mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-21 00:32:23 +00:00
b1290a6cc4
Contributed by Lang Hames. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56959 91177308-0d34-0410-b5e6-96231b3b80d8
530 lines
16 KiB
C++
530 lines
16 KiB
C++
//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
|
|
// register allocator for LLVM. This allocator works by constructing a PBQP
|
|
// problem representing the register allocation problem under consideration,
|
|
// solving this using a PBQP solver, and mapping the solution back to a
|
|
// register assignment. If any variables are selected for spilling then spill
|
|
// code is inserted and the process repeated.
|
|
//
|
|
// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
|
|
// for register allocation. For more information on PBQP for register
|
|
// allocation see the following papers:
|
|
//
|
|
// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
|
|
// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
|
|
// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
|
|
//
|
|
// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
|
|
// architectures. In Proceedings of the Joint Conference on Languages,
|
|
// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
|
|
// NY, USA, 139-148.
|
|
//
|
|
// Author: Lang Hames
|
|
// Email: lhames@gmail.com
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// TODO:
|
|
//
|
|
// * Use of std::set in constructPBQPProblem destroys allocation order preference.
|
|
// Switch to an order preserving container.
|
|
//
|
|
// * Coalescing support.
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
|
|
#include "PBQP.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/RegAllocRegistry.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <memory>
|
|
#include <map>
|
|
#include <set>
|
|
#include <vector>
|
|
#include <limits>
|
|
|
|
using namespace llvm;
|
|
|
|
static RegisterRegAlloc
|
|
registerPBQPRepAlloc("pbqp", " PBQP register allocator",
|
|
createPBQPRegisterAllocator);
|
|
|
|
|
|
namespace {
|
|
|
|
//!
|
|
//! PBQP based allocators solve the register allocation problem by mapping
|
|
//! register allocation problems to Partitioned Boolean Quadratic
|
|
//! Programming problems.
|
|
class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
|
|
public:
|
|
|
|
static char ID;
|
|
|
|
//! Construct a PBQP register allocator.
|
|
PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
|
|
|
|
//! Return the pass name.
|
|
virtual const char* getPassName() const throw() {
|
|
return "PBQP Register Allocator";
|
|
}
|
|
|
|
//! PBQP analysis usage.
|
|
virtual void getAnalysisUsage(AnalysisUsage &au) const {
|
|
au.addRequired<LiveIntervals>();
|
|
au.addRequired<MachineLoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(au);
|
|
}
|
|
|
|
//! Perform register allocation
|
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
private:
|
|
typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
|
|
typedef std::vector<const LiveInterval*> Node2LIMap;
|
|
typedef std::vector<unsigned> AllowedSet;
|
|
typedef std::vector<AllowedSet> AllowedSetMap;
|
|
typedef std::set<unsigned> IgnoreSet;
|
|
|
|
MachineFunction *mf;
|
|
const TargetMachine *tm;
|
|
const TargetRegisterInfo *tri;
|
|
const TargetInstrInfo *tii;
|
|
const MachineLoopInfo *loopInfo;
|
|
MachineRegisterInfo *mri;
|
|
|
|
LiveIntervals *li;
|
|
VirtRegMap *vrm;
|
|
|
|
LI2NodeMap li2Node;
|
|
Node2LIMap node2LI;
|
|
AllowedSetMap allowedSets;
|
|
IgnoreSet ignoreSet;
|
|
|
|
//! Builds a PBQP cost vector.
|
|
template <typename Container>
|
|
PBQPVector* buildCostVector(const Container &allowed,
|
|
PBQPNum spillCost) const;
|
|
|
|
//! \brief Builds a PBQP interfernce matrix.
|
|
//!
|
|
//! @return Either a pointer to a non-zero PBQP matrix representing the
|
|
//! allocation option costs, or a null pointer for a zero matrix.
|
|
//!
|
|
//! Expects allowed sets for two interfering LiveIntervals. These allowed
|
|
//! sets should contain only allocable registers from the LiveInterval's
|
|
//! register class, with any interfering pre-colored registers removed.
|
|
template <typename Container>
|
|
PBQPMatrix* buildInterferenceMatrix(const Container &allowed1,
|
|
const Container &allowed2) const;
|
|
|
|
//!
|
|
//! Expects allowed sets for two potentially coalescable LiveIntervals,
|
|
//! and an estimated benefit due to coalescing. The allowed sets should
|
|
//! contain only allocable registers from the LiveInterval's register
|
|
//! classes, with any interfering pre-colored registers removed.
|
|
template <typename Container>
|
|
PBQPMatrix* buildCoalescingMatrix(const Container &allowed1,
|
|
const Container &allowed2,
|
|
PBQPNum cBenefit) const;
|
|
|
|
//! \brief Helper functior for constructInitialPBQPProblem().
|
|
//!
|
|
//! This function iterates over the Function we are about to allocate for
|
|
//! and computes spill costs.
|
|
void calcSpillCosts();
|
|
|
|
//! \brief Scans the MachineFunction being allocated to find coalescing
|
|
// opportunities.
|
|
void findCoalescingOpportunities();
|
|
|
|
//! \brief Constructs a PBQP problem representation of the register
|
|
//! allocation problem for this function.
|
|
//!
|
|
//! @return a PBQP solver object for the register allocation problem.
|
|
pbqp* constructPBQPProblem();
|
|
|
|
//! \brief Given a solved PBQP problem maps this solution back to a register
|
|
//! assignment.
|
|
bool mapPBQPToRegAlloc(pbqp *problem);
|
|
|
|
};
|
|
|
|
char PBQPRegAlloc::ID = 0;
|
|
}
|
|
|
|
|
|
template <typename Container>
|
|
PBQPVector* PBQPRegAlloc::buildCostVector(const Container &allowed,
|
|
PBQPNum spillCost) const {
|
|
|
|
// Allocate vector. Additional element (0th) used for spill option
|
|
PBQPVector *v = new PBQPVector(allowed.size() + 1);
|
|
|
|
(*v)[0] = spillCost;
|
|
|
|
return v;
|
|
}
|
|
|
|
template <typename Container>
|
|
PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
|
|
const Container &allowed1, const Container &allowed2) const {
|
|
|
|
typedef typename Container::const_iterator ContainerIterator;
|
|
|
|
// Construct a PBQP matrix representing the cost of allocation options. The
|
|
// rows and columns correspond to the allocation options for the two live
|
|
// intervals. Elements will be infinite where corresponding registers alias,
|
|
// since we cannot allocate aliasing registers to interfering live intervals.
|
|
// All other elements (non-aliasing combinations) will have zero cost. Note
|
|
// that the spill option (element 0,0) has zero cost, since we can allocate
|
|
// both intervals to memory safely (the cost for each individual allocation
|
|
// to memory is accounted for by the cost vectors for each live interval).
|
|
PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
|
|
|
|
// Assume this is a zero matrix until proven otherwise. Zero matrices occur
|
|
// between interfering live ranges with non-overlapping register sets (e.g.
|
|
// non-overlapping reg classes, or disjoint sets of allowed regs within the
|
|
// same class). The term "overlapping" is used advisedly: sets which do not
|
|
// intersect, but contain registers which alias, will have non-zero matrices.
|
|
// We optimize zero matrices away to improve solver speed.
|
|
bool isZeroMatrix = true;
|
|
|
|
|
|
// Row index. Starts at 1, since the 0th row is for the spill option, which
|
|
// is always zero.
|
|
unsigned ri = 1;
|
|
|
|
// Iterate over allowed sets, insert infinities where required.
|
|
for (ContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
|
|
a1Itr != a1End; ++a1Itr) {
|
|
|
|
// Column index, starts at 1 as for row index.
|
|
unsigned ci = 1;
|
|
unsigned reg1 = *a1Itr;
|
|
|
|
for (ContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
|
|
a2Itr != a2End; ++a2Itr) {
|
|
|
|
unsigned reg2 = *a2Itr;
|
|
|
|
// If the row/column regs are identical or alias insert an infinity.
|
|
if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
|
|
(*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity();
|
|
isZeroMatrix = false;
|
|
}
|
|
|
|
++ci;
|
|
}
|
|
|
|
++ri;
|
|
}
|
|
|
|
// If this turns out to be a zero matrix...
|
|
if (isZeroMatrix) {
|
|
// free it and return null.
|
|
delete m;
|
|
return 0;
|
|
}
|
|
|
|
// ...otherwise return the cost matrix.
|
|
return m;
|
|
}
|
|
|
|
void PBQPRegAlloc::calcSpillCosts() {
|
|
|
|
// Calculate the spill cost for each live interval by iterating over the
|
|
// function counting loads and stores, with loop depth taken into account.
|
|
for (MachineFunction::const_iterator bbItr = mf->begin(), bbEnd = mf->end();
|
|
bbItr != bbEnd; ++bbItr) {
|
|
|
|
const MachineBasicBlock *mbb = &*bbItr;
|
|
float loopDepth = loopInfo->getLoopDepth(mbb);
|
|
|
|
for (MachineBasicBlock::const_iterator
|
|
iItr = mbb->begin(), iEnd = mbb->end(); iItr != iEnd; ++iItr) {
|
|
|
|
const MachineInstr *instr = &*iItr;
|
|
|
|
for (unsigned opNo = 0; opNo < instr->getNumOperands(); ++opNo) {
|
|
|
|
const MachineOperand &mo = instr->getOperand(opNo);
|
|
|
|
// We're not interested in non-registers...
|
|
if (!mo.isRegister())
|
|
continue;
|
|
|
|
unsigned moReg = mo.getReg();
|
|
|
|
// ...Or invalid registers...
|
|
if (moReg == 0)
|
|
continue;
|
|
|
|
// ...Or physical registers...
|
|
if (TargetRegisterInfo::isPhysicalRegister(moReg))
|
|
continue;
|
|
|
|
assert ((mo.isUse() || mo.isDef()) &&
|
|
"Not a use, not a def, what is it?");
|
|
|
|
//... Just the virtual registers. We treat loads and stores as equal.
|
|
li->getInterval(moReg).weight += powf(10.0f, loopDepth);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pbqp* PBQPRegAlloc::constructPBQPProblem() {
|
|
|
|
typedef std::vector<const LiveInterval*> LIVector;
|
|
typedef std::set<unsigned> RegSet;
|
|
|
|
// These will store the physical & virtual intervals, respectively.
|
|
LIVector physIntervals, virtIntervals;
|
|
|
|
// Start by clearing the old node <-> live interval mappings & allowed sets
|
|
li2Node.clear();
|
|
node2LI.clear();
|
|
allowedSets.clear();
|
|
|
|
// Iterate over intervals classifying them as physical or virtual, and
|
|
// constructing live interval <-> node number mappings.
|
|
for (LiveIntervals::iterator itr = li->begin(), end = li->end();
|
|
itr != end; ++itr) {
|
|
|
|
if (itr->second->getNumValNums() != 0) {
|
|
DOUT << "Live range has " << itr->second->getNumValNums() << ": " << itr->second << "\n";
|
|
}
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
|
|
physIntervals.push_back(itr->second);
|
|
mri->setPhysRegUsed(itr->second->reg);
|
|
}
|
|
else {
|
|
|
|
// If we've allocated this virtual register interval a stack slot on a
|
|
// previous round then it's not an allocation candidate
|
|
if (ignoreSet.find(itr->first) != ignoreSet.end())
|
|
continue;
|
|
|
|
li2Node[itr->second] = node2LI.size();
|
|
node2LI.push_back(itr->second);
|
|
virtIntervals.push_back(itr->second);
|
|
}
|
|
}
|
|
|
|
// Early out if there's no regs to allocate for.
|
|
if (virtIntervals.empty())
|
|
return 0;
|
|
|
|
// Construct a PBQP solver for this problem
|
|
pbqp *solver = alloc_pbqp(virtIntervals.size());
|
|
|
|
// Resize allowedSets container appropriately.
|
|
allowedSets.resize(virtIntervals.size());
|
|
|
|
// Iterate over virtual register intervals to compute allowed sets...
|
|
for (unsigned node = 0; node < node2LI.size(); ++node) {
|
|
|
|
// Grab pointers to the interval and its register class.
|
|
const LiveInterval *li = node2LI[node];
|
|
const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
|
|
|
|
// Start by assuming all allocable registers in the class are allowed...
|
|
RegSet liAllowed(liRC->allocation_order_begin(*mf),
|
|
liRC->allocation_order_end(*mf));
|
|
|
|
// If this range is non-empty then eliminate the physical registers which
|
|
// overlap with this range, along with all their aliases.
|
|
if (!li->empty()) {
|
|
for (LIVector::iterator pItr = physIntervals.begin(),
|
|
pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
|
|
|
|
if (li->overlaps(**pItr)) {
|
|
|
|
unsigned pReg = (*pItr)->reg;
|
|
|
|
// Remove the overlapping reg...
|
|
liAllowed.erase(pReg);
|
|
|
|
const unsigned *aliasItr = tri->getAliasSet(pReg);
|
|
|
|
if (aliasItr != 0) {
|
|
// ...and its aliases.
|
|
for (; *aliasItr != 0; ++aliasItr) {
|
|
liAllowed.erase(*aliasItr);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Copy the allowed set into a member vector for use when constructing cost
|
|
// vectors & matrices, and mapping PBQP solutions back to assignments.
|
|
allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
|
|
|
|
// Set the spill cost to the interval weight, or epsilon if the
|
|
// interval weight is zero
|
|
PBQPNum spillCost = (li->weight != 0.0) ?
|
|
li->weight : std::numeric_limits<PBQPNum>::min();
|
|
|
|
// Build a cost vector for this interval.
|
|
add_pbqp_nodecosts(solver, node,
|
|
buildCostVector(allowedSets[node], spillCost));
|
|
|
|
}
|
|
|
|
// Now add the cost matrices...
|
|
for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
|
|
|
|
const LiveInterval *li = node2LI[node1];
|
|
|
|
if (li->empty())
|
|
continue;
|
|
|
|
// Test for live range overlaps and insert interference matrices.
|
|
for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
|
|
const LiveInterval *li2 = node2LI[node2];
|
|
|
|
if (li2->empty())
|
|
continue;
|
|
|
|
if (li->overlaps(*li2)) {
|
|
PBQPMatrix *m =
|
|
buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
|
|
|
|
if (m != 0) {
|
|
add_pbqp_edgecosts(solver, node1, node2, m);
|
|
delete m;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We're done, PBQP problem constructed - return it.
|
|
return solver;
|
|
}
|
|
|
|
bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
|
|
|
|
// Set to true if we have any spills
|
|
bool anotherRoundNeeded = false;
|
|
|
|
// Clear the existing allocation.
|
|
vrm->clearAllVirt();
|
|
|
|
// Iterate over the nodes mapping the PBQP solution to a register assignment.
|
|
for (unsigned node = 0; node < node2LI.size(); ++node) {
|
|
unsigned symReg = node2LI[node]->reg,
|
|
allocSelection = get_pbqp_solution(problem, node);
|
|
|
|
// If the PBQP solution is non-zero it's a physical register...
|
|
if (allocSelection != 0) {
|
|
// Get the physical reg, subtracting 1 to account for the spill option.
|
|
unsigned physReg = allowedSets[node][allocSelection - 1];
|
|
|
|
// Add to the virt reg map and update the used phys regs.
|
|
vrm->assignVirt2Phys(symReg, physReg);
|
|
mri->setPhysRegUsed(physReg);
|
|
}
|
|
// ...Otherwise it's a spill.
|
|
else {
|
|
|
|
// Make sure we ignore this virtual reg on the next round
|
|
// of allocation
|
|
ignoreSet.insert(node2LI[node]->reg);
|
|
|
|
float SSWeight;
|
|
|
|
// Insert spill ranges for this live range
|
|
SmallVector<LiveInterval*, 8> spillIs;
|
|
std::vector<LiveInterval*> newSpills =
|
|
li->addIntervalsForSpills(*node2LI[node], spillIs, loopInfo, *vrm,
|
|
SSWeight);
|
|
|
|
// We need another round if spill intervals were added.
|
|
anotherRoundNeeded |= !newSpills.empty();
|
|
}
|
|
}
|
|
|
|
return !anotherRoundNeeded;
|
|
}
|
|
|
|
bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
|
|
|
|
mf = &MF;
|
|
tm = &mf->getTarget();
|
|
tri = tm->getRegisterInfo();
|
|
mri = &mf->getRegInfo();
|
|
|
|
li = &getAnalysis<LiveIntervals>();
|
|
loopInfo = &getAnalysis<MachineLoopInfo>();
|
|
|
|
std::auto_ptr<VirtRegMap> vrmAutoPtr(new VirtRegMap(*mf));
|
|
vrm = vrmAutoPtr.get();
|
|
|
|
// Allocator main loop:
|
|
//
|
|
// * Map current regalloc problem to a PBQP problem
|
|
// * Solve the PBQP problem
|
|
// * Map the solution back to a register allocation
|
|
// * Spill if necessary
|
|
//
|
|
// This process is continued till no more spills are generated.
|
|
|
|
bool regallocComplete = false;
|
|
|
|
// Calculate spill costs for intervals
|
|
calcSpillCosts();
|
|
|
|
while (!regallocComplete) {
|
|
pbqp *problem = constructPBQPProblem();
|
|
|
|
// Fast out if there's no problem to solve.
|
|
if (problem == 0)
|
|
return true;
|
|
|
|
solve_pbqp(problem);
|
|
|
|
regallocComplete = mapPBQPToRegAlloc(problem);
|
|
|
|
free_pbqp(problem);
|
|
}
|
|
|
|
ignoreSet.clear();
|
|
|
|
std::auto_ptr<Spiller> spiller(createSpiller());
|
|
|
|
spiller->runOnMachineFunction(*mf, *vrm);
|
|
|
|
return true;
|
|
}
|
|
|
|
FunctionPass* llvm::createPBQPRegisterAllocator() {
|
|
return new PBQPRegAlloc();
|
|
}
|
|
|
|
|
|
#undef DEBUG_TYPE
|