mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-21 00:32:23 +00:00
4ab15535e7
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77964 91177308-0d34-0410-b5e6-96231b3b80d8
316 lines
12 KiB
TableGen
316 lines
12 KiB
TableGen
//===- X86CallingConv.td - Calling Conventions X86 32/64 ---*- tablegen -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This describes the calling conventions for the X86-32 and X86-64
|
|
// architectures.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CCIfSubtarget - Match if the current subtarget has a feature F.
|
|
class CCIfSubtarget<string F, CCAction A>
|
|
: CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Return Value Calling Conventions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Return-value conventions common to all X86 CC's.
|
|
def RetCC_X86Common : CallingConv<[
|
|
// Scalar values are returned in AX first, then DX. For i8, the ABI
|
|
// requires the values to be in AL and AH, however this code uses AL and DL
|
|
// instead. This is because using AH for the second register conflicts with
|
|
// the way LLVM does multiple return values -- a return of {i16,i8} would end
|
|
// up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
|
|
// for functions that return two i8 values are currently expected to pack the
|
|
// values into an i16 (which uses AX, and thus AL:AH).
|
|
CCIfType<[i8] , CCAssignToReg<[AL, DL]>>,
|
|
CCIfType<[i16], CCAssignToReg<[AX, DX]>>,
|
|
CCIfType<[i32], CCAssignToReg<[EAX, EDX]>>,
|
|
CCIfType<[i64], CCAssignToReg<[RAX, RDX]>>,
|
|
|
|
// Vector types are returned in XMM0 and XMM1, when they fit. XMMM2 and XMM3
|
|
// can only be used by ABI non-compliant code. If the target doesn't have XMM
|
|
// registers, it won't have vector types.
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
|
|
|
|
// MMX vector types are always returned in MM0. If the target doesn't have
|
|
// MM0, it doesn't support these vector types.
|
|
CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32], CCAssignToReg<[MM0]>>,
|
|
|
|
// Long double types are always returned in ST0 (even with SSE).
|
|
CCIfType<[f80], CCAssignToReg<[ST0, ST1]>>
|
|
]>;
|
|
|
|
// X86-32 C return-value convention.
|
|
def RetCC_X86_32_C : CallingConv<[
|
|
// The X86-32 calling convention returns FP values in ST0, unless marked
|
|
// with "inreg" (used here to distinguish one kind of reg from another,
|
|
// weirdly; this is really the sse-regparm calling convention) in which
|
|
// case they use XMM0, otherwise it is the same as the common X86 calling
|
|
// conv.
|
|
CCIfInReg<CCIfSubtarget<"hasSSE2()",
|
|
CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
|
|
CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>,
|
|
CCDelegateTo<RetCC_X86Common>
|
|
]>;
|
|
|
|
// X86-32 FastCC return-value convention.
|
|
def RetCC_X86_32_Fast : CallingConv<[
|
|
// The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
|
|
// SSE2, otherwise it is the the C calling conventions.
|
|
// This can happen when a float, 2 x float, or 3 x float vector is split by
|
|
// target lowering, and is returned in 1-3 sse regs.
|
|
CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
|
|
CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
|
|
CCDelegateTo<RetCC_X86Common>
|
|
]>;
|
|
|
|
// X86-64 C return-value convention.
|
|
def RetCC_X86_64_C : CallingConv<[
|
|
// The X86-64 calling convention always returns FP values in XMM0.
|
|
CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
|
|
CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
|
|
|
|
// MMX vector types are always returned in XMM0 except for v1i64 which is
|
|
// returned in RAX. This disagrees with ABI documentation but is bug
|
|
// compatible with gcc.
|
|
CCIfType<[v1i64], CCAssignToReg<[RAX]>>,
|
|
CCIfType<[v8i8, v4i16, v2i32, v2f32], CCAssignToReg<[XMM0, XMM1]>>,
|
|
CCDelegateTo<RetCC_X86Common>
|
|
]>;
|
|
|
|
// X86-Win64 C return-value convention.
|
|
def RetCC_X86_Win64_C : CallingConv<[
|
|
// The X86-Win64 calling convention always returns __m64 values in RAX.
|
|
CCIfType<[v8i8, v4i16, v2i32, v1i64], CCBitConvertToType<i64>>,
|
|
|
|
// And FP in XMM0 only.
|
|
CCIfType<[f32], CCAssignToReg<[XMM0]>>,
|
|
CCIfType<[f64], CCAssignToReg<[XMM0]>>,
|
|
|
|
// Otherwise, everything is the same as 'normal' X86-64 C CC.
|
|
CCDelegateTo<RetCC_X86_64_C>
|
|
]>;
|
|
|
|
|
|
// This is the root return-value convention for the X86-32 backend.
|
|
def RetCC_X86_32 : CallingConv<[
|
|
// If FastCC, use RetCC_X86_32_Fast.
|
|
CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
|
|
// Otherwise, use RetCC_X86_32_C.
|
|
CCDelegateTo<RetCC_X86_32_C>
|
|
]>;
|
|
|
|
// This is the root return-value convention for the X86-64 backend.
|
|
def RetCC_X86_64 : CallingConv<[
|
|
// Mingw64 and native Win64 use Win64 CC
|
|
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
|
|
|
|
// Otherwise, drop to normal X86-64 CC
|
|
CCDelegateTo<RetCC_X86_64_C>
|
|
]>;
|
|
|
|
// This is the return-value convention used for the entire X86 backend.
|
|
def RetCC_X86 : CallingConv<[
|
|
CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
|
|
CCDelegateTo<RetCC_X86_32>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86-64 Argument Calling Conventions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def CC_X86_64_C : CallingConv<[
|
|
// Handles byval parameters.
|
|
CCIfByVal<CCPassByVal<8, 8>>,
|
|
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in R10.
|
|
CCIfNest<CCAssignToReg<[R10]>>,
|
|
|
|
// The first 6 v1i64 vector arguments are passed in GPRs on Darwin.
|
|
CCIfType<[v1i64],
|
|
CCIfSubtarget<"isTargetDarwin()",
|
|
CCBitConvertToType<i64>>>,
|
|
|
|
// The first 6 integer arguments are passed in integer registers.
|
|
CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
|
|
CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
|
|
|
|
// The first 8 MMX (except for v1i64) vector arguments are passed in XMM
|
|
// registers on Darwin.
|
|
CCIfType<[v8i8, v4i16, v2i32, v2f32],
|
|
CCIfSubtarget<"isTargetDarwin()",
|
|
CCIfSubtarget<"hasSSE2()",
|
|
CCPromoteToType<v2i64>>>>,
|
|
|
|
// The first 8 FP/Vector arguments are passed in XMM registers.
|
|
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCIfSubtarget<"hasSSE1()",
|
|
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
|
|
|
|
// Integer/FP values get stored in stack slots that are 8 bytes in size and
|
|
// 8-byte aligned if there are no more registers to hold them.
|
|
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
|
|
|
|
// Long doubles get stack slots whose size and alignment depends on the
|
|
// subtarget.
|
|
CCIfType<[f80], CCAssignToStack<0, 0>>,
|
|
|
|
// Vectors get 16-byte stack slots that are 16-byte aligned.
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
|
|
|
|
// __m64 vectors get 8-byte stack slots that are 8-byte aligned.
|
|
CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32], CCAssignToStack<8, 8>>
|
|
]>;
|
|
|
|
// Calling convention used on Win64
|
|
def CC_X86_Win64_C : CallingConv<[
|
|
// FIXME: Handle byval stuff.
|
|
// FIXME: Handle varargs.
|
|
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in R10.
|
|
CCIfNest<CCAssignToReg<[R10]>>,
|
|
|
|
// 128 bit vectors are passed by pointer
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
|
|
|
|
// The first 4 MMX vector arguments are passed in GPRs.
|
|
CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32],
|
|
CCBitConvertToType<i64>>,
|
|
|
|
// The first 4 integer arguments are passed in integer registers.
|
|
CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
|
|
[XMM0, XMM1, XMM2, XMM3]>>,
|
|
CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ],
|
|
[XMM0, XMM1, XMM2, XMM3]>>,
|
|
|
|
// The first 4 FP/Vector arguments are passed in XMM registers.
|
|
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
|
|
[RCX , RDX , R8 , R9 ]>>,
|
|
|
|
// Integer/FP values get stored in stack slots that are 8 bytes in size and
|
|
// 8-byte aligned if there are no more registers to hold them.
|
|
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
|
|
|
|
// Long doubles get stack slots whose size and alignment depends on the
|
|
// subtarget.
|
|
CCIfType<[f80], CCAssignToStack<0, 0>>,
|
|
|
|
// __m64 vectors get 8-byte stack slots that are 8-byte aligned.
|
|
CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 8>>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 C Calling Convention
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
|
|
/// values are spilled on the stack, and the first 4 vector values go in XMM
|
|
/// regs.
|
|
def CC_X86_32_Common : CallingConv<[
|
|
// Handles byval parameters.
|
|
CCIfByVal<CCPassByVal<4, 4>>,
|
|
|
|
// The first 3 float or double arguments, if marked 'inreg' and if the call
|
|
// is not a vararg call and if SSE2 is available, are passed in SSE registers.
|
|
CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
|
|
CCIfSubtarget<"hasSSE2()",
|
|
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
|
|
|
|
// The first 3 __m64 (except for v1i64) vector arguments are passed in mmx
|
|
// registers if the call is not a vararg call.
|
|
CCIfNotVarArg<CCIfType<[v8i8, v4i16, v2i32, v2f32],
|
|
CCAssignToReg<[MM0, MM1, MM2]>>>,
|
|
|
|
// Integer/Float values get stored in stack slots that are 4 bytes in
|
|
// size and 4-byte aligned.
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
|
|
|
|
// Doubles get 8-byte slots that are 4-byte aligned.
|
|
CCIfType<[f64], CCAssignToStack<8, 4>>,
|
|
|
|
// Long doubles get slots whose size depends on the subtarget.
|
|
CCIfType<[f80], CCAssignToStack<0, 4>>,
|
|
|
|
// The first 4 SSE vector arguments are passed in XMM registers.
|
|
CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
|
|
|
|
// Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
|
|
|
|
// __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
|
|
// passed in the parameter area.
|
|
CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 4>>]>;
|
|
|
|
def CC_X86_32_C : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in ECX.
|
|
CCIfNest<CCAssignToReg<[ECX]>>,
|
|
|
|
// The first 3 integer arguments, if marked 'inreg' and if the call is not
|
|
// a vararg call, are passed in integer registers.
|
|
CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
|
|
|
|
// Otherwise, same as everything else.
|
|
CCDelegateTo<CC_X86_32_Common>
|
|
]>;
|
|
|
|
def CC_X86_32_FastCall : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in EAX.
|
|
CCIfNest<CCAssignToReg<[EAX]>>,
|
|
|
|
// The first 2 integer arguments are passed in ECX/EDX
|
|
CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
|
|
|
|
// Otherwise, same as everything else.
|
|
CCDelegateTo<CC_X86_32_Common>
|
|
]>;
|
|
|
|
def CC_X86_32_FastCC : CallingConv<[
|
|
// Handles byval parameters. Note that we can't rely on the delegation
|
|
// to CC_X86_32_Common for this because that happens after code that
|
|
// puts arguments in registers.
|
|
CCIfByVal<CCPassByVal<4, 4>>,
|
|
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in EAX.
|
|
CCIfNest<CCAssignToReg<[EAX]>>,
|
|
|
|
// The first 2 integer arguments are passed in ECX/EDX
|
|
CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
|
|
|
|
// The first 3 float or double arguments, if the call is not a vararg
|
|
// call and if SSE2 is available, are passed in SSE registers.
|
|
CCIfNotVarArg<CCIfType<[f32,f64],
|
|
CCIfSubtarget<"hasSSE2()",
|
|
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
|
|
|
|
// Doubles get 8-byte slots that are 8-byte aligned.
|
|
CCIfType<[f64], CCAssignToStack<8, 8>>,
|
|
|
|
// Otherwise, same as everything else.
|
|
CCDelegateTo<CC_X86_32_Common>
|
|
]>;
|