicitDef,
// UNDEF - An undefined node
UNDEF,
// EXTRACT_ELEMENT - This is used to get the first or second (determined by
// a Constant, which is required to be operand #1), element of the aggregate
// value specified as operand #0. This is only for use before legalization,
// for values that will be broken into multiple registers.
EXTRACT_ELEMENT,
// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given
// two values of the same integer value type, this produces a value twice as
// big. Like EXTRACT_ELEMENT, this can only be used before legalization.
BUILD_PAIR,
// Simple binary arithmetic operators.
ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
// MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
// an unsigned/signed value of type i[2*n], then return the top part.
MULHU, MULHS,
// Bitwise operators.
AND, OR, XOR, SHL, SRA, SRL,
// Counting operators
CTTZ, CTLZ, CTPOP,
// Select
SELECT,
// Select with condition operator - This selects between a true value and
// a false value (ops #2 and #3) based on the boolean result of comparing
// the lhs and rhs (ops #0 and #1) of a conditional expression with the
// condition code in op #4, a CondCodeSDNode.
SELECT_CC,
// SetCC operator - This evaluates to a boolean (i1) true value if the
// condition is true. The operands to this are the left and right operands
// to compare (ops #0, and #1) and the condition code to compare them with
// (op #2) as a CondCodeSDNode.
SETCC,
// ADD_PARTS/SUB_PARTS - These operators take two logical operands which are
// broken into a multiple pieces each, and return the resulting pieces of
// doing an atomic add/sub operation. This is used to handle add/sub of
// expanded types. The operation ordering is:
// [Lo,Hi] = op [LoLHS,HiLHS], [LoRHS,HiRHS]
ADD_PARTS, SUB_PARTS,
// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
// integer shift operations, just like ADD/SUB_PARTS. The operation
// ordering is:
// [Lo,Hi] = op [LoLHS,HiLHS], Amt
SHL_PARTS, SRA_PARTS, SRL_PARTS,
// Conversion operators. These are all single input single output
// operations. For all of these, the result type must be strictly
// wider or narrower (depending on the operation) than the source
// type.
// SIGN_EXTEND - Used for integer types, replicating the sign bit
// into new bits.
SIGN_EXTEND,
// ZERO_EXTEND - Used for integer types, zeroing the new bits.
ZERO_EXTEND,
// ANY_EXTEND - Used for integer types. The high bits are undefined.
ANY_EXTEND,
// TRUNCATE - Completely drop the high bits.
TRUNCATE,
// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
// depends on the first letter) to floating point.
SINT_TO_FP,
UINT_TO_FP,
// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
// sign extend a small value in a large integer register (e.g. sign
// extending the low 8 bits of a 32-bit register to fill the top 24 bits
// with the 7th bit). The size of the smaller type is indicated by the 1th
// operand, a ValueType node.
SIGN_EXTEND_INREG,
// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
// integer.
FP_TO_SINT,
FP_TO_UINT,
// FP_ROUND - Perform a rounding operation from the current
// precision down to the specified precision (currently always 64->32).
FP_ROUND,
// FP_ROUND_INREG - This operator takes a floating point register, and
// rounds it to a floating point value. It then promotes it and returns it
// in a register of the same size. This operation effectively just discards
// excess precision. The type to round down to is specified by the 1th
// operation, a VTSDNode (currently always 64->32->64).
FP_ROUND_INREG,
// FP_EXTEND - Extend a smaller FP type into a larger FP type.
FP_EXTEND,
// FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
// absolute value, square root, sine and cosine operations.
FNEG, FABS, FSQRT, FSIN, FCOS,
// Other operators. LOAD and STORE have token chains as their first
// operand, then the same operands as an LLVM load/store instruction, then a
// SRCVALUE node that provides alias analysis information.
LOAD, STORE,
// EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
// memory and extend them to a larger value (e.g. load a byte into a word
// register). All three of these have four operands, a token chain, a
// pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
// indicating the type to load.
//
// SEXTLOAD loads the integer operand and sign extends it to a larger
// integer result type.
// ZEXTLOAD loads the integer operand and zero extends it to a larger
// integer result type.
// EXTLOAD is used for two things: floating point extending loads, and
// integer extending loads where it doesn't matter what the high
// bits are set to. The code generator is allowed to codegen this
// into whichever operation is more efficient.
EXTLOAD, SEXTLOAD, ZEXTLOAD,
// TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
// value and stores it to memory in one operation. This can be used for
// either integer or floating point operands. The first four operands of
// this are the same as a standard store. The fifth is the ValueType to
// store it as (which will be smaller than the source value).
TRUNCSTORE,
// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
// to a specified boundary. The first operand is the token chain, the
// second is the number of bytes to allocate, and the third is the alignment
// boundary. The size is guaranteed to be a multiple of the stack
// alignment, and the alignment is guaranteed to be bigger than the stack
// alignment (if required) or 0 to get standard stack alignment.
DYNAMIC_STACKALLOC,
// Control flow instructions. These all have token chains.
// BR - Unconditional branch. The first operand is the chain
// operand, the second is the MBB to branch to.
BR,
// BRCOND - Conditional branch. The first operand is the chain,
// the second is the condition, the third is the block to branch
// to if the condition is true.
BRCOND,
// BRCONDTWOWAY - Two-way conditional branch. The first operand is the
// chain, the second is the condition, the third is the block to branch to
// if true, and the forth is the block to branch to if false. Targets
// usually do not implement this, preferring to have legalize demote the
// operation to BRCOND/BR pairs when necessary.
BRCONDTWOWAY,
// BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in
// that the condition is represented as condition code, and two nodes to
// compare, rather than as a combined SetCC node. The operands in order are
// chain, cc, lhs, rhs, block to branch to if condition is true.
BR_CC,
// BRTWOWAY_CC - Two-way conditional branch. The operands in order are
// chain, cc, lhs, rhs, block to branch to if condition is true, block to
// branch to if condition is false. Targets usually do not implement this,
// preferring to have legalize demote the operation to BRCOND/BR pairs.
BRTWOWAY_CC,
// RET - Return from function. The first operand is the chain,
// and any subsequent operands are the return values for the
// function. This operation can have variable number of operands.
RET,
// CALL - Call to a function pointer. The first operand is the chain, the
// second is the destination function pointer (a GlobalAddress for a direct
// call). Arguments have already been lowered to explicit DAGs according to
// the calling convention in effect here. TAILCALL is the same as CALL, but
// the callee is known not to access the stack of the caller.
CALL,
TAILCALL,
// MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
// correspond to the operands of the LLVM intrinsic functions. The only
// result is a token chain. The alignment argument is guaranteed to be a
// Constant node.
MEMSET,
MEMMOVE,
MEMCPY,
// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
// a call sequence, and carry arbitrary information that target might want
// to know. The first operand is a chain, the rest are specified by the
// target and not touched by the DAG optimizers.
CALLSEQ_START, // Beginning of a call sequence
CALLSEQ_END, // End of a call sequence
// SRCVALUE - This corresponds to a Value*, and is used to associate memory
// locations with their value. This allows one use alias analysis
// information in the backend.
SRCVALUE,
// PCMARKER - This corresponds to the pcmarker intrinsic.
PCMARKER,
// READPORT, WRITEPORT, READIO, WRITEIO - These correspond to the LLVM
// intrinsics of the same name. The first operand is a token chain, the
// other operands match the intrinsic. These produce a token chain in
// addition to a value (if any).
READPORT, WRITEPORT, READIO, WRITEIO,
// BUILTIN_OP_END - This must be the last enum value in this list.
BUILTIN_OP_END,
};
//===--------------------------------------------------------------------===//
/// ISD::CondCode enum - These are ordered carefully to make the bitfields
/// below work out, when considering SETFALSE (something that never exists
/// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
/// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
/// to. If the "N" column is 1, the result of the comparison is undefined if
/// the input is a NAN.
///
/// All of these (except for the 'always folded ops') should be handled for
/// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
/// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
///
/// Note that these are laid out in a specific order to allow bit-twiddling
/// to transform conditions.
enum CondCode {
// Opcode N U L G E Intuitive operation
SETFALSE, // 0 0 0 0 Always false (always folded)
SETOEQ, // 0 0 0 1 True if ordered and equal
SETOGT, // 0 0 1 0 True if ordered and greater than
SETOGE, // 0 0 1 1 True if ordered and greater than or equal
SETOLT, // 0 1 0 0 True if ordered and less than
SETOLE, // 0 1 0 1 True if ordered and less than or equal
SETONE, // 0 1 1 0 True if ordered and operands are unequal
SETO, // 0 1 1 1 True if ordered (no nans)
SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
SETUEQ, // 1 0 0 1 True if unordered or equal
SETUGT, // 1 0 1 0 True if unordered or greater than
SETUGE, // 1 0 1 1 True if unordered, greater than, or equal
SETULT, // 1 1 0 0 True if unordered or less than
SETULE, // 1 1 0 1 True if unordered, less than, or equal
SETUNE, // 1 1 1 0 True if unordered or not equal
SETTRUE, // 1 1 1 1 Always true (always folded)
// Don't care operations: undefined if the input is a nan.
SETFALSE2, // 1 X 0 0 0 Always false (always folded)
SETEQ, // 1 X 0 0 1 True if equal
SETGT, // 1 X 0 1 0 True if greater than
SETGE, // 1 X 0 1 1 True if greater than or equal
SETLT, // 1 X 1 0 0 True if less than
SETLE, // 1 X 1 0 1 True if less than or equal
SETNE, // 1 X 1 1 0 True if not equal
SETTRUE2, // 1 X 1 1 1 Always true (always folded)
SETCC_INVALID, // Marker value.
};
/// isSignedIntSetCC - Return true if this is a setcc instruction that
/// performs a signed comparison when used with integer operands.
inline bool isSignedIntSetCC(CondCode Code) {
return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
}
/// isUnsignedIntSetCC - Return true if this is a setcc instruction that
/// performs an unsigned comparison when used with integer operands.
inline bool isUnsignedIntSetCC(CondCode Code) {
return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
}
/// isTrueWhenEqual - Return true if the specified condition returns true if
/// the two operands to the condition are equal. Note that if one of the two
/// operands is a NaN, this value is meaningless.
inline bool isTrueWhenEqual(CondCode Cond) {
return ((int)Cond & 1) != 0;
}
/// getUnorderedFlavor - This function returns 0 if the condition is always
/// false if an operand is a NaN, 1 if the condition is always true if the
/// operand is a NaN, and 2 if the condition is undefined if the operand is a
/// NaN.
inline unsigned getUnorderedFlavor(CondCode Cond) {
return ((int)Cond >> 3) & 3;
}
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
/// 'op' is a valid SetCC operation.
CondCode getSetCCInverse(CondCode Operation, bool isInteger);
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
/// when given the operation for (X op Y).
CondCode getSetCCSwappedOperands(CondCode Operation);
/// getSetCCOrOperation - Return the result of a logical OR between different
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This
/// function returns SETCC_INVALID if it is not possible to represent the
/// resultant comparison.
CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
/// getSetCCAndOperation - Return the result of a logical AND between
/// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
/// function returns SETCC_INVALID if it is not possible to represent the
/// resultant comparison.
CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
} // end llvm::ISD namespace
//===----------------------------------------------------------------------===//
/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
/// values as the result of a computation. Many nodes return multiple values,
/// from loads (which define a token and a return value) to ADDC (which returns
/// a result and a carry value), to calls (which may return an arbitrary number
/// of values).
///
/// As such, each use of a SelectionDAG computation must indicate the node that
/// computes it as well as which return value to use from that node. This pair
/// of information is represented with the SDOperand value type.
///
class SDOperand {
public:
SDNode *Val; // The node defining the value we are using.
unsigned ResNo; // Which return value of the node we are using.
SDOperand() : Val(0) {}
SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
bool operator==(const SDOperand &O) const {
return Val == O.Val && ResNo == O.ResNo;
}
bool operator!=(const SDOperand &O) const {
return !operator==(O);
}
bool operator<(const SDOperand &O) const {
return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
}
SDOperand getValue(unsigned R) const {
return SDOperand(Val, R);
}
/// getValueType - Return the ValueType of the referenced return value.
///
inline MVT::ValueType getValueType() const;
// Forwarding methods - These forward to the corresponding methods in SDNode.
inline unsigned getOpcode() const;
inline unsigned getNodeDepth() const;
inline unsigned getNumOperands() const;
inline const SDOperand &getOperand(unsigned i) const;
inline bool isTargetOpcode() const;
inline unsigned getTargetOpcode() const;
/// hasOneUse - Return true if there is exactly one operation using this
/// result value of the defining operator.
inline bool hasOneUse() const;
};
/// simplify_type specializations - Allow casting operators to work directly on
/// SDOperands as if they were SDNode*'s.
template<> struct simplify_type<SDOperand> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDOperand &Val) {
return static_cast<SimpleType>(Val.Val);
}
};
template<> struct simplify_type<const SDOperand> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDOperand &Val) {
return static_cast<SimpleType>(Val.Val);
}
};
/// SDNode - Represents one node in the SelectionDAG.
///
class SDNode {
/// NodeType - The operation that this node performs.
///
unsigned short NodeType;
/// NodeDepth - Node depth is defined as MAX(Node depth of children)+1. This
/// means that leaves have a depth of 1, things that use only leaves have a
/// depth of 2, etc.
unsigned short NodeDepth;
/// Operands - The values that are used by this operation.
///
std::vector<SDOperand> Operands;
/// Values - The types of the values this node defines. SDNode's may define
/// multiple values simultaneously.
std::vector<MVT::ValueType> Values;
/// Uses - These are all of the SDNode's that use a value produced by this
/// node.
std::vector<SDNode*> Uses;
public:
//===--------------------------------------------------------------------===//
// Accessors
//
unsigned getOpcode() const { return NodeType; }
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
unsigned getTargetOpcode() const {
assert(isTargetOpcode() && "Not a target opcode!");
return NodeType - ISD::BUILTIN_OP_END;
}
size_t use_size() const { return Uses.size(); }
bool use_empty() const { return Uses.empty(); }
bool hasOneUse() const { return Uses.size() == 1; }
/// getNodeDepth - Return the distance from this node to the leaves in the
/// graph. The leaves have a depth of 1.
unsigned getNodeDepth() const { return NodeDepth; }
typedef std::vector<SDNode*>::const_iterator use_iterator;
use_iterator use_begin() const { return Uses.begin(); }
use_iterator use_end() const { return Uses.end(); }
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value. This method ignores uses of other values defined by this
/// operation.
bool hasNUsesOfValue(unsigned NUses, unsigned Value);
/// getNumOperands - Return the number of values used by this operation.
///
unsigned getNumOperands() const { return Operands.size(); }
const SDOperand &getOperand(unsigned Num) {
assert(Num < Operands.size() && "Invalid child # of SDNode!");
return Operands[Num];
}
const SDOperand &getOperand(unsigned Num) const {
assert(Num < Operands.size() && "Invalid child # of SDNode!");
return Operands[Num];
}
typedef std::vector<SDOperand>::const_iterator op_iterator;
op_iterator op_begin() const { return Operands.begin(); }
op_iterator op_end() const { return Operands.end(); }
/// getNumValues - Return the number of values defined/returned by this
/// operator.
///
unsigned getNumValues() const { return Values.size(); }
/// getValueType - Return the type of a specified result.
///
MVT::ValueType getValueType(unsigned ResNo) const {
assert(ResNo < Values.size() && "Illegal result number!");
return Values[ResNo];
}
typedef std::vector<MVT::ValueType>::const_iterator value_iterator;
value_iterator value_begin() const { return Values.begin(); }
value_iterator value_end() const { return Values.end(); }
/// getOperationName - Return the opcode of this operation for printing.
///
const char* getOperationName(const SelectionDAG *G = 0) const;
void dump() const;
void dump(const SelectionDAG *G) const;
static bool classof(const SDNode *) { return true; }
/// setAdjCallChain - This method should only be used by the legalizer.
void setAdjCallChain(SDOperand N);
protected:
friend class SelectionDAG;
SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
Values.reserve(1);
Values.push_back(VT);
}
SDNode(unsigned NT, SDOperand Op)
: NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
Operands.reserve(1); Operands.push_back(Op);
Op.Val->Uses.push_back(this);
}
SDNode(unsigned NT, SDOperand N1, SDOperand N2)
: NodeType(NT) {
if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
NodeDepth = N1.Val->getNodeDepth()+1;
else
NodeDepth = N2.Val->getNodeDepth()+1;
Operands.reserve(2); Operands.push_back(N1); Operands.push_back(N2);
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
}
SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
: NodeType(NT) {
unsigned ND = N1.Val->getNodeDepth();
if (ND < N2.Val->getNodeDepth())
ND = N2.Val->getNodeDepth();
if (ND < N3.Val->getNodeDepth())
ND = N3.Val->getNodeDepth();
NodeDepth = ND+1;
Operands.reserve(3); Operands.push_back(N1); Operands.push_back(N2);
Operands.push_back(N3);
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
N3.Val->Uses.push_back(this);
}
SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
: NodeType(NT) {
unsigned ND = N1.Val->getNodeDepth();
if (ND < N2.Val->getNodeDepth())
ND = N2.Val->getNodeDepth();
if (ND < N3.Val->getNodeDepth())
ND = N3.Val->getNodeDepth();
if (ND < N4.Val->getNodeDepth())
ND = N4.Val->getNodeDepth();
NodeDepth = ND+1;
Operands.reserve(4); Operands.push_back(N1); Operands.push_back(N2);
Operands.push_back(N3); Operands.push_back(N4);
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
}
SDNode(unsigned NT, std::vector<SDOperand> &Nodes) : NodeType(NT) {
Operands.swap(Nodes);
unsigned ND = 0;
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
Operands[i].Val->Uses.push_back(this);
if (ND < Operands[i].Val->getNodeDepth())
ND = Operands[i].Val->getNodeDepth();
}
NodeDepth = ND+1;
}
virtual ~SDNode() {}
/// MorphNodeTo - This clears the return value and operands list, and sets the
/// opcode of the node to the specified value. This should only be used by
/// the SelectionDAG class.
void MorphNodeTo(unsigned Opc) {
NodeType = Opc;
Values.clear();
// Clear the operands list, updating used nodes to remove this from their
// use list.
while (!Operands.empty()) {
SDNode *O = Operands.back().Val;
Operands.pop_back();
O->removeUser(this);
}
}
void setValueTypes(MVT::ValueType VT) {
Values.reserve(1);
Values.push_back(VT);
}
void setValueTypes(MVT::ValueType VT1, MVT::ValueType VT2) {
Values.reserve(2);
Values.push_back(VT1);
Values.push_back(VT2);
}
/// Note: this method destroys the vector passed in.
void setValueTypes(std::vector<MVT::ValueType> &VTs) {
std::swap(Values, VTs);
}
void setOperands(SDOperand Op0) {
Operands.reserve(1);
Operands.push_back(Op0);
Op0.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1) {
Operands.reserve(2);
Operands.push_back(Op0);
Operands.push_back(Op1);
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
Operands.reserve(3);
Operands.push_back(Op0);
Operands.push_back(Op1);
Operands.push_back(Op2);
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
Op2.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
Operands.reserve(4);
Operands.push_back(Op0);
Operands.push_back(Op1);
Operands.push_back(Op2);
Operands.push_back(Op3);
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
SDOperand Op4) {
Operands.reserve(5);
Operands.push_back(Op0);
Operands.push_back(Op1);
Operands.push_back(Op2);
Operands.push_back(Op3);
Operands.push_back(Op4);
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
Op4.Val->Uses.push_back(this);
}
void addUser(SDNode *User) {
Uses.push_back(User);
}
void removeUser(SDNode *User) {
// Remove this user from the operand's use list.
for (unsigned i = Uses.size(); ; --i) {
assert(i != 0 && "Didn't find user!");
if (Uses[i-1] == User) {
Uses[i-1] = Uses.back();
Uses.pop_back();
return;
}
}
}
};
// Define inline functions from the SDOperand class.
inline unsigned SDOperand::getOpcode() const {
return Val->getOpcode();
}
inline unsigned SDOperand::getNodeDepth() const {
return Val->getNodeDepth();
}
inline MVT::ValueType SDOperand::getValueType() const {
return Val->getValueType(ResNo);
}
inline unsigned SDOperand::getNumOperands() const {
return Val->getNumOperands();
}
inline const SDOperand &SDOperand::getOperand(unsigned i) const {
return Val->getOperand(i);
}
inline bool SDOperand::isTargetOpcode() const {
return Val->isTargetOpcode();
}
inline unsigned SDOperand::getTargetOpcode() const {
return Val->getTargetOpcode();
}
inline bool SDOperand::hasOneUse() const {
return Val->hasNUsesOfValue(1, ResNo);
}
class ConstantSDNode : public SDNode {
uint64_t Value;
protected:
friend class SelectionDAG;
ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
: SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
}
public:
uint64_t getValue() const { return Value; }
int64_t getSignExtended() const {
unsigned Bits = MVT::getSizeInBits(getValueType(0));
return ((int64_t)Value << (64-Bits)) >> (64-Bits);
}
bool isNullValue() const { return Value == 0; }
bool isAllOnesValue() const {
int NumBits = MVT::getSizeInBits(getValueType(0));
if (NumBits == 64) return Value+1 == 0;
return Value == (1ULL << NumBits)-1;
}
static bool classof(const ConstantSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Constant ||
N->getOpcode() == ISD::TargetConstant;
}
};
class ConstantFPSDNode : public SDNode {
double Value;
protected:
friend class SelectionDAG;
ConstantFPSDNode(double val, MVT::ValueType VT)
: SDNode(ISD::ConstantFP, VT), Value(val) {
}
public:
double getValue() const { return Value; }
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
bool isExactlyValue(double V) const;
static bool classof(const ConstantFPSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantFP;
}
};
class GlobalAddressSDNode : public SDNode {
GlobalValue *TheGlobal;
protected:
friend class SelectionDAG;
GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT)
: SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT) {
TheGlobal = const_cast<GlobalValue*>(GA);
}
public:
GlobalValue *getGlobal() const { return TheGlobal; }
static bool classof(const GlobalAddressSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::GlobalAddress ||
N->getOpcode() == ISD::TargetGlobalAddress;
}
};
class FrameIndexSDNode : public SDNode {
int FI;
protected:
friend class SelectionDAG;
FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
: SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
public:
int getIndex() const { return FI; }
static bool classof(const FrameIndexSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::FrameIndex ||
N->getOpcode() == ISD::TargetFrameIndex;
}
};
class ConstantPoolSDNode : public SDNode {
Constant *C;
protected:
friend class SelectionDAG;
ConstantPoolSDNode(Constant *c, MVT::ValueType VT, bool isTarget)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
C(c) {}
public:
Constant *get() const { return C; }
static bool classof(const ConstantPoolSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantPool ||
N->getOpcode() == ISD::TargetConstantPool;
}
};
class BasicBlockSDNode : public SDNode {
MachineBasicBlock *MBB;
protected:
friend class SelectionDAG;
BasicBlockSDNode(MachineBasicBlock *mbb)
: SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
public:
MachineBasicBlock *getBasicBlock() const { return MBB; }
static bool classof(const BasicBlockSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BasicBlock;
}
};
class SrcValueSDNode : public SDNode {
const Value *V;
int offset;
protected:
friend class SelectionDAG;
SrcValueSDNode(const Value* v, int o)
: SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
public:
const Value *getValue() const { return V; }
int getOffset() const { return offset; }
static bool classof(const SrcValueSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::SRCVALUE;
}
};
class RegisterSDNode : public SDNode {
unsigned Reg;
protected:
friend class SelectionDAG;
RegisterSDNode(unsigned reg, MVT::ValueType VT)
: SDNode(ISD::Register, VT), Reg(reg) {}
public:
unsigned getReg() const { return Reg; }
static bool classof(const RegisterSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Register;
}
};
class ExternalSymbolSDNode : public SDNode {
const char *Symbol;
protected:
friend class SelectionDAG;
ExternalSymbolSDNode(const char *Sym, MVT::ValueType VT)
: SDNode(ISD::ExternalSymbol, VT), Symbol(Sym) {
}
public:
const char *getSymbol() const { return Symbol; }
static bool classof(const ExternalSymbolSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ExternalSymbol;
}
};
class CondCodeSDNode : public SDNode {
ISD::CondCode Condition;
protected:
friend class SelectionDAG;
CondCodeSDNode(ISD::CondCode Cond)
: SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
}
public:
ISD::CondCode get() const { return Condition; }
static bool classof(const CondCodeSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::CONDCODE;
}
};
/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
/// to parameterize some operations.
class VTSDNode : public SDNode {
MVT::ValueType ValueType;
protected:
friend class SelectionDAG;
VTSDNode(MVT::ValueType VT)
: SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
public:
MVT::ValueType getVT() const { return ValueType; }
static bool classof(const VTSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VALUETYPE;
}
};
class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
SDNode *Node;
unsigned Operand;
SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
public:
bool operator==(const SDNodeIterator& x) const {
return Operand == x.Operand;
}
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
const SDNodeIterator &operator=(const SDNodeIterator &I) {
assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
Operand = I.Operand;
return *this;
}
pointer operator*() const {
return Node->getOperand(Operand).Val;
}
pointer operator->() const { return operator*(); }
SDNodeIterator& operator++() { // Preincrement
++Operand;
return *this;
}
SDNodeIterator operator++(int) { // Postincrement
SDNodeIterator tmp = *this; ++*this; return tmp;
}
static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
static SDNodeIterator end (SDNode *N) {
return SDNodeIterator(N, N->getNumOperands());
}
unsigned getOperand() const { return Operand; }
const SDNode *getNode() const { return Node; }
};
template <> struct GraphTraits<SDNode*> {
typedef SDNode NodeType;
typedef SDNodeIterator ChildIteratorType;
static inline NodeType *getEntryNode(SDNode *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return SDNodeIterator::begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return SDNodeIterator::end(N);
}
};
} // end llvm namespace
#endif