mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-23 15:29:51 +00:00
bb1fd5770d
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35235 91177308-0d34-0410-b5e6-96231b3b80d8
428 lines
15 KiB
C++
428 lines
15 KiB
C++
/*===-- UpgradeLexer.l - Scanner for 1.9 assembly files --------*- C++ -*--===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Reid Spencer and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the flex scanner for LLVM 1.9 assembly languages files.
|
|
//
|
|
//===----------------------------------------------------------------------===*/
|
|
|
|
%option prefix="Upgrade"
|
|
%option yylineno
|
|
%option nostdinit
|
|
%option never-interactive
|
|
%option batch
|
|
%option noyywrap
|
|
%option nodefault
|
|
%option 8bit
|
|
%option outfile="UpgradeLexer.cpp"
|
|
%option ecs
|
|
%option noreject
|
|
%option noyymore
|
|
|
|
%{
|
|
#include "UpgradeInternals.h"
|
|
#include "llvm/Module.h"
|
|
#include <list>
|
|
#include "UpgradeParser.h"
|
|
#include <cctype>
|
|
#include <cstdlib>
|
|
|
|
#define YY_INPUT(buf,result,max_size) \
|
|
{ \
|
|
if (LexInput->good() && !LexInput->eof()) { \
|
|
LexInput->read(buf,max_size); \
|
|
result = LexInput->gcount(); \
|
|
} else {\
|
|
result = YY_NULL; \
|
|
} \
|
|
}
|
|
|
|
#define YY_NEVER_INTERACTIVE 1
|
|
|
|
// Construct a token value for a non-obsolete token
|
|
#define RET_TOK(type, Enum, sym) \
|
|
Upgradelval.type = Enum; \
|
|
return sym
|
|
|
|
#define RET_TY(sym,NewTY,sign) \
|
|
Upgradelval.PrimType.T = NewTY; \
|
|
switch (sign) { \
|
|
case 0: Upgradelval.PrimType.S.makeSignless(); break; \
|
|
case 1: Upgradelval.PrimType.S.makeUnsigned(); break; \
|
|
case 2: Upgradelval.PrimType.S.makeSigned(); break; \
|
|
default: assert(0 && "Invalid sign kind"); break; \
|
|
}\
|
|
return sym
|
|
|
|
namespace llvm {
|
|
|
|
// TODO: All of the static identifiers are figured out by the lexer,
|
|
// these should be hashed to reduce the lexer size
|
|
|
|
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
|
|
// appropriate character. If AllowNull is set to false, a \00 value will cause
|
|
// an exception to be thrown.
|
|
//
|
|
// If AllowNull is set to true, the return value of the function points to the
|
|
// last character of the string in memory.
|
|
//
|
|
char *UnEscapeLexed(char *Buffer, bool AllowNull) {
|
|
char *BOut = Buffer;
|
|
for (char *BIn = Buffer; *BIn; ) {
|
|
if (BIn[0] == '\\' && isxdigit(BIn[1]) && isxdigit(BIn[2])) {
|
|
char Tmp = BIn[3]; BIn[3] = 0; // Terminate string
|
|
*BOut = (char)strtol(BIn+1, 0, 16); // Convert to number
|
|
if (!AllowNull && !*BOut)
|
|
error("String literal cannot accept \\00 escape!");
|
|
|
|
BIn[3] = Tmp; // Restore character
|
|
BIn += 3; // Skip over handled chars
|
|
++BOut;
|
|
} else {
|
|
*BOut++ = *BIn++;
|
|
}
|
|
}
|
|
|
|
return BOut;
|
|
}
|
|
|
|
// atoull - Convert an ascii string of decimal digits into the unsigned long
|
|
// long representation... this does not have to do input error checking,
|
|
// because we know that the input will be matched by a suitable regex...
|
|
//
|
|
static uint64_t atoull(const char *Buffer) {
|
|
uint64_t Result = 0;
|
|
for (; *Buffer; Buffer++) {
|
|
uint64_t OldRes = Result;
|
|
Result *= 10;
|
|
Result += *Buffer-'0';
|
|
if (Result < OldRes) // Uh, oh, overflow detected!!!
|
|
error("constant bigger than 64 bits detected!");
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
static uint64_t HexIntToVal(const char *Buffer) {
|
|
uint64_t Result = 0;
|
|
for (; *Buffer; ++Buffer) {
|
|
uint64_t OldRes = Result;
|
|
Result *= 16;
|
|
char C = *Buffer;
|
|
if (C >= '0' && C <= '9')
|
|
Result += C-'0';
|
|
else if (C >= 'A' && C <= 'F')
|
|
Result += C-'A'+10;
|
|
else if (C >= 'a' && C <= 'f')
|
|
Result += C-'a'+10;
|
|
|
|
if (Result < OldRes) // Uh, oh, overflow detected!!!
|
|
error("constant bigger than 64 bits detected!");
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
|
|
// HexToFP - Convert the ascii string in hexidecimal format to the floating
|
|
// point representation of it.
|
|
//
|
|
static double HexToFP(const char *Buffer) {
|
|
// Behave nicely in the face of C TBAA rules... see:
|
|
// http://www.nullstone.com/htmls/category/aliastyp.htm
|
|
union {
|
|
uint64_t UI;
|
|
double FP;
|
|
} UIntToFP;
|
|
UIntToFP.UI = HexIntToVal(Buffer);
|
|
|
|
assert(sizeof(double) == sizeof(uint64_t) &&
|
|
"Data sizes incompatible on this target!");
|
|
return UIntToFP.FP; // Cast Hex constant to double
|
|
}
|
|
|
|
|
|
} // End llvm namespace
|
|
|
|
using namespace llvm;
|
|
|
|
%}
|
|
|
|
|
|
|
|
/* Comments start with a ; and go till end of line */
|
|
Comment ;.*
|
|
|
|
/* Variable(Value) identifiers start with a % sign */
|
|
VarID [%@][-a-zA-Z$._][-a-zA-Z$._0-9]*
|
|
|
|
/* Label identifiers end with a colon */
|
|
Label [-a-zA-Z$._0-9]+:
|
|
QuoteLabel \"[^\"]+\":
|
|
|
|
/* Quoted names can contain any character except " and \ */
|
|
StringConstant @?\"[^\"]*\"
|
|
|
|
|
|
/* [PN]Integer: match positive and negative literal integer values that
|
|
* are preceeded by a '%' character. These represent unnamed variable slots.
|
|
*/
|
|
EPInteger %[0-9]+
|
|
ENInteger %-[0-9]+
|
|
|
|
|
|
/* E[PN]Integer: match positive and negative literal integer values */
|
|
PInteger [0-9]+
|
|
NInteger -[0-9]+
|
|
|
|
/* FPConstant - A Floating point constant.
|
|
*/
|
|
FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
|
|
|
|
/* HexFPConstant - Floating point constant represented in IEEE format as a
|
|
* hexadecimal number for when exponential notation is not precise enough.
|
|
*/
|
|
HexFPConstant 0x[0-9A-Fa-f]+
|
|
|
|
/* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing
|
|
* it to deal with 64 bit numbers.
|
|
*/
|
|
HexIntConstant [us]0x[0-9A-Fa-f]+
|
|
%%
|
|
|
|
{Comment} { /* Ignore comments for now */ }
|
|
|
|
begin { return BEGINTOK; }
|
|
end { return ENDTOK; }
|
|
true { return TRUETOK; }
|
|
false { return FALSETOK; }
|
|
declare { return DECLARE; }
|
|
global { return GLOBAL; }
|
|
constant { return CONSTANT; }
|
|
internal { return INTERNAL; }
|
|
linkonce { return LINKONCE; }
|
|
weak { return WEAK; }
|
|
appending { return APPENDING; }
|
|
dllimport { return DLLIMPORT; }
|
|
dllexport { return DLLEXPORT; }
|
|
extern_weak { return EXTERN_WEAK; }
|
|
uninitialized { return EXTERNAL; } /* Deprecated, turn into external */
|
|
external { return EXTERNAL; }
|
|
implementation { return IMPLEMENTATION; }
|
|
zeroinitializer { return ZEROINITIALIZER; }
|
|
\.\.\. { return DOTDOTDOT; }
|
|
undef { return UNDEF; }
|
|
null { return NULL_TOK; }
|
|
to { return TO; }
|
|
except { return EXCEPT; }
|
|
not { return NOT; } /* Deprecated, turned into XOR */
|
|
tail { return TAIL; }
|
|
target { return TARGET; }
|
|
triple { return TRIPLE; }
|
|
deplibs { return DEPLIBS; }
|
|
endian { return ENDIAN; }
|
|
pointersize { return POINTERSIZE; }
|
|
datalayout { return DATALAYOUT; }
|
|
little { return LITTLE; }
|
|
big { return BIG; }
|
|
volatile { return VOLATILE; }
|
|
align { return ALIGN; }
|
|
section { return SECTION; }
|
|
module { return MODULE; }
|
|
asm { return ASM_TOK; }
|
|
sideeffect { return SIDEEFFECT; }
|
|
|
|
cc { return CC_TOK; }
|
|
ccc { return CCC_TOK; }
|
|
csretcc { return CSRETCC_TOK; }
|
|
fastcc { return FASTCC_TOK; }
|
|
coldcc { return COLDCC_TOK; }
|
|
x86_stdcallcc { return X86_STDCALLCC_TOK; }
|
|
x86_fastcallcc { return X86_FASTCALLCC_TOK; }
|
|
|
|
sbyte { RET_TY(SBYTE, Type::Int8Ty, 2); }
|
|
ubyte { RET_TY(UBYTE, Type::Int8Ty, 1); }
|
|
i8 { RET_TY(UBYTE, Type::Int8Ty, 1); }
|
|
short { RET_TY(SHORT, Type::Int16Ty, 2); }
|
|
ushort { RET_TY(USHORT, Type::Int16Ty, 1); }
|
|
i16 { RET_TY(USHORT, Type::Int16Ty, 1); }
|
|
int { RET_TY(INT, Type::Int32Ty, 2); }
|
|
uint { RET_TY(UINT, Type::Int32Ty, 1); }
|
|
i32 { RET_TY(UINT, Type::Int32Ty, 1); }
|
|
long { RET_TY(LONG, Type::Int64Ty, 2); }
|
|
ulong { RET_TY(ULONG, Type::Int64Ty, 1); }
|
|
i64 { RET_TY(ULONG, Type::Int64Ty, 1); }
|
|
void { RET_TY(VOID, Type::VoidTy, 0); }
|
|
bool { RET_TY(BOOL, Type::Int1Ty, 1); }
|
|
i1 { RET_TY(BOOL, Type::Int1Ty, 1); }
|
|
float { RET_TY(FLOAT, Type::FloatTy, 0); }
|
|
double { RET_TY(DOUBLE, Type::DoubleTy,0); }
|
|
label { RET_TY(LABEL, Type::LabelTy, 0); }
|
|
type { return TYPE; }
|
|
opaque { return OPAQUE; }
|
|
|
|
add { RET_TOK(BinaryOpVal, AddOp, ADD); }
|
|
sub { RET_TOK(BinaryOpVal, SubOp, SUB); }
|
|
mul { RET_TOK(BinaryOpVal, MulOp, MUL); }
|
|
div { RET_TOK(BinaryOpVal, DivOp, DIV); }
|
|
udiv { RET_TOK(BinaryOpVal, UDivOp, UDIV); }
|
|
sdiv { RET_TOK(BinaryOpVal, SDivOp, SDIV); }
|
|
fdiv { RET_TOK(BinaryOpVal, FDivOp, FDIV); }
|
|
rem { RET_TOK(BinaryOpVal, RemOp, REM); }
|
|
urem { RET_TOK(BinaryOpVal, URemOp, UREM); }
|
|
srem { RET_TOK(BinaryOpVal, SRemOp, SREM); }
|
|
frem { RET_TOK(BinaryOpVal, FRemOp, FREM); }
|
|
and { RET_TOK(BinaryOpVal, AndOp, AND); }
|
|
or { RET_TOK(BinaryOpVal, OrOp , OR ); }
|
|
xor { RET_TOK(BinaryOpVal, XorOp, XOR); }
|
|
setne { RET_TOK(BinaryOpVal, SetNE, SETNE); }
|
|
seteq { RET_TOK(BinaryOpVal, SetEQ, SETEQ); }
|
|
setlt { RET_TOK(BinaryOpVal, SetLT, SETLT); }
|
|
setgt { RET_TOK(BinaryOpVal, SetGT, SETGT); }
|
|
setle { RET_TOK(BinaryOpVal, SetLE, SETLE); }
|
|
setge { RET_TOK(BinaryOpVal, SetGE, SETGE); }
|
|
shl { RET_TOK(BinaryOpVal, ShlOp, SHL); }
|
|
shr { RET_TOK(BinaryOpVal, ShrOp, SHR); }
|
|
lshr { RET_TOK(BinaryOpVal, LShrOp, LSHR); }
|
|
ashr { RET_TOK(BinaryOpVal, AShrOp, ASHR); }
|
|
|
|
icmp { RET_TOK(OtherOpVal, ICmpOp, ICMP); }
|
|
fcmp { RET_TOK(OtherOpVal, FCmpOp, FCMP); }
|
|
|
|
eq { return EQ; }
|
|
ne { return NE; }
|
|
slt { return SLT; }
|
|
sgt { return SGT; }
|
|
sle { return SLE; }
|
|
sge { return SGE; }
|
|
ult { return ULT; }
|
|
ugt { return UGT; }
|
|
ule { return ULE; }
|
|
uge { return UGE; }
|
|
oeq { return OEQ; }
|
|
one { return ONE; }
|
|
olt { return OLT; }
|
|
ogt { return OGT; }
|
|
ole { return OLE; }
|
|
oge { return OGE; }
|
|
ord { return ORD; }
|
|
uno { return UNO; }
|
|
ueq { return UEQ; }
|
|
une { return UNE; }
|
|
|
|
phi { RET_TOK(OtherOpVal, PHIOp, PHI_TOK); }
|
|
call { RET_TOK(OtherOpVal, CallOp, CALL); }
|
|
cast { RET_TOK(CastOpVal, CastOp, CAST); }
|
|
trunc { RET_TOK(CastOpVal, TruncOp, TRUNC); }
|
|
zext { RET_TOK(CastOpVal, ZExtOp , ZEXT); }
|
|
sext { RET_TOK(CastOpVal, SExtOp, SEXT); }
|
|
fptrunc { RET_TOK(CastOpVal, FPTruncOp, FPTRUNC); }
|
|
fpext { RET_TOK(CastOpVal, FPExtOp, FPEXT); }
|
|
fptoui { RET_TOK(CastOpVal, FPToUIOp, FPTOUI); }
|
|
fptosi { RET_TOK(CastOpVal, FPToSIOp, FPTOSI); }
|
|
uitofp { RET_TOK(CastOpVal, UIToFPOp, UITOFP); }
|
|
sitofp { RET_TOK(CastOpVal, SIToFPOp, SITOFP); }
|
|
ptrtoint { RET_TOK(CastOpVal, PtrToIntOp, PTRTOINT); }
|
|
inttoptr { RET_TOK(CastOpVal, IntToPtrOp, INTTOPTR); }
|
|
bitcast { RET_TOK(CastOpVal, BitCastOp, BITCAST); }
|
|
select { RET_TOK(OtherOpVal, SelectOp, SELECT); }
|
|
vanext { return VANEXT_old; }
|
|
vaarg { return VAARG_old; }
|
|
va_arg { RET_TOK(OtherOpVal, VAArg , VAARG); }
|
|
ret { RET_TOK(TermOpVal, RetOp, RET); }
|
|
br { RET_TOK(TermOpVal, BrOp, BR); }
|
|
switch { RET_TOK(TermOpVal, SwitchOp, SWITCH); }
|
|
invoke { RET_TOK(TermOpVal, InvokeOp, INVOKE); }
|
|
unwind { return UNWIND; }
|
|
unreachable { RET_TOK(TermOpVal, UnreachableOp, UNREACHABLE); }
|
|
|
|
malloc { RET_TOK(MemOpVal, MallocOp, MALLOC); }
|
|
alloca { RET_TOK(MemOpVal, AllocaOp, ALLOCA); }
|
|
free { RET_TOK(MemOpVal, FreeOp, FREE); }
|
|
load { RET_TOK(MemOpVal, LoadOp, LOAD); }
|
|
store { RET_TOK(MemOpVal, StoreOp, STORE); }
|
|
getelementptr { RET_TOK(MemOpVal, GetElementPtrOp, GETELEMENTPTR); }
|
|
|
|
extractelement { RET_TOK(OtherOpVal, ExtractElementOp, EXTRACTELEMENT); }
|
|
insertelement { RET_TOK(OtherOpVal, InsertElementOp, INSERTELEMENT); }
|
|
shufflevector { RET_TOK(OtherOpVal, ShuffleVectorOp, SHUFFLEVECTOR); }
|
|
|
|
|
|
{VarID} {
|
|
UnEscapeLexed(yytext+1);
|
|
Upgradelval.StrVal = strdup(yytext+1); // Skip %
|
|
return VAR_ID;
|
|
}
|
|
{Label} {
|
|
yytext[strlen(yytext)-1] = 0; // nuke colon
|
|
UnEscapeLexed(yytext);
|
|
Upgradelval.StrVal = strdup(yytext);
|
|
return LABELSTR;
|
|
}
|
|
{QuoteLabel} {
|
|
yytext[strlen(yytext)-2] = 0; // nuke colon, end quote
|
|
UnEscapeLexed(yytext+1);
|
|
Upgradelval.StrVal = strdup(yytext+1);
|
|
return LABELSTR;
|
|
}
|
|
|
|
{StringConstant} { // Note that we cannot unescape a string constant here! The
|
|
// string constant might contain a \00 which would not be
|
|
// understood by the string stuff. It is valid to make a
|
|
// [sbyte] c"Hello World\00" constant, for example.
|
|
//
|
|
yytext[strlen(yytext)-1] = 0; // nuke end quote
|
|
Upgradelval.StrVal = strdup(yytext+1); // Nuke start quote
|
|
return STRINGCONSTANT;
|
|
}
|
|
|
|
|
|
{PInteger} { Upgradelval.UInt64Val = atoull(yytext); return EUINT64VAL; }
|
|
{NInteger} {
|
|
uint64_t Val = atoull(yytext+1);
|
|
// +1: we have bigger negative range
|
|
if (Val > (uint64_t)INT64_MAX+1)
|
|
error("Constant too large for signed 64 bits!");
|
|
Upgradelval.SInt64Val = -Val;
|
|
return ESINT64VAL;
|
|
}
|
|
{HexIntConstant} {
|
|
Upgradelval.UInt64Val = HexIntToVal(yytext+3);
|
|
return yytext[0] == 's' ? ESINT64VAL : EUINT64VAL;
|
|
}
|
|
|
|
{EPInteger} {
|
|
uint64_t Val = atoull(yytext+1);
|
|
if ((unsigned)Val != Val)
|
|
error("Invalid value number (too large)!");
|
|
Upgradelval.UIntVal = unsigned(Val);
|
|
return UINTVAL;
|
|
}
|
|
{ENInteger} {
|
|
uint64_t Val = atoull(yytext+2);
|
|
// +1: we have bigger negative range
|
|
if (Val > (uint64_t)INT32_MAX+1)
|
|
error("Constant too large for signed 32 bits!");
|
|
Upgradelval.SIntVal = (int)-Val;
|
|
return SINTVAL;
|
|
}
|
|
|
|
{FPConstant} { Upgradelval.FPVal = atof(yytext); return FPVAL; }
|
|
{HexFPConstant} { Upgradelval.FPVal = HexToFP(yytext); return FPVAL; }
|
|
|
|
<<EOF>> {
|
|
/* Make sure to free the internal buffers for flex when we are
|
|
* done reading our input!
|
|
*/
|
|
yy_delete_buffer(YY_CURRENT_BUFFER);
|
|
return EOF;
|
|
}
|
|
|
|
[ \r\t\n] { /* Ignore whitespace */ }
|
|
. { return yytext[0]; }
|
|
|
|
%%
|