mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-02 07:11:49 +00:00
ce16339930
"half precision" floating-point with a first-class type. This patch adds basic IR support (but not codegen support). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146786 91177308-0d34-0410-b5e6-96231b3b80d8
412 lines
16 KiB
C++
412 lines
16 KiB
C++
//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the declaration of the Type class. For more "Type"
|
|
// stuff, look in DerivedTypes.h.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TYPE_H
|
|
#define LLVM_TYPE_H
|
|
|
|
#include "llvm/Support/Casting.h"
|
|
|
|
namespace llvm {
|
|
|
|
class PointerType;
|
|
class IntegerType;
|
|
class raw_ostream;
|
|
class Module;
|
|
class LLVMContext;
|
|
class LLVMContextImpl;
|
|
template<class GraphType> struct GraphTraits;
|
|
|
|
/// The instances of the Type class are immutable: once they are created,
|
|
/// they are never changed. Also note that only one instance of a particular
|
|
/// type is ever created. Thus seeing if two types are equal is a matter of
|
|
/// doing a trivial pointer comparison. To enforce that no two equal instances
|
|
/// are created, Type instances can only be created via static factory methods
|
|
/// in class Type and in derived classes. Once allocated, Types are never
|
|
/// free'd.
|
|
///
|
|
class Type {
|
|
public:
|
|
//===--------------------------------------------------------------------===//
|
|
/// Definitions of all of the base types for the Type system. Based on this
|
|
/// value, you can cast to a class defined in DerivedTypes.h.
|
|
/// Note: If you add an element to this, you need to add an element to the
|
|
/// Type::getPrimitiveType function, or else things will break!
|
|
/// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
|
|
///
|
|
enum TypeID {
|
|
// PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
|
|
VoidTyID = 0, ///< 0: type with no size
|
|
HalfTyID, ///< 1: 32-bit floating point type
|
|
FloatTyID, ///< 2: 32-bit floating point type
|
|
DoubleTyID, ///< 3: 64-bit floating point type
|
|
X86_FP80TyID, ///< 4: 80-bit floating point type (X87)
|
|
FP128TyID, ///< 5: 128-bit floating point type (112-bit mantissa)
|
|
PPC_FP128TyID, ///< 6: 128-bit floating point type (two 64-bits, PowerPC)
|
|
LabelTyID, ///< 7: Labels
|
|
MetadataTyID, ///< 8: Metadata
|
|
X86_MMXTyID, ///< 9: MMX vectors (64 bits, X86 specific)
|
|
|
|
// Derived types... see DerivedTypes.h file.
|
|
// Make sure FirstDerivedTyID stays up to date!
|
|
IntegerTyID, ///< 10: Arbitrary bit width integers
|
|
FunctionTyID, ///< 11: Functions
|
|
StructTyID, ///< 12: Structures
|
|
ArrayTyID, ///< 13: Arrays
|
|
PointerTyID, ///< 14: Pointers
|
|
VectorTyID, ///< 15: SIMD 'packed' format, or other vector type
|
|
|
|
NumTypeIDs, // Must remain as last defined ID
|
|
LastPrimitiveTyID = X86_MMXTyID,
|
|
FirstDerivedTyID = IntegerTyID
|
|
};
|
|
|
|
private:
|
|
/// Context - This refers to the LLVMContext in which this type was uniqued.
|
|
LLVMContext &Context;
|
|
|
|
TypeID ID : 8; // The current base type of this type.
|
|
unsigned SubclassData : 24; // Space for subclasses to store data
|
|
|
|
protected:
|
|
friend class LLVMContextImpl;
|
|
explicit Type(LLVMContext &C, TypeID tid)
|
|
: Context(C), ID(tid), SubclassData(0),
|
|
NumContainedTys(0), ContainedTys(0) {}
|
|
~Type() {}
|
|
|
|
unsigned getSubclassData() const { return SubclassData; }
|
|
void setSubclassData(unsigned val) {
|
|
SubclassData = val;
|
|
// Ensure we don't have any accidental truncation.
|
|
assert(SubclassData == val && "Subclass data too large for field");
|
|
}
|
|
|
|
/// NumContainedTys - Keeps track of how many Type*'s there are in the
|
|
/// ContainedTys list.
|
|
unsigned NumContainedTys;
|
|
|
|
/// ContainedTys - A pointer to the array of Types contained by this Type.
|
|
/// For example, this includes the arguments of a function type, the elements
|
|
/// of a structure, the pointee of a pointer, the element type of an array,
|
|
/// etc. This pointer may be 0 for types that don't contain other types
|
|
/// (Integer, Double, Float).
|
|
Type * const *ContainedTys;
|
|
|
|
public:
|
|
void print(raw_ostream &O) const;
|
|
void dump() const;
|
|
|
|
/// getContext - Return the LLVMContext in which this type was uniqued.
|
|
LLVMContext &getContext() const { return Context; }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Accessors for working with types.
|
|
//
|
|
|
|
/// getTypeID - Return the type id for the type. This will return one
|
|
/// of the TypeID enum elements defined above.
|
|
///
|
|
TypeID getTypeID() const { return ID; }
|
|
|
|
/// isVoidTy - Return true if this is 'void'.
|
|
bool isVoidTy() const { return ID == VoidTyID; }
|
|
|
|
/// isHalfTy - Return true if this is 'half', a 16-bit IEEE fp type.
|
|
bool isHalfTy() const { return ID == HalfTyID; }
|
|
|
|
/// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
|
|
bool isFloatTy() const { return ID == FloatTyID; }
|
|
|
|
/// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
|
|
bool isDoubleTy() const { return ID == DoubleTyID; }
|
|
|
|
/// isX86_FP80Ty - Return true if this is x86 long double.
|
|
bool isX86_FP80Ty() const { return ID == X86_FP80TyID; }
|
|
|
|
/// isFP128Ty - Return true if this is 'fp128'.
|
|
bool isFP128Ty() const { return ID == FP128TyID; }
|
|
|
|
/// isPPC_FP128Ty - Return true if this is powerpc long double.
|
|
bool isPPC_FP128Ty() const { return ID == PPC_FP128TyID; }
|
|
|
|
/// isFloatingPointTy - Return true if this is one of the five floating point
|
|
/// types
|
|
bool isFloatingPointTy() const {
|
|
return ID == HalfTyID || ID == FloatTyID || ID == DoubleTyID ||
|
|
ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID;
|
|
}
|
|
|
|
/// isX86_MMXTy - Return true if this is X86 MMX.
|
|
bool isX86_MMXTy() const { return ID == X86_MMXTyID; }
|
|
|
|
/// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
|
|
///
|
|
bool isFPOrFPVectorTy() const;
|
|
|
|
/// isLabelTy - Return true if this is 'label'.
|
|
bool isLabelTy() const { return ID == LabelTyID; }
|
|
|
|
/// isMetadataTy - Return true if this is 'metadata'.
|
|
bool isMetadataTy() const { return ID == MetadataTyID; }
|
|
|
|
/// isIntegerTy - True if this is an instance of IntegerType.
|
|
///
|
|
bool isIntegerTy() const { return ID == IntegerTyID; }
|
|
|
|
/// isIntegerTy - Return true if this is an IntegerType of the given width.
|
|
bool isIntegerTy(unsigned Bitwidth) const;
|
|
|
|
/// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
|
|
/// integer types.
|
|
///
|
|
bool isIntOrIntVectorTy() const;
|
|
|
|
/// isFunctionTy - True if this is an instance of FunctionType.
|
|
///
|
|
bool isFunctionTy() const { return ID == FunctionTyID; }
|
|
|
|
/// isStructTy - True if this is an instance of StructType.
|
|
///
|
|
bool isStructTy() const { return ID == StructTyID; }
|
|
|
|
/// isArrayTy - True if this is an instance of ArrayType.
|
|
///
|
|
bool isArrayTy() const { return ID == ArrayTyID; }
|
|
|
|
/// isPointerTy - True if this is an instance of PointerType.
|
|
///
|
|
bool isPointerTy() const { return ID == PointerTyID; }
|
|
|
|
/// isVectorTy - True if this is an instance of VectorType.
|
|
///
|
|
bool isVectorTy() const { return ID == VectorTyID; }
|
|
|
|
/// canLosslesslyBitCastTo - Return true if this type could be converted
|
|
/// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
|
|
/// are valid for types of the same size only where no re-interpretation of
|
|
/// the bits is done.
|
|
/// @brief Determine if this type could be losslessly bitcast to Ty
|
|
bool canLosslesslyBitCastTo(Type *Ty) const;
|
|
|
|
/// isEmptyTy - Return true if this type is empty, that is, it has no
|
|
/// elements or all its elements are empty.
|
|
bool isEmptyTy() const;
|
|
|
|
/// Here are some useful little methods to query what type derived types are
|
|
/// Note that all other types can just compare to see if this == Type::xxxTy;
|
|
///
|
|
bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
|
|
bool isDerivedType() const { return ID >= FirstDerivedTyID; }
|
|
|
|
/// isFirstClassType - Return true if the type is "first class", meaning it
|
|
/// is a valid type for a Value.
|
|
///
|
|
bool isFirstClassType() const {
|
|
return ID != FunctionTyID && ID != VoidTyID;
|
|
}
|
|
|
|
/// isSingleValueType - Return true if the type is a valid type for a
|
|
/// register in codegen. This includes all first-class types except struct
|
|
/// and array types.
|
|
///
|
|
bool isSingleValueType() const {
|
|
return (ID != VoidTyID && isPrimitiveType()) ||
|
|
ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID;
|
|
}
|
|
|
|
/// isAggregateType - Return true if the type is an aggregate type. This
|
|
/// means it is valid as the first operand of an insertvalue or
|
|
/// extractvalue instruction. This includes struct and array types, but
|
|
/// does not include vector types.
|
|
///
|
|
bool isAggregateType() const {
|
|
return ID == StructTyID || ID == ArrayTyID;
|
|
}
|
|
|
|
/// isSized - Return true if it makes sense to take the size of this type. To
|
|
/// get the actual size for a particular target, it is reasonable to use the
|
|
/// TargetData subsystem to do this.
|
|
///
|
|
bool isSized() const {
|
|
// If it's a primitive, it is always sized.
|
|
if (ID == IntegerTyID || isFloatingPointTy() || ID == PointerTyID ||
|
|
ID == X86_MMXTyID)
|
|
return true;
|
|
// If it is not something that can have a size (e.g. a function or label),
|
|
// it doesn't have a size.
|
|
if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID)
|
|
return false;
|
|
// Otherwise we have to try harder to decide.
|
|
return isSizedDerivedType();
|
|
}
|
|
|
|
/// getPrimitiveSizeInBits - Return the basic size of this type if it is a
|
|
/// primitive type. These are fixed by LLVM and are not target dependent.
|
|
/// This will return zero if the type does not have a size or is not a
|
|
/// primitive type.
|
|
///
|
|
/// Note that this may not reflect the size of memory allocated for an
|
|
/// instance of the type or the number of bytes that are written when an
|
|
/// instance of the type is stored to memory. The TargetData class provides
|
|
/// additional query functions to provide this information.
|
|
///
|
|
unsigned getPrimitiveSizeInBits() const;
|
|
|
|
/// getScalarSizeInBits - If this is a vector type, return the
|
|
/// getPrimitiveSizeInBits value for the element type. Otherwise return the
|
|
/// getPrimitiveSizeInBits value for this type.
|
|
unsigned getScalarSizeInBits();
|
|
|
|
/// getFPMantissaWidth - Return the width of the mantissa of this type. This
|
|
/// is only valid on floating point types. If the FP type does not
|
|
/// have a stable mantissa (e.g. ppc long double), this method returns -1.
|
|
int getFPMantissaWidth() const;
|
|
|
|
/// getScalarType - If this is a vector type, return the element type,
|
|
/// otherwise return 'this'.
|
|
Type *getScalarType();
|
|
|
|
/// getNumElements - If this is a vector type, return the number of elements,
|
|
/// otherwise return zero.
|
|
unsigned getNumElements();
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Iteration support.
|
|
//
|
|
typedef Type * const *subtype_iterator;
|
|
subtype_iterator subtype_begin() const { return ContainedTys; }
|
|
subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
|
|
|
|
/// getContainedType - This method is used to implement the type iterator
|
|
/// (defined a the end of the file). For derived types, this returns the
|
|
/// types 'contained' in the derived type.
|
|
///
|
|
Type *getContainedType(unsigned i) const {
|
|
assert(i < NumContainedTys && "Index out of range!");
|
|
return ContainedTys[i];
|
|
}
|
|
|
|
/// getNumContainedTypes - Return the number of types in the derived type.
|
|
///
|
|
unsigned getNumContainedTypes() const { return NumContainedTys; }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Static members exported by the Type class itself. Useful for getting
|
|
// instances of Type.
|
|
//
|
|
|
|
/// getPrimitiveType - Return a type based on an identifier.
|
|
static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// These are the builtin types that are always available.
|
|
//
|
|
static Type *getVoidTy(LLVMContext &C);
|
|
static Type *getLabelTy(LLVMContext &C);
|
|
static Type *getHalfTy(LLVMContext &C);
|
|
static Type *getFloatTy(LLVMContext &C);
|
|
static Type *getDoubleTy(LLVMContext &C);
|
|
static Type *getMetadataTy(LLVMContext &C);
|
|
static Type *getX86_FP80Ty(LLVMContext &C);
|
|
static Type *getFP128Ty(LLVMContext &C);
|
|
static Type *getPPC_FP128Ty(LLVMContext &C);
|
|
static Type *getX86_MMXTy(LLVMContext &C);
|
|
static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
|
|
static IntegerType *getInt1Ty(LLVMContext &C);
|
|
static IntegerType *getInt8Ty(LLVMContext &C);
|
|
static IntegerType *getInt16Ty(LLVMContext &C);
|
|
static IntegerType *getInt32Ty(LLVMContext &C);
|
|
static IntegerType *getInt64Ty(LLVMContext &C);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Convenience methods for getting pointer types with one of the above builtin
|
|
// types as pointee.
|
|
//
|
|
static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
|
|
static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
|
|
static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
|
|
static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
|
|
static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
|
|
static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
|
|
static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
|
|
static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
|
|
static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
|
|
static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
|
|
static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
|
|
static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
|
|
static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Type *) { return true; }
|
|
|
|
/// getPointerTo - Return a pointer to the current type. This is equivalent
|
|
/// to PointerType::get(Foo, AddrSpace).
|
|
PointerType *getPointerTo(unsigned AddrSpace = 0);
|
|
|
|
private:
|
|
/// isSizedDerivedType - Derived types like structures and arrays are sized
|
|
/// iff all of the members of the type are sized as well. Since asking for
|
|
/// their size is relatively uncommon, move this operation out of line.
|
|
bool isSizedDerivedType() const;
|
|
};
|
|
|
|
// Printing of types.
|
|
static inline raw_ostream &operator<<(raw_ostream &OS, Type &T) {
|
|
T.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
// allow isa<PointerType>(x) to work without DerivedTypes.h included.
|
|
template <> struct isa_impl<PointerType, Type> {
|
|
static inline bool doit(const Type &Ty) {
|
|
return Ty.getTypeID() == Type::PointerTyID;
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Provide specializations of GraphTraits to be able to treat a type as a
|
|
// graph of sub types.
|
|
|
|
|
|
template <> struct GraphTraits<Type*> {
|
|
typedef Type NodeType;
|
|
typedef Type::subtype_iterator ChildIteratorType;
|
|
|
|
static inline NodeType *getEntryNode(Type *T) { return T; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->subtype_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->subtype_end();
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<const Type*> {
|
|
typedef const Type NodeType;
|
|
typedef Type::subtype_iterator ChildIteratorType;
|
|
|
|
static inline NodeType *getEntryNode(NodeType *T) { return T; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->subtype_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->subtype_end();
|
|
}
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|