llvm-6502/include/llvm/Type.h
Dan Gohman ce16339930 The powers that be have decided that LLVM IR should now support 16-bit
"half precision" floating-point with a first-class type.

This patch adds basic IR support (but not codegen support).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146786 91177308-0d34-0410-b5e6-96231b3b80d8
2011-12-17 00:04:22 +00:00

412 lines
16 KiB
C++

//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the Type class. For more "Type"
// stuff, look in DerivedTypes.h.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TYPE_H
#define LLVM_TYPE_H
#include "llvm/Support/Casting.h"
namespace llvm {
class PointerType;
class IntegerType;
class raw_ostream;
class Module;
class LLVMContext;
class LLVMContextImpl;
template<class GraphType> struct GraphTraits;
/// The instances of the Type class are immutable: once they are created,
/// they are never changed. Also note that only one instance of a particular
/// type is ever created. Thus seeing if two types are equal is a matter of
/// doing a trivial pointer comparison. To enforce that no two equal instances
/// are created, Type instances can only be created via static factory methods
/// in class Type and in derived classes. Once allocated, Types are never
/// free'd.
///
class Type {
public:
//===--------------------------------------------------------------------===//
/// Definitions of all of the base types for the Type system. Based on this
/// value, you can cast to a class defined in DerivedTypes.h.
/// Note: If you add an element to this, you need to add an element to the
/// Type::getPrimitiveType function, or else things will break!
/// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
///
enum TypeID {
// PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
VoidTyID = 0, ///< 0: type with no size
HalfTyID, ///< 1: 32-bit floating point type
FloatTyID, ///< 2: 32-bit floating point type
DoubleTyID, ///< 3: 64-bit floating point type
X86_FP80TyID, ///< 4: 80-bit floating point type (X87)
FP128TyID, ///< 5: 128-bit floating point type (112-bit mantissa)
PPC_FP128TyID, ///< 6: 128-bit floating point type (two 64-bits, PowerPC)
LabelTyID, ///< 7: Labels
MetadataTyID, ///< 8: Metadata
X86_MMXTyID, ///< 9: MMX vectors (64 bits, X86 specific)
// Derived types... see DerivedTypes.h file.
// Make sure FirstDerivedTyID stays up to date!
IntegerTyID, ///< 10: Arbitrary bit width integers
FunctionTyID, ///< 11: Functions
StructTyID, ///< 12: Structures
ArrayTyID, ///< 13: Arrays
PointerTyID, ///< 14: Pointers
VectorTyID, ///< 15: SIMD 'packed' format, or other vector type
NumTypeIDs, // Must remain as last defined ID
LastPrimitiveTyID = X86_MMXTyID,
FirstDerivedTyID = IntegerTyID
};
private:
/// Context - This refers to the LLVMContext in which this type was uniqued.
LLVMContext &Context;
TypeID ID : 8; // The current base type of this type.
unsigned SubclassData : 24; // Space for subclasses to store data
protected:
friend class LLVMContextImpl;
explicit Type(LLVMContext &C, TypeID tid)
: Context(C), ID(tid), SubclassData(0),
NumContainedTys(0), ContainedTys(0) {}
~Type() {}
unsigned getSubclassData() const { return SubclassData; }
void setSubclassData(unsigned val) {
SubclassData = val;
// Ensure we don't have any accidental truncation.
assert(SubclassData == val && "Subclass data too large for field");
}
/// NumContainedTys - Keeps track of how many Type*'s there are in the
/// ContainedTys list.
unsigned NumContainedTys;
/// ContainedTys - A pointer to the array of Types contained by this Type.
/// For example, this includes the arguments of a function type, the elements
/// of a structure, the pointee of a pointer, the element type of an array,
/// etc. This pointer may be 0 for types that don't contain other types
/// (Integer, Double, Float).
Type * const *ContainedTys;
public:
void print(raw_ostream &O) const;
void dump() const;
/// getContext - Return the LLVMContext in which this type was uniqued.
LLVMContext &getContext() const { return Context; }
//===--------------------------------------------------------------------===//
// Accessors for working with types.
//
/// getTypeID - Return the type id for the type. This will return one
/// of the TypeID enum elements defined above.
///
TypeID getTypeID() const { return ID; }
/// isVoidTy - Return true if this is 'void'.
bool isVoidTy() const { return ID == VoidTyID; }
/// isHalfTy - Return true if this is 'half', a 16-bit IEEE fp type.
bool isHalfTy() const { return ID == HalfTyID; }
/// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
bool isFloatTy() const { return ID == FloatTyID; }
/// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
bool isDoubleTy() const { return ID == DoubleTyID; }
/// isX86_FP80Ty - Return true if this is x86 long double.
bool isX86_FP80Ty() const { return ID == X86_FP80TyID; }
/// isFP128Ty - Return true if this is 'fp128'.
bool isFP128Ty() const { return ID == FP128TyID; }
/// isPPC_FP128Ty - Return true if this is powerpc long double.
bool isPPC_FP128Ty() const { return ID == PPC_FP128TyID; }
/// isFloatingPointTy - Return true if this is one of the five floating point
/// types
bool isFloatingPointTy() const {
return ID == HalfTyID || ID == FloatTyID || ID == DoubleTyID ||
ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID;
}
/// isX86_MMXTy - Return true if this is X86 MMX.
bool isX86_MMXTy() const { return ID == X86_MMXTyID; }
/// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
///
bool isFPOrFPVectorTy() const;
/// isLabelTy - Return true if this is 'label'.
bool isLabelTy() const { return ID == LabelTyID; }
/// isMetadataTy - Return true if this is 'metadata'.
bool isMetadataTy() const { return ID == MetadataTyID; }
/// isIntegerTy - True if this is an instance of IntegerType.
///
bool isIntegerTy() const { return ID == IntegerTyID; }
/// isIntegerTy - Return true if this is an IntegerType of the given width.
bool isIntegerTy(unsigned Bitwidth) const;
/// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
/// integer types.
///
bool isIntOrIntVectorTy() const;
/// isFunctionTy - True if this is an instance of FunctionType.
///
bool isFunctionTy() const { return ID == FunctionTyID; }
/// isStructTy - True if this is an instance of StructType.
///
bool isStructTy() const { return ID == StructTyID; }
/// isArrayTy - True if this is an instance of ArrayType.
///
bool isArrayTy() const { return ID == ArrayTyID; }
/// isPointerTy - True if this is an instance of PointerType.
///
bool isPointerTy() const { return ID == PointerTyID; }
/// isVectorTy - True if this is an instance of VectorType.
///
bool isVectorTy() const { return ID == VectorTyID; }
/// canLosslesslyBitCastTo - Return true if this type could be converted
/// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
/// are valid for types of the same size only where no re-interpretation of
/// the bits is done.
/// @brief Determine if this type could be losslessly bitcast to Ty
bool canLosslesslyBitCastTo(Type *Ty) const;
/// isEmptyTy - Return true if this type is empty, that is, it has no
/// elements or all its elements are empty.
bool isEmptyTy() const;
/// Here are some useful little methods to query what type derived types are
/// Note that all other types can just compare to see if this == Type::xxxTy;
///
bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
bool isDerivedType() const { return ID >= FirstDerivedTyID; }
/// isFirstClassType - Return true if the type is "first class", meaning it
/// is a valid type for a Value.
///
bool isFirstClassType() const {
return ID != FunctionTyID && ID != VoidTyID;
}
/// isSingleValueType - Return true if the type is a valid type for a
/// register in codegen. This includes all first-class types except struct
/// and array types.
///
bool isSingleValueType() const {
return (ID != VoidTyID && isPrimitiveType()) ||
ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID;
}
/// isAggregateType - Return true if the type is an aggregate type. This
/// means it is valid as the first operand of an insertvalue or
/// extractvalue instruction. This includes struct and array types, but
/// does not include vector types.
///
bool isAggregateType() const {
return ID == StructTyID || ID == ArrayTyID;
}
/// isSized - Return true if it makes sense to take the size of this type. To
/// get the actual size for a particular target, it is reasonable to use the
/// TargetData subsystem to do this.
///
bool isSized() const {
// If it's a primitive, it is always sized.
if (ID == IntegerTyID || isFloatingPointTy() || ID == PointerTyID ||
ID == X86_MMXTyID)
return true;
// If it is not something that can have a size (e.g. a function or label),
// it doesn't have a size.
if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID)
return false;
// Otherwise we have to try harder to decide.
return isSizedDerivedType();
}
/// getPrimitiveSizeInBits - Return the basic size of this type if it is a
/// primitive type. These are fixed by LLVM and are not target dependent.
/// This will return zero if the type does not have a size or is not a
/// primitive type.
///
/// Note that this may not reflect the size of memory allocated for an
/// instance of the type or the number of bytes that are written when an
/// instance of the type is stored to memory. The TargetData class provides
/// additional query functions to provide this information.
///
unsigned getPrimitiveSizeInBits() const;
/// getScalarSizeInBits - If this is a vector type, return the
/// getPrimitiveSizeInBits value for the element type. Otherwise return the
/// getPrimitiveSizeInBits value for this type.
unsigned getScalarSizeInBits();
/// getFPMantissaWidth - Return the width of the mantissa of this type. This
/// is only valid on floating point types. If the FP type does not
/// have a stable mantissa (e.g. ppc long double), this method returns -1.
int getFPMantissaWidth() const;
/// getScalarType - If this is a vector type, return the element type,
/// otherwise return 'this'.
Type *getScalarType();
/// getNumElements - If this is a vector type, return the number of elements,
/// otherwise return zero.
unsigned getNumElements();
//===--------------------------------------------------------------------===//
// Type Iteration support.
//
typedef Type * const *subtype_iterator;
subtype_iterator subtype_begin() const { return ContainedTys; }
subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
/// getContainedType - This method is used to implement the type iterator
/// (defined a the end of the file). For derived types, this returns the
/// types 'contained' in the derived type.
///
Type *getContainedType(unsigned i) const {
assert(i < NumContainedTys && "Index out of range!");
return ContainedTys[i];
}
/// getNumContainedTypes - Return the number of types in the derived type.
///
unsigned getNumContainedTypes() const { return NumContainedTys; }
//===--------------------------------------------------------------------===//
// Static members exported by the Type class itself. Useful for getting
// instances of Type.
//
/// getPrimitiveType - Return a type based on an identifier.
static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
//===--------------------------------------------------------------------===//
// These are the builtin types that are always available.
//
static Type *getVoidTy(LLVMContext &C);
static Type *getLabelTy(LLVMContext &C);
static Type *getHalfTy(LLVMContext &C);
static Type *getFloatTy(LLVMContext &C);
static Type *getDoubleTy(LLVMContext &C);
static Type *getMetadataTy(LLVMContext &C);
static Type *getX86_FP80Ty(LLVMContext &C);
static Type *getFP128Ty(LLVMContext &C);
static Type *getPPC_FP128Ty(LLVMContext &C);
static Type *getX86_MMXTy(LLVMContext &C);
static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
static IntegerType *getInt1Ty(LLVMContext &C);
static IntegerType *getInt8Ty(LLVMContext &C);
static IntegerType *getInt16Ty(LLVMContext &C);
static IntegerType *getInt32Ty(LLVMContext &C);
static IntegerType *getInt64Ty(LLVMContext &C);
//===--------------------------------------------------------------------===//
// Convenience methods for getting pointer types with one of the above builtin
// types as pointee.
//
static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Type *) { return true; }
/// getPointerTo - Return a pointer to the current type. This is equivalent
/// to PointerType::get(Foo, AddrSpace).
PointerType *getPointerTo(unsigned AddrSpace = 0);
private:
/// isSizedDerivedType - Derived types like structures and arrays are sized
/// iff all of the members of the type are sized as well. Since asking for
/// their size is relatively uncommon, move this operation out of line.
bool isSizedDerivedType() const;
};
// Printing of types.
static inline raw_ostream &operator<<(raw_ostream &OS, Type &T) {
T.print(OS);
return OS;
}
// allow isa<PointerType>(x) to work without DerivedTypes.h included.
template <> struct isa_impl<PointerType, Type> {
static inline bool doit(const Type &Ty) {
return Ty.getTypeID() == Type::PointerTyID;
}
};
//===----------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a type as a
// graph of sub types.
template <> struct GraphTraits<Type*> {
typedef Type NodeType;
typedef Type::subtype_iterator ChildIteratorType;
static inline NodeType *getEntryNode(Type *T) { return T; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->subtype_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->subtype_end();
}
};
template <> struct GraphTraits<const Type*> {
typedef const Type NodeType;
typedef Type::subtype_iterator ChildIteratorType;
static inline NodeType *getEntryNode(NodeType *T) { return T; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->subtype_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->subtype_end();
}
};
} // End llvm namespace
#endif