llvm-6502/lib/Transforms/Scalar/DeadStoreElimination.cpp
Victor Hernandez 66284e063a Auto-upgrade free instructions to calls to the builtin free function.
Update all analysis passes and transforms to treat free calls just like FreeInst.
Remove RaiseAllocations and all its tests since FreeInst no longer needs to be raised.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84987 91177308-0d34-0410-b5e6-96231b3b80d8
2009-10-24 04:23:03 +00:00

477 lines
16 KiB
C++

//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a trivial dead store elimination that only considers
// basic-block local redundant stores.
//
// FIXME: This should eventually be extended to be a post-dominator tree
// traversal. Doing so would be pretty trivial.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dse"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/MallocHelper.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(NumFastStores, "Number of stores deleted");
STATISTIC(NumFastOther , "Number of other instrs removed");
namespace {
struct DSE : public FunctionPass {
TargetData *TD;
static char ID; // Pass identification, replacement for typeid
DSE() : FunctionPass(&ID) {}
virtual bool runOnFunction(Function &F) {
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
Changed |= runOnBasicBlock(*I);
return Changed;
}
bool runOnBasicBlock(BasicBlock &BB);
bool handleFreeWithNonTrivialDependency(Instruction *F, MemDepResult Dep);
bool handleEndBlock(BasicBlock &BB);
bool RemoveUndeadPointers(Value* Ptr, uint64_t killPointerSize,
BasicBlock::iterator& BBI,
SmallPtrSet<Value*, 64>& deadPointers);
void DeleteDeadInstruction(Instruction *I,
SmallPtrSet<Value*, 64> *deadPointers = 0);
// getAnalysisUsage - We require post dominance frontiers (aka Control
// Dependence Graph)
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<DominatorTree>();
AU.addRequired<AliasAnalysis>();
AU.addRequired<MemoryDependenceAnalysis>();
AU.addPreserved<DominatorTree>();
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<MemoryDependenceAnalysis>();
}
};
}
char DSE::ID = 0;
static RegisterPass<DSE> X("dse", "Dead Store Elimination");
FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
bool DSE::runOnBasicBlock(BasicBlock &BB) {
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
TD = getAnalysisIfAvailable<TargetData>();
bool MadeChange = false;
// Do a top-down walk on the BB.
for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
Instruction *Inst = BBI++;
// If we find a store or a free, get its memory dependence.
if (!isa<StoreInst>(Inst) && !isa<FreeInst>(Inst) && !isFreeCall(Inst))
continue;
// Don't molest volatile stores or do queries that will return "clobber".
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
if (SI->isVolatile())
continue;
MemDepResult InstDep = MD.getDependency(Inst);
// Ignore non-local stores.
// FIXME: cross-block DSE would be fun. :)
if (InstDep.isNonLocal()) continue;
// Handle frees whose dependencies are non-trivial.
if (isa<FreeInst>(Inst) || isFreeCall(Inst)) {
MadeChange |= handleFreeWithNonTrivialDependency(Inst, InstDep);
continue;
}
StoreInst *SI = cast<StoreInst>(Inst);
// If not a definite must-alias dependency, ignore it.
if (!InstDep.isDef())
continue;
// If this is a store-store dependence, then the previous store is dead so
// long as this store is at least as big as it.
if (StoreInst *DepStore = dyn_cast<StoreInst>(InstDep.getInst()))
if (TD &&
TD->getTypeStoreSize(DepStore->getOperand(0)->getType()) <=
TD->getTypeStoreSize(SI->getOperand(0)->getType())) {
// Delete the store and now-dead instructions that feed it.
DeleteDeadInstruction(DepStore);
NumFastStores++;
MadeChange = true;
// DeleteDeadInstruction can delete the current instruction in loop
// cases, reset BBI.
BBI = Inst;
if (BBI != BB.begin())
--BBI;
continue;
}
// If we're storing the same value back to a pointer that we just
// loaded from, then the store can be removed.
if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
SI->getOperand(0) == DepLoad) {
// DeleteDeadInstruction can delete the current instruction. Save BBI
// in case we need it.
WeakVH NextInst(BBI);
DeleteDeadInstruction(SI);
if (NextInst == 0) // Next instruction deleted.
BBI = BB.begin();
else if (BBI != BB.begin()) // Revisit this instruction if possible.
--BBI;
NumFastStores++;
MadeChange = true;
continue;
}
}
}
// If this block ends in a return, unwind, or unreachable, all allocas are
// dead at its end, which means stores to them are also dead.
if (BB.getTerminator()->getNumSuccessors() == 0)
MadeChange |= handleEndBlock(BB);
return MadeChange;
}
/// handleFreeWithNonTrivialDependency - Handle frees of entire structures whose
/// dependency is a store to a field of that structure.
bool DSE::handleFreeWithNonTrivialDependency(Instruction *F, MemDepResult Dep) {
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
StoreInst *Dependency = dyn_cast_or_null<StoreInst>(Dep.getInst());
if (!Dependency || Dependency->isVolatile())
return false;
Value *DepPointer = Dependency->getPointerOperand()->getUnderlyingObject();
// Check for aliasing.
Value* FreeVal = isa<FreeInst>(F) ? F->getOperand(0) : F->getOperand(1);
if (AA.alias(FreeVal, 1, DepPointer, 1) !=
AliasAnalysis::MustAlias)
return false;
// DCE instructions only used to calculate that store
DeleteDeadInstruction(Dependency);
NumFastStores++;
return true;
}
/// handleEndBlock - Remove dead stores to stack-allocated locations in the
/// function end block. Ex:
/// %A = alloca i32
/// ...
/// store i32 1, i32* %A
/// ret void
bool DSE::handleEndBlock(BasicBlock &BB) {
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
bool MadeChange = false;
// Pointers alloca'd in this function are dead in the end block
SmallPtrSet<Value*, 64> deadPointers;
// Find all of the alloca'd pointers in the entry block.
BasicBlock *Entry = BB.getParent()->begin();
for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
deadPointers.insert(AI);
// Treat byval arguments the same, stores to them are dead at the end of the
// function.
for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
AE = BB.getParent()->arg_end(); AI != AE; ++AI)
if (AI->hasByValAttr())
deadPointers.insert(AI);
// Scan the basic block backwards
for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
--BBI;
// If we find a store whose pointer is dead.
if (StoreInst* S = dyn_cast<StoreInst>(BBI)) {
if (!S->isVolatile()) {
// See through pointer-to-pointer bitcasts
Value* pointerOperand = S->getPointerOperand()->getUnderlyingObject();
// Alloca'd pointers or byval arguments (which are functionally like
// alloca's) are valid candidates for removal.
if (deadPointers.count(pointerOperand)) {
// DCE instructions only used to calculate that store.
BBI++;
DeleteDeadInstruction(S, &deadPointers);
NumFastStores++;
MadeChange = true;
}
}
continue;
}
// We can also remove memcpy's to local variables at the end of a function.
if (MemCpyInst *M = dyn_cast<MemCpyInst>(BBI)) {
Value *dest = M->getDest()->getUnderlyingObject();
if (deadPointers.count(dest)) {
BBI++;
DeleteDeadInstruction(M, &deadPointers);
NumFastOther++;
MadeChange = true;
continue;
}
// Because a memcpy is also a load, we can't skip it if we didn't remove
// it.
}
Value* killPointer = 0;
uint64_t killPointerSize = ~0UL;
// If we encounter a use of the pointer, it is no longer considered dead
if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
// However, if this load is unused and not volatile, we can go ahead and
// remove it, and not have to worry about it making our pointer undead!
if (L->use_empty() && !L->isVolatile()) {
BBI++;
DeleteDeadInstruction(L, &deadPointers);
NumFastOther++;
MadeChange = true;
continue;
}
killPointer = L->getPointerOperand();
} else if (VAArgInst* V = dyn_cast<VAArgInst>(BBI)) {
killPointer = V->getOperand(0);
} else if (isa<MemCpyInst>(BBI) &&
isa<ConstantInt>(cast<MemCpyInst>(BBI)->getLength())) {
killPointer = cast<MemCpyInst>(BBI)->getSource();
killPointerSize = cast<ConstantInt>(
cast<MemCpyInst>(BBI)->getLength())->getZExtValue();
} else if (AllocaInst* A = dyn_cast<AllocaInst>(BBI)) {
deadPointers.erase(A);
// Dead alloca's can be DCE'd when we reach them
if (A->use_empty()) {
BBI++;
DeleteDeadInstruction(A, &deadPointers);
NumFastOther++;
MadeChange = true;
}
continue;
} else if (CallSite::get(BBI).getInstruction() != 0) {
// If this call does not access memory, it can't
// be undeadifying any of our pointers.
CallSite CS = CallSite::get(BBI);
if (AA.doesNotAccessMemory(CS))
continue;
unsigned modRef = 0;
unsigned other = 0;
// Remove any pointers made undead by the call from the dead set
std::vector<Value*> dead;
for (SmallPtrSet<Value*, 64>::iterator I = deadPointers.begin(),
E = deadPointers.end(); I != E; ++I) {
// HACK: if we detect that our AA is imprecise, it's not
// worth it to scan the rest of the deadPointers set. Just
// assume that the AA will return ModRef for everything, and
// go ahead and bail.
if (modRef >= 16 && other == 0) {
deadPointers.clear();
return MadeChange;
}
// Get size information for the alloca
unsigned pointerSize = ~0U;
if (TD) {
if (AllocaInst* A = dyn_cast<AllocaInst>(*I)) {
if (ConstantInt* C = dyn_cast<ConstantInt>(A->getArraySize()))
pointerSize = C->getZExtValue() *
TD->getTypeAllocSize(A->getAllocatedType());
} else {
const PointerType* PT = cast<PointerType>(
cast<Argument>(*I)->getType());
pointerSize = TD->getTypeAllocSize(PT->getElementType());
}
}
// See if the call site touches it
AliasAnalysis::ModRefResult A = AA.getModRefInfo(CS, *I, pointerSize);
if (A == AliasAnalysis::ModRef)
modRef++;
else
other++;
if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
dead.push_back(*I);
}
for (std::vector<Value*>::iterator I = dead.begin(), E = dead.end();
I != E; ++I)
deadPointers.erase(*I);
continue;
} else if (isInstructionTriviallyDead(BBI)) {
// For any non-memory-affecting non-terminators, DCE them as we reach them
Instruction *Inst = BBI;
BBI++;
DeleteDeadInstruction(Inst, &deadPointers);
NumFastOther++;
MadeChange = true;
continue;
}
if (!killPointer)
continue;
killPointer = killPointer->getUnderlyingObject();
// Deal with undead pointers
MadeChange |= RemoveUndeadPointers(killPointer, killPointerSize, BBI,
deadPointers);
}
return MadeChange;
}
/// RemoveUndeadPointers - check for uses of a pointer that make it
/// undead when scanning for dead stores to alloca's.
bool DSE::RemoveUndeadPointers(Value* killPointer, uint64_t killPointerSize,
BasicBlock::iterator &BBI,
SmallPtrSet<Value*, 64>& deadPointers) {
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
// If the kill pointer can be easily reduced to an alloca,
// don't bother doing extraneous AA queries.
if (deadPointers.count(killPointer)) {
deadPointers.erase(killPointer);
return false;
}
// A global can't be in the dead pointer set.
if (isa<GlobalValue>(killPointer))
return false;
bool MadeChange = false;
SmallVector<Value*, 16> undead;
for (SmallPtrSet<Value*, 64>::iterator I = deadPointers.begin(),
E = deadPointers.end(); I != E; ++I) {
// Get size information for the alloca.
unsigned pointerSize = ~0U;
if (TD) {
if (AllocaInst* A = dyn_cast<AllocaInst>(*I)) {
if (ConstantInt* C = dyn_cast<ConstantInt>(A->getArraySize()))
pointerSize = C->getZExtValue() *
TD->getTypeAllocSize(A->getAllocatedType());
} else {
const PointerType* PT = cast<PointerType>(cast<Argument>(*I)->getType());
pointerSize = TD->getTypeAllocSize(PT->getElementType());
}
}
// See if this pointer could alias it
AliasAnalysis::AliasResult A = AA.alias(*I, pointerSize,
killPointer, killPointerSize);
// If it must-alias and a store, we can delete it
if (isa<StoreInst>(BBI) && A == AliasAnalysis::MustAlias) {
StoreInst* S = cast<StoreInst>(BBI);
// Remove it!
BBI++;
DeleteDeadInstruction(S, &deadPointers);
NumFastStores++;
MadeChange = true;
continue;
// Otherwise, it is undead
} else if (A != AliasAnalysis::NoAlias)
undead.push_back(*I);
}
for (SmallVector<Value*, 16>::iterator I = undead.begin(), E = undead.end();
I != E; ++I)
deadPointers.erase(*I);
return MadeChange;
}
/// DeleteDeadInstruction - Delete this instruction. Before we do, go through
/// and zero out all the operands of this instruction. If any of them become
/// dead, delete them and the computation tree that feeds them.
///
/// If ValueSet is non-null, remove any deleted instructions from it as well.
///
void DSE::DeleteDeadInstruction(Instruction *I,
SmallPtrSet<Value*, 64> *ValueSet) {
SmallVector<Instruction*, 32> NowDeadInsts;
NowDeadInsts.push_back(I);
--NumFastOther;
// Before we touch this instruction, remove it from memdep!
MemoryDependenceAnalysis &MDA = getAnalysis<MemoryDependenceAnalysis>();
while (!NowDeadInsts.empty()) {
Instruction *DeadInst = NowDeadInsts.back();
NowDeadInsts.pop_back();
++NumFastOther;
// This instruction is dead, zap it, in stages. Start by removing it from
// MemDep, which needs to know the operands and needs it to be in the
// function.
MDA.removeInstruction(DeadInst);
for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
Value *Op = DeadInst->getOperand(op);
DeadInst->setOperand(op, 0);
// If this operand just became dead, add it to the NowDeadInsts list.
if (!Op->use_empty()) continue;
if (Instruction *OpI = dyn_cast<Instruction>(Op))
if (isInstructionTriviallyDead(OpI))
NowDeadInsts.push_back(OpI);
}
DeadInst->eraseFromParent();
if (ValueSet) ValueSet->erase(DeadInst);
}
}