mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-27 13:30:05 +00:00
538607fe45
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12064 91177308-0d34-0410-b5e6-96231b3b80d8
2748 lines
105 KiB
C++
2748 lines
105 KiB
C++
//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a simple peephole instruction selector for the x86 target
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/IntrinsicLowering.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "Support/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<>
|
|
NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
|
|
}
|
|
|
|
namespace {
|
|
struct ISel : public FunctionPass, InstVisitor<ISel> {
|
|
TargetMachine &TM;
|
|
MachineFunction *F; // The function we are compiling into
|
|
MachineBasicBlock *BB; // The current MBB we are compiling
|
|
int VarArgsFrameIndex; // FrameIndex for start of varargs area
|
|
int ReturnAddressIndex; // FrameIndex for the return address
|
|
|
|
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
|
|
|
|
// MBBMap - Mapping between LLVM BB -> Machine BB
|
|
std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
|
|
|
|
ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
|
|
|
|
/// runOnFunction - Top level implementation of instruction selection for
|
|
/// the entire function.
|
|
///
|
|
bool runOnFunction(Function &Fn) {
|
|
// First pass over the function, lower any unknown intrinsic functions
|
|
// with the IntrinsicLowering class.
|
|
LowerUnknownIntrinsicFunctionCalls(Fn);
|
|
|
|
F = &MachineFunction::construct(&Fn, TM);
|
|
|
|
// Create all of the machine basic blocks for the function...
|
|
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
|
|
|
|
BB = &F->front();
|
|
|
|
// Set up a frame object for the return address. This is used by the
|
|
// llvm.returnaddress & llvm.frameaddress intrinisics.
|
|
ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
|
|
|
|
// Copy incoming arguments off of the stack...
|
|
LoadArgumentsToVirtualRegs(Fn);
|
|
|
|
// Instruction select everything except PHI nodes
|
|
visit(Fn);
|
|
|
|
// Select the PHI nodes
|
|
SelectPHINodes();
|
|
|
|
// Insert the FP_REG_KILL instructions into blocks that need them.
|
|
InsertFPRegKills();
|
|
|
|
RegMap.clear();
|
|
MBBMap.clear();
|
|
F = 0;
|
|
// We always build a machine code representation for the function
|
|
return true;
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "X86 Simple Instruction Selection";
|
|
}
|
|
|
|
/// visitBasicBlock - This method is called when we are visiting a new basic
|
|
/// block. This simply creates a new MachineBasicBlock to emit code into
|
|
/// and adds it to the current MachineFunction. Subsequent visit* for
|
|
/// instructions will be invoked for all instructions in the basic block.
|
|
///
|
|
void visitBasicBlock(BasicBlock &LLVM_BB) {
|
|
BB = MBBMap[&LLVM_BB];
|
|
}
|
|
|
|
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
|
|
/// function, lowering any calls to unknown intrinsic functions into the
|
|
/// equivalent LLVM code.
|
|
///
|
|
void LowerUnknownIntrinsicFunctionCalls(Function &F);
|
|
|
|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
|
|
/// from the stack into virtual registers.
|
|
///
|
|
void LoadArgumentsToVirtualRegs(Function &F);
|
|
|
|
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
|
|
/// because we have to generate our sources into the source basic blocks,
|
|
/// not the current one.
|
|
///
|
|
void SelectPHINodes();
|
|
|
|
/// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
|
|
/// that need them. This only occurs due to the floating point stackifier
|
|
/// not being aggressive enough to handle arbitrary global stackification.
|
|
///
|
|
void InsertFPRegKills();
|
|
|
|
// Visitation methods for various instructions. These methods simply emit
|
|
// fixed X86 code for each instruction.
|
|
//
|
|
|
|
// Control flow operators
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitBranchInst(BranchInst &BI);
|
|
|
|
struct ValueRecord {
|
|
Value *Val;
|
|
unsigned Reg;
|
|
const Type *Ty;
|
|
ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
|
|
ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
|
|
};
|
|
void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
|
|
const std::vector<ValueRecord> &Args);
|
|
void visitCallInst(CallInst &I);
|
|
void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
|
|
|
|
// Arithmetic operators
|
|
void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
|
|
void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
|
|
void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
|
|
void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned Op0Reg, unsigned Op1Reg);
|
|
void doMultiplyConst(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned Op0Reg, unsigned Op1Val);
|
|
void visitMul(BinaryOperator &B);
|
|
|
|
void visitDiv(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitRem(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitDivRem(BinaryOperator &B);
|
|
|
|
// Bitwise operators
|
|
void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
|
|
void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
|
|
void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
|
|
|
|
// Comparison operators...
|
|
void visitSetCondInst(SetCondInst &I);
|
|
unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI);
|
|
|
|
// Memory Instructions
|
|
void visitLoadInst(LoadInst &I);
|
|
void visitStoreInst(StoreInst &I);
|
|
void visitGetElementPtrInst(GetElementPtrInst &I);
|
|
void visitAllocaInst(AllocaInst &I);
|
|
void visitMallocInst(MallocInst &I);
|
|
void visitFreeInst(FreeInst &I);
|
|
|
|
// Other operators
|
|
void visitShiftInst(ShiftInst &I);
|
|
void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
|
|
void visitCastInst(CastInst &I);
|
|
void visitVANextInst(VANextInst &I);
|
|
void visitVAArgInst(VAArgInst &I);
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
std::cerr << "Cannot instruction select: " << I;
|
|
abort();
|
|
}
|
|
|
|
/// promote32 - Make a value 32-bits wide, and put it somewhere.
|
|
///
|
|
void promote32(unsigned targetReg, const ValueRecord &VR);
|
|
|
|
// getGEPIndex - This is used to fold GEP instructions into X86 addressing
|
|
// expressions.
|
|
void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
|
|
std::vector<Value*> &GEPOps,
|
|
std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
|
|
unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
|
|
|
|
/// isGEPFoldable - Return true if the specified GEP can be completely
|
|
/// folded into the addressing mode of a load/store or lea instruction.
|
|
bool isGEPFoldable(MachineBasicBlock *MBB,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, unsigned &BaseReg,
|
|
unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
|
|
|
|
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
|
|
/// constant expression GEP support.
|
|
///
|
|
void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, unsigned TargetReg);
|
|
|
|
/// emitCastOperation - Common code shared between visitCastInst and
|
|
/// constant expression cast support.
|
|
///
|
|
void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
|
|
Value *Src, const Type *DestTy, unsigned TargetReg);
|
|
|
|
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
|
|
/// and constant expression support.
|
|
///
|
|
void emitSimpleBinaryOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned TargetReg);
|
|
|
|
void emitDivRemOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
|
|
const Type *Ty, unsigned TargetReg);
|
|
|
|
/// emitSetCCOperation - Common code shared between visitSetCondInst and
|
|
/// constant expression support.
|
|
///
|
|
void emitSetCCOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned Opcode,
|
|
unsigned TargetReg);
|
|
|
|
/// emitShiftOperation - Common code shared between visitShiftInst and
|
|
/// constant expression support.
|
|
///
|
|
void emitShiftOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op, Value *ShiftAmount, bool isLeftShift,
|
|
const Type *ResultTy, unsigned DestReg);
|
|
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void copyConstantToRegister(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
Constant *C, unsigned Reg);
|
|
|
|
/// makeAnotherReg - This method returns the next register number we haven't
|
|
/// yet used.
|
|
///
|
|
/// Long values are handled somewhat specially. They are always allocated
|
|
/// as pairs of 32 bit integer values. The register number returned is the
|
|
/// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
|
|
/// of the long value.
|
|
///
|
|
unsigned makeAnotherReg(const Type *Ty) {
|
|
assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
|
|
"Current target doesn't have X86 reg info??");
|
|
const X86RegisterInfo *MRI =
|
|
static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
|
|
if (Ty == Type::LongTy || Ty == Type::ULongTy) {
|
|
const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
|
|
// Create the lower part
|
|
F->getSSARegMap()->createVirtualRegister(RC);
|
|
// Create the upper part.
|
|
return F->getSSARegMap()->createVirtualRegister(RC)-1;
|
|
}
|
|
|
|
// Add the mapping of regnumber => reg class to MachineFunction
|
|
const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
|
|
return F->getSSARegMap()->createVirtualRegister(RC);
|
|
}
|
|
|
|
/// getReg - This method turns an LLVM value into a register number. This
|
|
/// is guaranteed to produce the same register number for a particular value
|
|
/// every time it is queried.
|
|
///
|
|
unsigned getReg(Value &V) { return getReg(&V); } // Allow references
|
|
unsigned getReg(Value *V) {
|
|
// Just append to the end of the current bb.
|
|
MachineBasicBlock::iterator It = BB->end();
|
|
return getReg(V, BB, It);
|
|
}
|
|
unsigned getReg(Value *V, MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IPt) {
|
|
unsigned &Reg = RegMap[V];
|
|
if (Reg == 0) {
|
|
Reg = makeAnotherReg(V->getType());
|
|
RegMap[V] = Reg;
|
|
}
|
|
|
|
// If this operand is a constant, emit the code to copy the constant into
|
|
// the register here...
|
|
//
|
|
if (Constant *C = dyn_cast<Constant>(V)) {
|
|
copyConstantToRegister(MBB, IPt, C, Reg);
|
|
RegMap.erase(V); // Assign a new name to this constant if ref'd again
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
// Move the address of the global into the register
|
|
BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV);
|
|
RegMap.erase(V); // Assign a new name to this address if ref'd again
|
|
}
|
|
|
|
return Reg;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
|
|
/// Representation.
|
|
///
|
|
enum TypeClass {
|
|
cByte, cShort, cInt, cFP, cLong
|
|
};
|
|
|
|
/// getClass - Turn a primitive type into a "class" number which is based on the
|
|
/// size of the type, and whether or not it is floating point.
|
|
///
|
|
static inline TypeClass getClass(const Type *Ty) {
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::SByteTyID:
|
|
case Type::UByteTyID: return cByte; // Byte operands are class #0
|
|
case Type::ShortTyID:
|
|
case Type::UShortTyID: return cShort; // Short operands are class #1
|
|
case Type::IntTyID:
|
|
case Type::UIntTyID:
|
|
case Type::PointerTyID: return cInt; // Int's and pointers are class #2
|
|
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID: return cFP; // Floating Point is #3
|
|
|
|
case Type::LongTyID:
|
|
case Type::ULongTyID: return cLong; // Longs are class #4
|
|
default:
|
|
assert(0 && "Invalid type to getClass!");
|
|
return cByte; // not reached
|
|
}
|
|
}
|
|
|
|
// getClassB - Just like getClass, but treat boolean values as bytes.
|
|
static inline TypeClass getClassB(const Type *Ty) {
|
|
if (Ty == Type::BoolTy) return cByte;
|
|
return getClass(Ty);
|
|
}
|
|
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Constant *C, unsigned R) {
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
unsigned Class = 0;
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::GetElementPtr:
|
|
emitGEPOperation(MBB, IP, CE->getOperand(0),
|
|
CE->op_begin()+1, CE->op_end(), R);
|
|
return;
|
|
case Instruction::Cast:
|
|
emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
|
|
return;
|
|
|
|
case Instruction::Xor: ++Class; // FALL THROUGH
|
|
case Instruction::Or: ++Class; // FALL THROUGH
|
|
case Instruction::And: ++Class; // FALL THROUGH
|
|
case Instruction::Sub: ++Class; // FALL THROUGH
|
|
case Instruction::Add:
|
|
emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
Class, R);
|
|
return;
|
|
|
|
case Instruction::Mul: {
|
|
unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
|
|
unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
|
|
doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
|
|
return;
|
|
}
|
|
case Instruction::Div:
|
|
case Instruction::Rem: {
|
|
unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
|
|
unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
|
|
emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
|
|
CE->getOpcode() == Instruction::Div,
|
|
CE->getType(), R);
|
|
return;
|
|
}
|
|
|
|
case Instruction::SetNE:
|
|
case Instruction::SetEQ:
|
|
case Instruction::SetLT:
|
|
case Instruction::SetGT:
|
|
case Instruction::SetLE:
|
|
case Instruction::SetGE:
|
|
emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
CE->getOpcode(), R);
|
|
return;
|
|
|
|
case Instruction::Shl:
|
|
case Instruction::Shr:
|
|
emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
CE->getOpcode() == Instruction::Shl, CE->getType(), R);
|
|
return;
|
|
|
|
default:
|
|
std::cerr << "Offending expr: " << C << "\n";
|
|
assert(0 && "Constant expression not yet handled!\n");
|
|
}
|
|
}
|
|
|
|
if (C->getType()->isIntegral()) {
|
|
unsigned Class = getClassB(C->getType());
|
|
|
|
if (Class == cLong) {
|
|
// Copy the value into the register pair.
|
|
uint64_t Val = cast<ConstantInt>(C)->getRawValue();
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
|
|
return;
|
|
}
|
|
|
|
assert(Class <= cInt && "Type not handled yet!");
|
|
|
|
static const unsigned IntegralOpcodeTab[] = {
|
|
X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
|
|
};
|
|
|
|
if (C->getType() == Type::BoolTy) {
|
|
BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
|
|
} else {
|
|
ConstantInt *CI = cast<ConstantInt>(C);
|
|
BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
|
|
}
|
|
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
|
if (CFP->isExactlyValue(+0.0))
|
|
BuildMI(*MBB, IP, X86::FLD0, 0, R);
|
|
else if (CFP->isExactlyValue(+1.0))
|
|
BuildMI(*MBB, IP, X86::FLD1, 0, R);
|
|
else {
|
|
// Otherwise we need to spill the constant to memory...
|
|
MachineConstantPool *CP = F->getConstantPool();
|
|
unsigned CPI = CP->getConstantPoolIndex(CFP);
|
|
const Type *Ty = CFP->getType();
|
|
|
|
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
|
|
unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
|
|
addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
|
|
}
|
|
|
|
} else if (isa<ConstantPointerNull>(C)) {
|
|
// Copy zero (null pointer) to the register.
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
|
|
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(CPR->getValue());
|
|
} else {
|
|
std::cerr << "Offending constant: " << C << "\n";
|
|
assert(0 && "Type not handled yet!");
|
|
}
|
|
}
|
|
|
|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
|
|
/// the stack into virtual registers.
|
|
///
|
|
void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
|
|
// Emit instructions to load the arguments... On entry to a function on the
|
|
// X86, the stack frame looks like this:
|
|
//
|
|
// [ESP] -- return address
|
|
// [ESP + 4] -- first argument (leftmost lexically)
|
|
// [ESP + 8] -- second argument, if first argument is four bytes in size
|
|
// ...
|
|
//
|
|
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
|
|
MachineFrameInfo *MFI = F->getFrameInfo();
|
|
|
|
for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
|
|
unsigned Reg = getReg(*I);
|
|
|
|
int FI; // Frame object index
|
|
switch (getClassB(I->getType())) {
|
|
case cByte:
|
|
FI = MFI->CreateFixedObject(1, ArgOffset);
|
|
addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
|
|
break;
|
|
case cShort:
|
|
FI = MFI->CreateFixedObject(2, ArgOffset);
|
|
addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
|
|
break;
|
|
case cInt:
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
|
|
break;
|
|
case cLong:
|
|
FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
|
|
addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
|
|
ArgOffset += 4; // longs require 4 additional bytes
|
|
break;
|
|
case cFP:
|
|
unsigned Opcode;
|
|
if (I->getType() == Type::FloatTy) {
|
|
Opcode = X86::FLD32m;
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
} else {
|
|
Opcode = X86::FLD64m;
|
|
FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
ArgOffset += 4; // doubles require 4 additional bytes
|
|
}
|
|
addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
|
|
break;
|
|
default:
|
|
assert(0 && "Unhandled argument type!");
|
|
}
|
|
ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
|
|
}
|
|
|
|
// If the function takes variable number of arguments, add a frame offset for
|
|
// the start of the first vararg value... this is used to expand
|
|
// llvm.va_start.
|
|
if (Fn.getFunctionType()->isVarArg())
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
|
|
}
|
|
|
|
|
|
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
|
|
/// because we have to generate our sources into the source basic blocks, not
|
|
/// the current one.
|
|
///
|
|
void ISel::SelectPHINodes() {
|
|
const TargetInstrInfo &TII = TM.getInstrInfo();
|
|
const Function &LF = *F->getFunction(); // The LLVM function...
|
|
for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
|
|
const BasicBlock *BB = I;
|
|
MachineBasicBlock &MBB = *MBBMap[I];
|
|
|
|
// Loop over all of the PHI nodes in the LLVM basic block...
|
|
MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
|
|
for (BasicBlock::const_iterator I = BB->begin();
|
|
PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
|
|
|
|
// Create a new machine instr PHI node, and insert it.
|
|
unsigned PHIReg = getReg(*PN);
|
|
MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
|
|
X86::PHI, PN->getNumOperands(), PHIReg);
|
|
|
|
MachineInstr *LongPhiMI = 0;
|
|
if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
|
|
LongPhiMI = BuildMI(MBB, PHIInsertPoint,
|
|
X86::PHI, PN->getNumOperands(), PHIReg+1);
|
|
|
|
// PHIValues - Map of blocks to incoming virtual registers. We use this
|
|
// so that we only initialize one incoming value for a particular block,
|
|
// even if the block has multiple entries in the PHI node.
|
|
//
|
|
std::map<MachineBasicBlock*, unsigned> PHIValues;
|
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
|
|
unsigned ValReg;
|
|
std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
|
|
PHIValues.lower_bound(PredMBB);
|
|
|
|
if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
|
|
// We already inserted an initialization of the register for this
|
|
// predecessor. Recycle it.
|
|
ValReg = EntryIt->second;
|
|
|
|
} else {
|
|
// Get the incoming value into a virtual register.
|
|
//
|
|
Value *Val = PN->getIncomingValue(i);
|
|
|
|
// If this is a constant or GlobalValue, we may have to insert code
|
|
// into the basic block to compute it into a virtual register.
|
|
if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
|
|
// Because we don't want to clobber any values which might be in
|
|
// physical registers with the computation of this constant (which
|
|
// might be arbitrarily complex if it is a constant expression),
|
|
// just insert the computation at the top of the basic block.
|
|
MachineBasicBlock::iterator PI = PredMBB->begin();
|
|
|
|
// Skip over any PHI nodes though!
|
|
while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
|
|
++PI;
|
|
|
|
ValReg = getReg(Val, PredMBB, PI);
|
|
} else {
|
|
ValReg = getReg(Val);
|
|
}
|
|
|
|
// Remember that we inserted a value for this PHI for this predecessor
|
|
PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
|
|
}
|
|
|
|
PhiMI->addRegOperand(ValReg);
|
|
PhiMI->addMachineBasicBlockOperand(PredMBB);
|
|
if (LongPhiMI) {
|
|
LongPhiMI->addRegOperand(ValReg+1);
|
|
LongPhiMI->addMachineBasicBlockOperand(PredMBB);
|
|
}
|
|
}
|
|
|
|
// Now that we emitted all of the incoming values for the PHI node, make
|
|
// sure to reposition the InsertPoint after the PHI that we just added.
|
|
// This is needed because we might have inserted a constant into this
|
|
// block, right after the PHI's which is before the old insert point!
|
|
PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
|
|
++PHIInsertPoint;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// RequiresFPRegKill - The floating point stackifier pass cannot insert
|
|
/// compensation code on critical edges. As such, it requires that we kill all
|
|
/// FP registers on the exit from any blocks that either ARE critical edges, or
|
|
/// branch to a block that has incoming critical edges.
|
|
///
|
|
/// Note that this kill instruction will eventually be eliminated when
|
|
/// restrictions in the stackifier are relaxed.
|
|
///
|
|
static bool RequiresFPRegKill(const BasicBlock *BB) {
|
|
#if 0
|
|
for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
|
|
const BasicBlock *Succ = *SI;
|
|
pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
|
|
++PI; // Block have at least one predecessory
|
|
if (PI != PE) { // If it has exactly one, this isn't crit edge
|
|
// If this block has more than one predecessor, check all of the
|
|
// predecessors to see if they have multiple successors. If so, then the
|
|
// block we are analyzing needs an FPRegKill.
|
|
for (PI = pred_begin(Succ); PI != PE; ++PI) {
|
|
const BasicBlock *Pred = *PI;
|
|
succ_const_iterator SI2 = succ_begin(Pred);
|
|
++SI2; // There must be at least one successor of this block.
|
|
if (SI2 != succ_end(Pred))
|
|
return true; // Yes, we must insert the kill on this edge.
|
|
}
|
|
}
|
|
}
|
|
// If we got this far, there is no need to insert the kill instruction.
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
|
|
// need them. This only occurs due to the floating point stackifier not being
|
|
// aggressive enough to handle arbitrary global stackification.
|
|
//
|
|
// Currently we insert an FP_REG_KILL instruction into each block that uses or
|
|
// defines a floating point virtual register.
|
|
//
|
|
// When the global register allocators (like linear scan) finally update live
|
|
// variable analysis, we can keep floating point values in registers across
|
|
// portions of the CFG that do not involve critical edges. This will be a big
|
|
// win, but we are waiting on the global allocators before we can do this.
|
|
//
|
|
// With a bit of work, the floating point stackifier pass can be enhanced to
|
|
// break critical edges as needed (to make a place to put compensation code),
|
|
// but this will require some infrastructure improvements as well.
|
|
//
|
|
void ISel::InsertFPRegKills() {
|
|
SSARegMap &RegMap = *F->getSSARegMap();
|
|
|
|
for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
|
|
for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
|
MachineOperand& MO = I->getOperand(i);
|
|
if (MO.isRegister() && MO.getReg()) {
|
|
unsigned Reg = MO.getReg();
|
|
if (MRegisterInfo::isVirtualRegister(Reg))
|
|
if (RegMap.getRegClass(Reg)->getSize() == 10)
|
|
goto UsesFPReg;
|
|
}
|
|
}
|
|
// If we haven't found an FP register use or def in this basic block, check
|
|
// to see if any of our successors has an FP PHI node, which will cause a
|
|
// copy to be inserted into this block.
|
|
for (succ_const_iterator SI = succ_begin(BB->getBasicBlock()),
|
|
E = succ_end(BB->getBasicBlock()); SI != E; ++SI) {
|
|
MachineBasicBlock *SBB = MBBMap[*SI];
|
|
for (MachineBasicBlock::iterator I = SBB->begin();
|
|
I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
|
|
if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
|
|
goto UsesFPReg;
|
|
}
|
|
}
|
|
continue;
|
|
UsesFPReg:
|
|
// Okay, this block uses an FP register. If the block has successors (ie,
|
|
// it's not an unwind/return), insert the FP_REG_KILL instruction.
|
|
if (BB->getBasicBlock()->getTerminator()->getNumSuccessors() &&
|
|
RequiresFPRegKill(BB->getBasicBlock())) {
|
|
BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
|
|
++NumFPKill;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
|
|
// the conditional branch instruction which is the only user of the cc
|
|
// instruction. This is the case if the conditional branch is the only user of
|
|
// the setcc, and if the setcc is in the same basic block as the conditional
|
|
// branch. We also don't handle long arguments below, so we reject them here as
|
|
// well.
|
|
//
|
|
static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
|
|
if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
|
|
if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
|
|
SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
|
|
const Type *Ty = SCI->getOperand(0)->getType();
|
|
if (Ty != Type::LongTy && Ty != Type::ULongTy)
|
|
return SCI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Return a fixed numbering for setcc instructions which does not depend on the
|
|
// order of the opcodes.
|
|
//
|
|
static unsigned getSetCCNumber(unsigned Opcode) {
|
|
switch(Opcode) {
|
|
default: assert(0 && "Unknown setcc instruction!");
|
|
case Instruction::SetEQ: return 0;
|
|
case Instruction::SetNE: return 1;
|
|
case Instruction::SetLT: return 2;
|
|
case Instruction::SetGE: return 3;
|
|
case Instruction::SetGT: return 4;
|
|
case Instruction::SetLE: return 5;
|
|
}
|
|
}
|
|
|
|
// LLVM -> X86 signed X86 unsigned
|
|
// ----- ---------- ------------
|
|
// seteq -> sete sete
|
|
// setne -> setne setne
|
|
// setlt -> setl setb
|
|
// setge -> setge setae
|
|
// setgt -> setg seta
|
|
// setle -> setle setbe
|
|
// ----
|
|
// sets // Used by comparison with 0 optimization
|
|
// setns
|
|
static const unsigned SetCCOpcodeTab[2][8] = {
|
|
{ X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
|
|
0, 0 },
|
|
{ X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
|
|
X86::SETSr, X86::SETNSr },
|
|
};
|
|
|
|
// EmitComparison - This function emits a comparison of the two operands,
|
|
// returning the extended setcc code to use.
|
|
unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP) {
|
|
// The arguments are already supposed to be of the same type.
|
|
const Type *CompTy = Op0->getType();
|
|
unsigned Class = getClassB(CompTy);
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
|
|
// Special case handling of: cmp R, i
|
|
if (Class == cByte || Class == cShort || Class == cInt)
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
|
|
|
|
// Mask off any upper bits of the constant, if there are any...
|
|
Op1v &= (1ULL << (8 << Class)) - 1;
|
|
|
|
// If this is a comparison against zero, emit more efficient code. We
|
|
// can't handle unsigned comparisons against zero unless they are == or
|
|
// !=. These should have been strength reduced already anyway.
|
|
if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
|
|
static const unsigned TESTTab[] = {
|
|
X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
|
|
};
|
|
BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
|
|
|
|
if (OpNum == 2) return 6; // Map jl -> js
|
|
if (OpNum == 3) return 7; // Map jg -> jns
|
|
return OpNum;
|
|
}
|
|
|
|
static const unsigned CMPTab[] = {
|
|
X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
|
|
};
|
|
|
|
BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
|
|
return OpNum;
|
|
}
|
|
|
|
// Special case handling of comparison against +/- 0.0
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
|
|
if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
|
|
BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
|
|
BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
|
|
BuildMI(*MBB, IP, X86::SAHF, 1);
|
|
return OpNum;
|
|
}
|
|
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
switch (Class) {
|
|
default: assert(0 && "Unknown type class!");
|
|
// Emit: cmp <var1>, <var2> (do the comparison). We can
|
|
// compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
|
|
// 32-bit.
|
|
case cByte:
|
|
BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
|
|
break;
|
|
case cShort:
|
|
BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
|
|
break;
|
|
case cInt:
|
|
BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
|
|
break;
|
|
case cFP:
|
|
BuildMI(*MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
|
|
BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
|
|
BuildMI(*MBB, IP, X86::SAHF, 1);
|
|
break;
|
|
|
|
case cLong:
|
|
if (OpNum < 2) { // seteq, setne
|
|
unsigned LoTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned HiTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
|
|
BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
|
|
BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
|
|
break; // Allow the sete or setne to be generated from flags set by OR
|
|
} else {
|
|
// Emit a sequence of code which compares the high and low parts once
|
|
// each, then uses a conditional move to handle the overflow case. For
|
|
// example, a setlt for long would generate code like this:
|
|
//
|
|
// AL = lo(op1) < lo(op2) // Signedness depends on operands
|
|
// BL = hi(op1) < hi(op2) // Always unsigned comparison
|
|
// dest = hi(op1) == hi(op2) ? AL : BL;
|
|
//
|
|
|
|
// FIXME: This would be much better if we had hierarchical register
|
|
// classes! Until then, hardcode registers so that we can deal with their
|
|
// aliases (because we don't have conditional byte moves).
|
|
//
|
|
BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
|
|
BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
|
|
BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
|
|
BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
|
|
BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
|
|
BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
|
|
BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
|
|
.addReg(X86::AX);
|
|
// NOTE: visitSetCondInst knows that the value is dumped into the BL
|
|
// register at this point for long values...
|
|
return OpNum;
|
|
}
|
|
}
|
|
return OpNum;
|
|
}
|
|
|
|
|
|
/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
|
|
/// register, then move it to wherever the result should be.
|
|
///
|
|
void ISel::visitSetCondInst(SetCondInst &I) {
|
|
if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
|
|
|
|
unsigned DestReg = getReg(I);
|
|
MachineBasicBlock::iterator MII = BB->end();
|
|
emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
|
|
DestReg);
|
|
}
|
|
|
|
/// emitSetCCOperation - Common code shared between visitSetCondInst and
|
|
/// constant expression support.
|
|
///
|
|
void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned Opcode,
|
|
unsigned TargetReg) {
|
|
unsigned OpNum = getSetCCNumber(Opcode);
|
|
OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
|
|
|
|
const Type *CompTy = Op0->getType();
|
|
unsigned CompClass = getClassB(CompTy);
|
|
bool isSigned = CompTy->isSigned() && CompClass != cFP;
|
|
|
|
if (CompClass != cLong || OpNum < 2) {
|
|
// Handle normal comparisons with a setcc instruction...
|
|
BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
|
|
} else {
|
|
// Handle long comparisons by copying the value which is already in BL into
|
|
// the register we want...
|
|
BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
|
|
/// operand, in the specified target register.
|
|
///
|
|
void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
|
|
bool isUnsigned = VR.Ty->isUnsigned();
|
|
|
|
// Make sure we have the register number for this value...
|
|
unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
|
|
|
|
switch (getClassB(VR.Ty)) {
|
|
case cByte:
|
|
// Extend value into target register (8->32)
|
|
if (isUnsigned)
|
|
BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
|
|
else
|
|
BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
|
|
break;
|
|
case cShort:
|
|
// Extend value into target register (16->32)
|
|
if (isUnsigned)
|
|
BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
|
|
else
|
|
BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
|
|
break;
|
|
case cInt:
|
|
// Move value into target register (32->32)
|
|
BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
|
|
break;
|
|
default:
|
|
assert(0 && "Unpromotable operand class in promote32");
|
|
}
|
|
}
|
|
|
|
/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
|
|
/// we have the following possibilities:
|
|
///
|
|
/// ret void: No return value, simply emit a 'ret' instruction
|
|
/// ret sbyte, ubyte : Extend value into EAX and return
|
|
/// ret short, ushort: Extend value into EAX and return
|
|
/// ret int, uint : Move value into EAX and return
|
|
/// ret pointer : Move value into EAX and return
|
|
/// ret long, ulong : Move value into EAX/EDX and return
|
|
/// ret float/double : Top of FP stack
|
|
///
|
|
void ISel::visitReturnInst(ReturnInst &I) {
|
|
if (I.getNumOperands() == 0) {
|
|
BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
|
|
return;
|
|
}
|
|
|
|
Value *RetVal = I.getOperand(0);
|
|
unsigned RetReg = getReg(RetVal);
|
|
switch (getClassB(RetVal->getType())) {
|
|
case cByte: // integral return values: extend or move into EAX and return
|
|
case cShort:
|
|
case cInt:
|
|
promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
|
|
// Declare that EAX is live on exit
|
|
BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
|
|
break;
|
|
case cFP: // Floats & Doubles: Return in ST(0)
|
|
BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
|
|
// Declare that top-of-stack is live on exit
|
|
BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
|
|
break;
|
|
case cLong:
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
|
|
// Declare that EAX & EDX are live on exit
|
|
BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
|
|
.addReg(X86::ESP);
|
|
break;
|
|
default:
|
|
visitInstruction(I);
|
|
}
|
|
// Emit a 'ret' instruction
|
|
BuildMI(BB, X86::RET, 0);
|
|
}
|
|
|
|
// getBlockAfter - Return the basic block which occurs lexically after the
|
|
// specified one.
|
|
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
|
|
Function::iterator I = BB; ++I; // Get iterator to next block
|
|
return I != BB->getParent()->end() ? &*I : 0;
|
|
}
|
|
|
|
/// visitBranchInst - Handle conditional and unconditional branches here. Note
|
|
/// that since code layout is frozen at this point, that if we are trying to
|
|
/// jump to a block that is the immediate successor of the current block, we can
|
|
/// just make a fall-through (but we don't currently).
|
|
///
|
|
void ISel::visitBranchInst(BranchInst &BI) {
|
|
BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
|
|
|
|
if (!BI.isConditional()) { // Unconditional branch?
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
|
|
return;
|
|
}
|
|
|
|
// See if we can fold the setcc into the branch itself...
|
|
SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
|
|
if (SCI == 0) {
|
|
// Nope, cannot fold setcc into this branch. Emit a branch on a condition
|
|
// computed some other way...
|
|
unsigned condReg = getReg(BI.getCondition());
|
|
BuildMI(BB, X86::CMP8ri, 2).addReg(condReg).addImm(0);
|
|
if (BI.getSuccessor(1) == NextBB) {
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
|
|
} else {
|
|
BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
|
|
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
|
|
}
|
|
return;
|
|
}
|
|
|
|
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
|
|
MachineBasicBlock::iterator MII = BB->end();
|
|
OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
|
|
|
|
const Type *CompTy = SCI->getOperand(0)->getType();
|
|
bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
|
|
|
|
|
|
// LLVM -> X86 signed X86 unsigned
|
|
// ----- ---------- ------------
|
|
// seteq -> je je
|
|
// setne -> jne jne
|
|
// setlt -> jl jb
|
|
// setge -> jge jae
|
|
// setgt -> jg ja
|
|
// setle -> jle jbe
|
|
// ----
|
|
// js // Used by comparison with 0 optimization
|
|
// jns
|
|
|
|
static const unsigned OpcodeTab[2][8] = {
|
|
{ X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
|
|
{ X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
|
|
X86::JS, X86::JNS },
|
|
};
|
|
|
|
if (BI.getSuccessor(0) != NextBB) {
|
|
BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
|
|
if (BI.getSuccessor(1) != NextBB)
|
|
BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
|
|
} else {
|
|
// Change to the inverse condition...
|
|
if (BI.getSuccessor(1) != NextBB) {
|
|
OpNum ^= 1;
|
|
BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// doCall - This emits an abstract call instruction, setting up the arguments
|
|
/// and the return value as appropriate. For the actual function call itself,
|
|
/// it inserts the specified CallMI instruction into the stream.
|
|
///
|
|
void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
|
|
const std::vector<ValueRecord> &Args) {
|
|
|
|
// Count how many bytes are to be pushed on the stack...
|
|
unsigned NumBytes = 0;
|
|
|
|
if (!Args.empty()) {
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
switch (getClassB(Args[i].Ty)) {
|
|
case cByte: case cShort: case cInt:
|
|
NumBytes += 4; break;
|
|
case cLong:
|
|
NumBytes += 8; break;
|
|
case cFP:
|
|
NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
|
|
break;
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
|
|
|
|
// Arguments go on the stack in reverse order, as specified by the ABI.
|
|
unsigned ArgOffset = 0;
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
unsigned ArgReg;
|
|
switch (getClassB(Args[i].Ty)) {
|
|
case cByte:
|
|
case cShort:
|
|
if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
|
|
// Zero/Sign extend constant, then stuff into memory.
|
|
ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
|
|
Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
|
|
addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
|
|
.addImm(Val->getRawValue() & 0xFFFFFFFF);
|
|
} else {
|
|
// Promote arg to 32 bits wide into a temporary register...
|
|
ArgReg = makeAnotherReg(Type::UIntTy);
|
|
promote32(ArgReg, Args[i]);
|
|
addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
}
|
|
break;
|
|
case cInt:
|
|
if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
|
|
unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
|
|
addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
|
|
X86::ESP, ArgOffset).addImm(Val);
|
|
} else {
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
}
|
|
break;
|
|
case cLong:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
|
|
X86::ESP, ArgOffset+4).addReg(ArgReg+1);
|
|
ArgOffset += 4; // 8 byte entry, not 4.
|
|
break;
|
|
|
|
case cFP:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
if (Args[i].Ty == Type::FloatTy) {
|
|
addRegOffset(BuildMI(BB, X86::FST32m, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
} else {
|
|
assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
|
|
addRegOffset(BuildMI(BB, X86::FST64m, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
ArgOffset += 4; // 8 byte entry, not 4.
|
|
}
|
|
break;
|
|
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
ArgOffset += 4;
|
|
}
|
|
} else {
|
|
BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
|
|
}
|
|
|
|
BB->push_back(CallMI);
|
|
|
|
BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
|
|
|
|
// If there is a return value, scavenge the result from the location the call
|
|
// leaves it in...
|
|
//
|
|
if (Ret.Ty != Type::VoidTy) {
|
|
unsigned DestClass = getClassB(Ret.Ty);
|
|
switch (DestClass) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt: {
|
|
// Integral results are in %eax, or the appropriate portion
|
|
// thereof.
|
|
static const unsigned regRegMove[] = {
|
|
X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
|
|
};
|
|
static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
|
|
BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
|
|
break;
|
|
}
|
|
case cFP: // Floating-point return values live in %ST(0)
|
|
BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
|
|
break;
|
|
case cLong: // Long values are left in EDX:EAX
|
|
BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
|
|
BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
|
|
break;
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// visitCallInst - Push args on stack and do a procedure call instruction.
|
|
void ISel::visitCallInst(CallInst &CI) {
|
|
MachineInstr *TheCall;
|
|
if (Function *F = CI.getCalledFunction()) {
|
|
// Is it an intrinsic function call?
|
|
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
|
|
visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
|
|
return;
|
|
}
|
|
|
|
// Emit a CALL instruction with PC-relative displacement.
|
|
TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
|
|
} else { // Emit an indirect call...
|
|
unsigned Reg = getReg(CI.getCalledValue());
|
|
TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
|
|
}
|
|
|
|
std::vector<ValueRecord> Args;
|
|
for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
|
|
Args.push_back(ValueRecord(CI.getOperand(i)));
|
|
|
|
unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
|
|
doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
|
|
}
|
|
|
|
|
|
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
|
|
/// function, lowering any calls to unknown intrinsic functions into the
|
|
/// equivalent LLVM code.
|
|
///
|
|
void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
|
|
if (CallInst *CI = dyn_cast<CallInst>(I++))
|
|
if (Function *F = CI->getCalledFunction())
|
|
switch (F->getIntrinsicID()) {
|
|
case Intrinsic::not_intrinsic:
|
|
case Intrinsic::va_start:
|
|
case Intrinsic::va_copy:
|
|
case Intrinsic::va_end:
|
|
case Intrinsic::returnaddress:
|
|
case Intrinsic::frameaddress:
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memset:
|
|
// We directly implement these intrinsics
|
|
break;
|
|
default:
|
|
// All other intrinsic calls we must lower.
|
|
Instruction *Before = CI->getPrev();
|
|
TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
|
|
if (Before) { // Move iterator to instruction after call
|
|
I = Before; ++I;
|
|
} else {
|
|
I = BB->begin();
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
|
|
unsigned TmpReg1, TmpReg2;
|
|
switch (ID) {
|
|
case Intrinsic::va_start:
|
|
// Get the address of the first vararg value...
|
|
TmpReg1 = getReg(CI);
|
|
addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
|
|
return;
|
|
|
|
case Intrinsic::va_copy:
|
|
TmpReg1 = getReg(CI);
|
|
TmpReg2 = getReg(CI.getOperand(1));
|
|
BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
|
|
return;
|
|
case Intrinsic::va_end: return; // Noop on X86
|
|
|
|
case Intrinsic::returnaddress:
|
|
case Intrinsic::frameaddress:
|
|
TmpReg1 = getReg(CI);
|
|
if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
|
|
if (ID == Intrinsic::returnaddress) {
|
|
// Just load the return address
|
|
addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
|
|
ReturnAddressIndex);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
|
|
ReturnAddressIndex, -4);
|
|
}
|
|
} else {
|
|
// Values other than zero are not implemented yet.
|
|
BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
|
|
}
|
|
return;
|
|
|
|
case Intrinsic::memcpy: {
|
|
assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
|
|
unsigned Align = 1;
|
|
if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
|
|
Align = AlignC->getRawValue();
|
|
if (Align == 0) Align = 1;
|
|
}
|
|
|
|
// Turn the byte code into # iterations
|
|
unsigned CountReg;
|
|
unsigned Opcode;
|
|
switch (Align & 3) {
|
|
case 2: // WORD aligned
|
|
if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
|
|
CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
|
|
} else {
|
|
CountReg = makeAnotherReg(Type::IntTy);
|
|
unsigned ByteReg = getReg(CI.getOperand(3));
|
|
BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
|
|
}
|
|
Opcode = X86::REP_MOVSW;
|
|
break;
|
|
case 0: // DWORD aligned
|
|
if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
|
|
CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
|
|
} else {
|
|
CountReg = makeAnotherReg(Type::IntTy);
|
|
unsigned ByteReg = getReg(CI.getOperand(3));
|
|
BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
|
|
}
|
|
Opcode = X86::REP_MOVSD;
|
|
break;
|
|
default: // BYTE aligned
|
|
CountReg = getReg(CI.getOperand(3));
|
|
Opcode = X86::REP_MOVSB;
|
|
break;
|
|
}
|
|
|
|
// No matter what the alignment is, we put the source in ESI, the
|
|
// destination in EDI, and the count in ECX.
|
|
TmpReg1 = getReg(CI.getOperand(1));
|
|
TmpReg2 = getReg(CI.getOperand(2));
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
|
|
BuildMI(BB, Opcode, 0);
|
|
return;
|
|
}
|
|
case Intrinsic::memset: {
|
|
assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
|
|
unsigned Align = 1;
|
|
if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
|
|
Align = AlignC->getRawValue();
|
|
if (Align == 0) Align = 1;
|
|
}
|
|
|
|
// Turn the byte code into # iterations
|
|
unsigned CountReg;
|
|
unsigned Opcode;
|
|
if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
|
|
unsigned Val = ValC->getRawValue() & 255;
|
|
|
|
// If the value is a constant, then we can potentially use larger copies.
|
|
switch (Align & 3) {
|
|
case 2: // WORD aligned
|
|
if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
|
|
CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
|
|
} else {
|
|
CountReg = makeAnotherReg(Type::IntTy);
|
|
unsigned ByteReg = getReg(CI.getOperand(3));
|
|
BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
|
|
}
|
|
BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
|
|
Opcode = X86::REP_STOSW;
|
|
break;
|
|
case 0: // DWORD aligned
|
|
if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
|
|
CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
|
|
} else {
|
|
CountReg = makeAnotherReg(Type::IntTy);
|
|
unsigned ByteReg = getReg(CI.getOperand(3));
|
|
BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
|
|
}
|
|
Val = (Val << 8) | Val;
|
|
BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
|
|
Opcode = X86::REP_STOSD;
|
|
break;
|
|
default: // BYTE aligned
|
|
CountReg = getReg(CI.getOperand(3));
|
|
BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
|
|
Opcode = X86::REP_STOSB;
|
|
break;
|
|
}
|
|
} else {
|
|
// If it's not a constant value we are storing, just fall back. We could
|
|
// try to be clever to form 16 bit and 32 bit values, but we don't yet.
|
|
unsigned ValReg = getReg(CI.getOperand(2));
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
|
|
CountReg = getReg(CI.getOperand(3));
|
|
Opcode = X86::REP_STOSB;
|
|
}
|
|
|
|
// No matter what the alignment is, we put the source in ESI, the
|
|
// destination in EDI, and the count in ECX.
|
|
TmpReg1 = getReg(CI.getOperand(1));
|
|
//TmpReg2 = getReg(CI.getOperand(2));
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
|
|
BuildMI(BB, Opcode, 0);
|
|
return;
|
|
}
|
|
|
|
default: assert(0 && "Error: unknown intrinsics should have been lowered!");
|
|
}
|
|
}
|
|
|
|
|
|
/// visitSimpleBinary - Implement simple binary operators for integral types...
|
|
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
|
|
/// Xor.
|
|
///
|
|
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
|
|
unsigned DestReg = getReg(B);
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
|
|
OperatorClass, DestReg);
|
|
}
|
|
|
|
/// emitSimpleBinaryOperation - Implement simple binary operators for integral
|
|
/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
|
|
/// Or, 4 for Xor.
|
|
///
|
|
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
|
|
/// and constant expression support.
|
|
///
|
|
void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned DestReg) {
|
|
unsigned Class = getClassB(Op0->getType());
|
|
|
|
// sub 0, X -> neg X
|
|
if (OperatorClass == 1 && Class != cLong)
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
|
|
if (CI->isNullValue()) {
|
|
unsigned op1Reg = getReg(Op1, MBB, IP);
|
|
switch (Class) {
|
|
default: assert(0 && "Unknown class for this function!");
|
|
case cByte:
|
|
BuildMI(*MBB, IP, X86::NEG8r, 1, DestReg).addReg(op1Reg);
|
|
return;
|
|
case cShort:
|
|
BuildMI(*MBB, IP, X86::NEG16r, 1, DestReg).addReg(op1Reg);
|
|
return;
|
|
case cInt:
|
|
BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg).addReg(op1Reg);
|
|
return;
|
|
}
|
|
}
|
|
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
|
|
if (CFP->isExactlyValue(-0.0)) {
|
|
// -0.0 - X === -X
|
|
unsigned op1Reg = getReg(Op1, MBB, IP);
|
|
BuildMI(*MBB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
|
|
return;
|
|
}
|
|
|
|
if (!isa<ConstantInt>(Op1) || Class == cLong) {
|
|
static const unsigned OpcodeTab[][4] = {
|
|
// Arithmetic operators
|
|
{ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, X86::FpADD }, // ADD
|
|
{ X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::FpSUB }, // SUB
|
|
|
|
// Bitwise operators
|
|
{ X86::AND8rr, X86::AND16rr, X86::AND32rr, 0 }, // AND
|
|
{ X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0 }, // OR
|
|
{ X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0 }, // XOR
|
|
};
|
|
|
|
bool isLong = false;
|
|
if (Class == cLong) {
|
|
isLong = true;
|
|
Class = cInt; // Bottom 32 bits are handled just like ints
|
|
}
|
|
|
|
unsigned Opcode = OpcodeTab[OperatorClass][Class];
|
|
assert(Opcode && "Floating point arguments to logical inst?");
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
|
|
if (isLong) { // Handle the upper 32 bits of long values...
|
|
static const unsigned TopTab[] = {
|
|
X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
|
|
};
|
|
BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
|
|
DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Special case: op Reg, <const>
|
|
ConstantInt *Op1C = cast<ConstantInt>(Op1);
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
|
|
// xor X, -1 -> not X
|
|
if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
|
|
static unsigned const NOTTab[] = { X86::NOT8r, X86::NOT16r, X86::NOT32r };
|
|
BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
|
|
return;
|
|
}
|
|
|
|
// add X, -1 -> dec X
|
|
if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
|
|
static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
|
|
BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
|
|
return;
|
|
}
|
|
|
|
// add X, 1 -> inc X
|
|
if (OperatorClass == 0 && Op1C->equalsInt(1)) {
|
|
static unsigned const DECTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
|
|
BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
|
|
return;
|
|
}
|
|
|
|
static const unsigned OpcodeTab[][3] = {
|
|
// Arithmetic operators
|
|
{ X86::ADD8ri, X86::ADD16ri, X86::ADD32ri }, // ADD
|
|
{ X86::SUB8ri, X86::SUB16ri, X86::SUB32ri }, // SUB
|
|
|
|
// Bitwise operators
|
|
{ X86::AND8ri, X86::AND16ri, X86::AND32ri }, // AND
|
|
{ X86:: OR8ri, X86:: OR16ri, X86:: OR32ri }, // OR
|
|
{ X86::XOR8ri, X86::XOR16ri, X86::XOR32ri }, // XOR
|
|
};
|
|
|
|
assert(Class < 3 && "General code handles 64-bit integer types!");
|
|
unsigned Opcode = OpcodeTab[OperatorClass][Class];
|
|
uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
|
|
|
|
// Mask off any upper bits of the constant, if there are any...
|
|
Op1v &= (1ULL << (8 << Class)) - 1;
|
|
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1v);
|
|
}
|
|
|
|
/// doMultiply - Emit appropriate instructions to multiply together the
|
|
/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
|
|
/// result should be given as DestTy.
|
|
///
|
|
void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned op0Reg, unsigned op1Reg) {
|
|
unsigned Class = getClass(DestTy);
|
|
switch (Class) {
|
|
case cFP: // Floating point multiply
|
|
BuildMI(*MBB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
|
|
return;
|
|
case cInt:
|
|
case cShort:
|
|
BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
|
|
.addReg(op0Reg).addReg(op1Reg);
|
|
return;
|
|
case cByte:
|
|
// Must use the MUL instruction, which forces use of AL...
|
|
BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
|
|
BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
|
|
BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
|
|
return;
|
|
default:
|
|
case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
|
|
}
|
|
}
|
|
|
|
// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
|
|
// returns zero when the input is not exactly a power of two.
|
|
static unsigned ExactLog2(unsigned Val) {
|
|
if (Val == 0) return 0;
|
|
unsigned Count = 0;
|
|
while (Val != 1) {
|
|
if (Val & 1) return 0;
|
|
Val >>= 1;
|
|
++Count;
|
|
}
|
|
return Count+1;
|
|
}
|
|
|
|
void ISel::doMultiplyConst(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned op0Reg, unsigned ConstRHS) {
|
|
unsigned Class = getClass(DestTy);
|
|
|
|
// If the element size is exactly a power of 2, use a shift to get it.
|
|
if (unsigned Shift = ExactLog2(ConstRHS)) {
|
|
switch (Class) {
|
|
default: assert(0 && "Unknown class for this function!");
|
|
case cByte:
|
|
BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
|
|
return;
|
|
case cShort:
|
|
BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
|
|
return;
|
|
case cInt:
|
|
BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (Class == cShort) {
|
|
BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
|
|
return;
|
|
} else if (Class == cInt) {
|
|
BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
|
|
return;
|
|
}
|
|
|
|
// Most general case, emit a normal multiply...
|
|
static const unsigned MOVriTab[] = {
|
|
X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
|
|
};
|
|
|
|
unsigned TmpReg = makeAnotherReg(DestTy);
|
|
BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
|
|
|
|
// Emit a MUL to multiply the register holding the index by
|
|
// elementSize, putting the result in OffsetReg.
|
|
doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
|
|
}
|
|
|
|
/// visitMul - Multiplies are not simple binary operators because they must deal
|
|
/// with the EAX register explicitly.
|
|
///
|
|
void ISel::visitMul(BinaryOperator &I) {
|
|
unsigned Op0Reg = getReg(I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
|
|
// Simple scalar multiply?
|
|
if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
|
|
unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
|
|
} else {
|
|
unsigned Op1Reg = getReg(I.getOperand(1));
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
|
|
}
|
|
} else {
|
|
unsigned Op1Reg = getReg(I.getOperand(1));
|
|
|
|
// Long value. We have to do things the hard way...
|
|
// Multiply the two low parts... capturing carry into EDX
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
|
|
BuildMI(BB, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
|
|
|
|
unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
|
|
BuildMI(BB, X86::MOV32rr, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
|
|
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
|
|
BuildMI(*BB, MBBI, X86::IMUL32rr,2,AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
|
|
|
|
unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(*BB, MBBI, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
|
|
AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
|
|
|
|
MBBI = BB->end();
|
|
unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
|
|
BuildMI(*BB, MBBI, X86::IMUL32rr,2,ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
|
|
|
|
BuildMI(*BB, MBBI, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
|
|
DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
|
|
}
|
|
}
|
|
|
|
|
|
/// visitDivRem - Handle division and remainder instructions... these
|
|
/// instruction both require the same instructions to be generated, they just
|
|
/// select the result from a different register. Note that both of these
|
|
/// instructions work differently for signed and unsigned operands.
|
|
///
|
|
void ISel::visitDivRem(BinaryOperator &I) {
|
|
unsigned Op0Reg = getReg(I.getOperand(0));
|
|
unsigned Op1Reg = getReg(I.getOperand(1));
|
|
unsigned ResultReg = getReg(I);
|
|
|
|
MachineBasicBlock::iterator IP = BB->end();
|
|
emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
|
|
I.getType(), ResultReg);
|
|
}
|
|
|
|
void ISel::emitDivRemOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
|
|
const Type *Ty, unsigned ResultReg) {
|
|
unsigned Class = getClass(Ty);
|
|
switch (Class) {
|
|
case cFP: // Floating point divide
|
|
if (isDiv) {
|
|
BuildMI(*BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
|
|
} else { // Floating point remainder...
|
|
MachineInstr *TheCall =
|
|
BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
|
|
doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
|
|
}
|
|
return;
|
|
case cLong: {
|
|
static const char *FnName[] =
|
|
{ "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
|
|
|
|
unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
|
|
MachineInstr *TheCall =
|
|
BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
|
|
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
|
|
doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
|
|
return;
|
|
}
|
|
case cByte: case cShort: case cInt:
|
|
break; // Small integrals, handled below...
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
|
|
static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
|
|
static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
|
|
static const unsigned SarOpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
|
|
static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
|
|
static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
|
|
|
|
static const unsigned DivOpcode[][4] = {
|
|
{ X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
|
|
{ X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
|
|
};
|
|
|
|
bool isSigned = Ty->isSigned();
|
|
unsigned Reg = Regs[Class];
|
|
unsigned ExtReg = ExtRegs[Class];
|
|
|
|
// Put the first operand into one of the A registers...
|
|
BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
|
|
|
|
if (isSigned) {
|
|
// Emit a sign extension instruction...
|
|
unsigned ShiftResult = makeAnotherReg(Ty);
|
|
BuildMI(*BB, IP, SarOpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
|
|
BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
|
|
} else {
|
|
// If unsigned, emit a zeroing instruction... (reg = 0)
|
|
BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
|
|
}
|
|
|
|
// Emit the appropriate divide or remainder instruction...
|
|
BuildMI(*BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
|
|
|
|
// Figure out which register we want to pick the result out of...
|
|
unsigned DestReg = isDiv ? Reg : ExtReg;
|
|
|
|
// Put the result into the destination register...
|
|
BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
|
|
}
|
|
|
|
|
|
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
|
|
/// for constant immediate shift values, and for constant immediate
|
|
/// shift values equal to 1. Even the general case is sort of special,
|
|
/// because the shift amount has to be in CL, not just any old register.
|
|
///
|
|
void ISel::visitShiftInst(ShiftInst &I) {
|
|
MachineBasicBlock::iterator IP = BB->end ();
|
|
emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
|
|
I.getOpcode () == Instruction::Shl, I.getType (),
|
|
getReg (I));
|
|
}
|
|
|
|
/// emitShiftOperation - Common code shared between visitShiftInst and
|
|
/// constant expression support.
|
|
void ISel::emitShiftOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op, Value *ShiftAmount, bool isLeftShift,
|
|
const Type *ResultTy, unsigned DestReg) {
|
|
unsigned SrcReg = getReg (Op, MBB, IP);
|
|
bool isSigned = ResultTy->isSigned ();
|
|
unsigned Class = getClass (ResultTy);
|
|
|
|
static const unsigned ConstantOperand[][4] = {
|
|
{ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR
|
|
{ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR
|
|
{ X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL
|
|
{ X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL
|
|
};
|
|
|
|
static const unsigned NonConstantOperand[][4] = {
|
|
{ X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
|
|
{ X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
|
|
{ X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
|
|
{ X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
|
|
};
|
|
|
|
// Longs, as usual, are handled specially...
|
|
if (Class == cLong) {
|
|
// If we have a constant shift, we can generate much more efficient code
|
|
// than otherwise...
|
|
//
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
|
|
unsigned Amount = CUI->getValue();
|
|
if (Amount < 32) {
|
|
const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
|
|
if (isLeftShift) {
|
|
BuildMI(*MBB, IP, Opc[3], 3,
|
|
DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
|
|
BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
|
|
} else {
|
|
BuildMI(*MBB, IP, Opc[3], 3,
|
|
DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
|
|
BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
|
|
}
|
|
} else { // Shifting more than 32 bits
|
|
Amount -= 32;
|
|
if (isLeftShift) {
|
|
BuildMI(*MBB, IP, X86::SHL32ri, 2,
|
|
DestReg + 1).addReg(SrcReg).addImm(Amount);
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1,
|
|
DestReg).addImm(0);
|
|
} else {
|
|
unsigned Opcode = isSigned ? X86::SAR32ri : X86::SHR32ri;
|
|
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addImm(Amount);
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
|
|
}
|
|
}
|
|
} else {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
|
|
if (!isLeftShift && isSigned) {
|
|
// If this is a SHR of a Long, then we need to do funny sign extension
|
|
// stuff. TmpReg gets the value to use as the high-part if we are
|
|
// shifting more than 32 bits.
|
|
BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
|
|
} else {
|
|
// Other shifts use a fixed zero value if the shift is more than 32
|
|
// bits.
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
|
|
}
|
|
|
|
// Initialize CL with the shift amount...
|
|
unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
|
|
BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
|
|
|
|
unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
|
|
if (isLeftShift) {
|
|
// TmpReg2 = shld inHi, inLo
|
|
BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
|
|
.addReg(SrcReg);
|
|
// TmpReg3 = shl inLo, CL
|
|
BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
|
|
|
|
// Set the flags to indicate whether the shift was by more than 32 bits.
|
|
BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
|
|
|
|
// DestHi = (>32) ? TmpReg3 : TmpReg2;
|
|
BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
|
|
DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
|
|
// DestLo = (>32) ? TmpReg : TmpReg3;
|
|
BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
|
|
DestReg).addReg(TmpReg3).addReg(TmpReg);
|
|
} else {
|
|
// TmpReg2 = shrd inLo, inHi
|
|
BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
|
|
.addReg(SrcReg+1);
|
|
// TmpReg3 = s[ah]r inHi, CL
|
|
BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
|
|
.addReg(SrcReg+1);
|
|
|
|
// Set the flags to indicate whether the shift was by more than 32 bits.
|
|
BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
|
|
|
|
// DestLo = (>32) ? TmpReg3 : TmpReg2;
|
|
BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
|
|
DestReg).addReg(TmpReg2).addReg(TmpReg3);
|
|
|
|
// DestHi = (>32) ? TmpReg : TmpReg3;
|
|
BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
|
|
DestReg+1).addReg(TmpReg3).addReg(TmpReg);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
|
|
// The shift amount is constant, guaranteed to be a ubyte. Get its value.
|
|
assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
|
|
|
|
const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
|
|
BuildMI(*MBB, IP, Opc[Class], 2,
|
|
DestReg).addReg(SrcReg).addImm(CUI->getValue());
|
|
} else { // The shift amount is non-constant.
|
|
unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
|
|
BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
|
|
|
|
const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
|
|
BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
|
|
}
|
|
}
|
|
|
|
|
|
/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
|
|
/// instruction. The load and store instructions are the only place where we
|
|
/// need to worry about the memory layout of the target machine.
|
|
///
|
|
void ISel::visitLoadInst(LoadInst &I) {
|
|
unsigned DestReg = getReg(I);
|
|
unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
|
|
Value *Addr = I.getOperand(0);
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
|
|
if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
|
|
BaseReg, Scale, IndexReg, Disp))
|
|
Addr = 0; // Address is consumed!
|
|
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
|
|
if (CE->getOpcode() == Instruction::GetElementPtr)
|
|
if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
|
|
BaseReg, Scale, IndexReg, Disp))
|
|
Addr = 0;
|
|
}
|
|
|
|
if (Addr) {
|
|
// If it's not foldable, reset addr mode.
|
|
BaseReg = getReg(Addr);
|
|
Scale = 1; IndexReg = 0; Disp = 0;
|
|
}
|
|
|
|
unsigned Class = getClassB(I.getType());
|
|
if (Class == cLong) {
|
|
addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg),
|
|
BaseReg, Scale, IndexReg, Disp);
|
|
addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1),
|
|
BaseReg, Scale, IndexReg, Disp+4);
|
|
return;
|
|
}
|
|
|
|
static const unsigned Opcodes[] = {
|
|
X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m
|
|
};
|
|
unsigned Opcode = Opcodes[Class];
|
|
if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
|
|
addFullAddress(BuildMI(BB, Opcode, 4, DestReg),
|
|
BaseReg, Scale, IndexReg, Disp);
|
|
}
|
|
|
|
/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
|
|
/// instruction.
|
|
///
|
|
void ISel::visitStoreInst(StoreInst &I) {
|
|
unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
|
|
Value *Addr = I.getOperand(1);
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
|
|
if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
|
|
BaseReg, Scale, IndexReg, Disp))
|
|
Addr = 0; // Address is consumed!
|
|
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
|
|
if (CE->getOpcode() == Instruction::GetElementPtr)
|
|
if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
|
|
BaseReg, Scale, IndexReg, Disp))
|
|
Addr = 0;
|
|
}
|
|
|
|
if (Addr) {
|
|
// If it's not foldable, reset addr mode.
|
|
BaseReg = getReg(Addr);
|
|
Scale = 1; IndexReg = 0; Disp = 0;
|
|
}
|
|
|
|
const Type *ValTy = I.getOperand(0)->getType();
|
|
unsigned Class = getClassB(ValTy);
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
|
|
uint64_t Val = CI->getRawValue();
|
|
if (Class == cLong) {
|
|
addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
|
|
BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U);
|
|
addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
|
|
BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32);
|
|
} else {
|
|
static const unsigned Opcodes[] = {
|
|
X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
|
|
};
|
|
unsigned Opcode = Opcodes[Class];
|
|
addFullAddress(BuildMI(BB, Opcode, 5),
|
|
BaseReg, Scale, IndexReg, Disp).addImm(Val);
|
|
}
|
|
} else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
|
|
addFullAddress(BuildMI(BB, X86::MOV8mi, 5),
|
|
BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue());
|
|
} else {
|
|
if (Class == cLong) {
|
|
unsigned ValReg = getReg(I.getOperand(0));
|
|
addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
|
|
BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
|
|
addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
|
|
BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1);
|
|
} else {
|
|
unsigned ValReg = getReg(I.getOperand(0));
|
|
static const unsigned Opcodes[] = {
|
|
X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
|
|
};
|
|
unsigned Opcode = Opcodes[Class];
|
|
if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
|
|
addFullAddress(BuildMI(BB, Opcode, 1+4),
|
|
BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// visitCastInst - Here we have various kinds of copying with or without sign
|
|
/// extension going on.
|
|
///
|
|
void ISel::visitCastInst(CastInst &CI) {
|
|
Value *Op = CI.getOperand(0);
|
|
// If this is a cast from a 32-bit integer to a Long type, and the only uses
|
|
// of the case are GEP instructions, then the cast does not need to be
|
|
// generated explicitly, it will be folded into the GEP.
|
|
if (CI.getType() == Type::LongTy &&
|
|
(Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
|
|
bool AllUsesAreGEPs = true;
|
|
for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
|
|
if (!isa<GetElementPtrInst>(*I)) {
|
|
AllUsesAreGEPs = false;
|
|
break;
|
|
}
|
|
|
|
// No need to codegen this cast if all users are getelementptr instrs...
|
|
if (AllUsesAreGEPs) return;
|
|
}
|
|
|
|
unsigned DestReg = getReg(CI);
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
|
|
}
|
|
|
|
/// emitCastOperation - Common code shared between visitCastInst and constant
|
|
/// expression cast support.
|
|
///
|
|
void ISel::emitCastOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Src, const Type *DestTy,
|
|
unsigned DestReg) {
|
|
unsigned SrcReg = getReg(Src, BB, IP);
|
|
const Type *SrcTy = Src->getType();
|
|
unsigned SrcClass = getClassB(SrcTy);
|
|
unsigned DestClass = getClassB(DestTy);
|
|
|
|
// Implement casts to bool by using compare on the operand followed by set if
|
|
// not zero on the result.
|
|
if (DestTy == Type::BoolTy) {
|
|
switch (SrcClass) {
|
|
case cByte:
|
|
BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
|
|
break;
|
|
case cShort:
|
|
BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
|
|
break;
|
|
case cInt:
|
|
BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
|
|
break;
|
|
case cLong: {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
|
|
break;
|
|
}
|
|
case cFP:
|
|
BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
|
|
BuildMI(*BB, IP, X86::FNSTSW8r, 0);
|
|
BuildMI(*BB, IP, X86::SAHF, 1);
|
|
break;
|
|
}
|
|
|
|
// If the zero flag is not set, then the value is true, set the byte to
|
|
// true.
|
|
BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
|
|
return;
|
|
}
|
|
|
|
static const unsigned RegRegMove[] = {
|
|
X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
|
|
};
|
|
|
|
// Implement casts between values of the same type class (as determined by
|
|
// getClass) by using a register-to-register move.
|
|
if (SrcClass == DestClass) {
|
|
if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
|
|
BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
|
|
} else if (SrcClass == cFP) {
|
|
if (SrcTy == Type::FloatTy) { // double -> float
|
|
assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
|
|
BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
|
|
} else { // float -> double
|
|
assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
|
|
"Unknown cFP member!");
|
|
// Truncate from double to float by storing to memory as short, then
|
|
// reading it back.
|
|
unsigned FltAlign = TM.getTargetData().getFloatAlignment();
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
|
|
addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
|
|
addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
|
|
}
|
|
} else if (SrcClass == cLong) {
|
|
BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
|
|
BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
|
|
} else {
|
|
assert(0 && "Cannot handle this type of cast instruction!");
|
|
abort();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle cast of SMALLER int to LARGER int using a move with sign extension
|
|
// or zero extension, depending on whether the source type was signed.
|
|
if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
|
|
SrcClass < DestClass) {
|
|
bool isLong = DestClass == cLong;
|
|
if (isLong) DestClass = cInt;
|
|
|
|
static const unsigned Opc[][4] = {
|
|
{ X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
|
|
{ X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
|
|
};
|
|
|
|
bool isUnsigned = SrcTy->isUnsigned();
|
|
BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
|
|
DestReg).addReg(SrcReg);
|
|
|
|
if (isLong) { // Handle upper 32 bits as appropriate...
|
|
if (isUnsigned) // Zero out top bits...
|
|
BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
|
|
else // Sign extend bottom half...
|
|
BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Special case long -> int ...
|
|
if (SrcClass == cLong && DestClass == cInt) {
|
|
BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
|
|
// move out of AX or AL.
|
|
if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
|
|
&& SrcClass > DestClass) {
|
|
static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
|
|
BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
|
|
BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
|
|
return;
|
|
}
|
|
|
|
// Handle casts from integer to floating point now...
|
|
if (DestClass == cFP) {
|
|
// Promote the integer to a type supported by FLD. We do this because there
|
|
// are no unsigned FLD instructions, so we must promote an unsigned value to
|
|
// a larger signed value, then use FLD on the larger value.
|
|
//
|
|
const Type *PromoteType = 0;
|
|
unsigned PromoteOpcode;
|
|
unsigned RealDestReg = DestReg;
|
|
switch (SrcTy->getPrimitiveID()) {
|
|
case Type::BoolTyID:
|
|
case Type::SByteTyID:
|
|
// We don't have the facilities for directly loading byte sized data from
|
|
// memory (even signed). Promote it to 16 bits.
|
|
PromoteType = Type::ShortTy;
|
|
PromoteOpcode = X86::MOVSX16rr8;
|
|
break;
|
|
case Type::UByteTyID:
|
|
PromoteType = Type::ShortTy;
|
|
PromoteOpcode = X86::MOVZX16rr8;
|
|
break;
|
|
case Type::UShortTyID:
|
|
PromoteType = Type::IntTy;
|
|
PromoteOpcode = X86::MOVZX32rr16;
|
|
break;
|
|
case Type::UIntTyID: {
|
|
// Make a 64 bit temporary... and zero out the top of it...
|
|
unsigned TmpReg = makeAnotherReg(Type::LongTy);
|
|
BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg);
|
|
BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0);
|
|
SrcTy = Type::LongTy;
|
|
SrcClass = cLong;
|
|
SrcReg = TmpReg;
|
|
break;
|
|
}
|
|
case Type::ULongTyID:
|
|
// Don't fild into the read destination.
|
|
DestReg = makeAnotherReg(Type::DoubleTy);
|
|
break;
|
|
default: // No promotion needed...
|
|
break;
|
|
}
|
|
|
|
if (PromoteType) {
|
|
unsigned TmpReg = makeAnotherReg(PromoteType);
|
|
unsigned Opc = SrcTy->isSigned() ? X86::MOVSX16rr8 : X86::MOVZX16rr8;
|
|
BuildMI(*BB, IP, Opc, 1, TmpReg).addReg(SrcReg);
|
|
SrcTy = PromoteType;
|
|
SrcClass = getClass(PromoteType);
|
|
SrcReg = TmpReg;
|
|
}
|
|
|
|
// Spill the integer to memory and reload it from there...
|
|
int FrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
|
|
|
|
if (SrcClass == cLong) {
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
|
|
FrameIdx).addReg(SrcReg);
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
|
|
FrameIdx, 4).addReg(SrcReg+1);
|
|
} else {
|
|
static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
|
|
addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
|
|
FrameIdx).addReg(SrcReg);
|
|
}
|
|
|
|
static const unsigned Op2[] =
|
|
{ 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
|
|
addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
|
|
|
|
// We need special handling for unsigned 64-bit integer sources. If the
|
|
// input number has the "sign bit" set, then we loaded it incorrectly as a
|
|
// negative 64-bit number. In this case, add an offset value.
|
|
if (SrcTy == Type::ULongTy) {
|
|
// Emit a test instruction to see if the dynamic input value was signed.
|
|
BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
|
|
|
|
// If the sign bit is set, get a pointer to an offset, otherwise get a
|
|
// pointer to a zero.
|
|
MachineConstantPool *CP = F->getConstantPool();
|
|
unsigned Zero = makeAnotherReg(Type::IntTy);
|
|
Constant *Null = Constant::getNullValue(Type::UIntTy);
|
|
addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
|
|
CP->getConstantPoolIndex(Null));
|
|
unsigned Offset = makeAnotherReg(Type::IntTy);
|
|
Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
|
|
|
|
addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
|
|
CP->getConstantPoolIndex(OffsetCst));
|
|
unsigned Addr = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
|
|
|
|
// Load the constant for an add. FIXME: this could make an 'fadd' that
|
|
// reads directly from memory, but we don't support these yet.
|
|
unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
|
|
addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
|
|
|
|
BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
|
|
.addReg(ConstReg).addReg(DestReg);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Handle casts from floating point to integer now...
|
|
if (SrcClass == cFP) {
|
|
// Change the floating point control register to use "round towards zero"
|
|
// mode when truncating to an integer value.
|
|
//
|
|
int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
|
|
addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
|
|
|
|
// Load the old value of the high byte of the control word...
|
|
unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
|
|
CWFrameIdx, 1);
|
|
|
|
// Set the high part to be round to zero...
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
|
|
CWFrameIdx, 1).addImm(12);
|
|
|
|
// Reload the modified control word now...
|
|
addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
|
|
|
|
// Restore the memory image of control word to original value
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
|
|
CWFrameIdx, 1).addReg(HighPartOfCW);
|
|
|
|
// We don't have the facilities for directly storing byte sized data to
|
|
// memory. Promote it to 16 bits. We also must promote unsigned values to
|
|
// larger classes because we only have signed FP stores.
|
|
unsigned StoreClass = DestClass;
|
|
const Type *StoreTy = DestTy;
|
|
if (StoreClass == cByte || DestTy->isUnsigned())
|
|
switch (StoreClass) {
|
|
case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
|
|
case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
|
|
case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
|
|
// The following treatment of cLong may not be perfectly right,
|
|
// but it survives chains of casts of the form
|
|
// double->ulong->double.
|
|
case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
|
|
default: assert(0 && "Unknown store class!");
|
|
}
|
|
|
|
// Spill the integer to memory and reload it from there...
|
|
int FrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
|
|
|
|
static const unsigned Op1[] =
|
|
{ 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
|
|
addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
|
|
FrameIdx).addReg(SrcReg);
|
|
|
|
if (DestClass == cLong) {
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
|
|
FrameIdx, 4);
|
|
} else {
|
|
static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
|
|
addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
|
|
}
|
|
|
|
// Reload the original control word now...
|
|
addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
|
|
return;
|
|
}
|
|
|
|
// Anything we haven't handled already, we can't (yet) handle at all.
|
|
assert(0 && "Unhandled cast instruction!");
|
|
abort();
|
|
}
|
|
|
|
/// visitVANextInst - Implement the va_next instruction...
|
|
///
|
|
void ISel::visitVANextInst(VANextInst &I) {
|
|
unsigned VAList = getReg(I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
|
|
unsigned Size;
|
|
switch (I.getArgType()->getPrimitiveID()) {
|
|
default:
|
|
std::cerr << I;
|
|
assert(0 && "Error: bad type for va_next instruction!");
|
|
return;
|
|
case Type::PointerTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID:
|
|
Size = 4;
|
|
break;
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID:
|
|
case Type::DoubleTyID:
|
|
Size = 8;
|
|
break;
|
|
}
|
|
|
|
// Increment the VAList pointer...
|
|
BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
|
|
}
|
|
|
|
void ISel::visitVAArgInst(VAArgInst &I) {
|
|
unsigned VAList = getReg(I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
|
|
switch (I.getType()->getPrimitiveID()) {
|
|
default:
|
|
std::cerr << I;
|
|
assert(0 && "Error: bad type for va_next instruction!");
|
|
return;
|
|
case Type::PointerTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID:
|
|
addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
|
|
break;
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID:
|
|
addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
|
|
addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
|
|
break;
|
|
case Type::DoubleTyID:
|
|
addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// visitGetElementPtrInst - instruction-select GEP instructions
|
|
///
|
|
void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
// If this GEP instruction will be folded into all of its users, we don't need
|
|
// to explicitly calculate it!
|
|
unsigned A, B, C, D;
|
|
if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) {
|
|
// Check all of the users of the instruction to see if they are loads and
|
|
// stores.
|
|
bool AllWillFold = true;
|
|
for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
|
|
if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
|
|
if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
|
|
cast<Instruction>(*UI)->getOperand(0) == &I) {
|
|
AllWillFold = false;
|
|
break;
|
|
}
|
|
|
|
// If the instruction is foldable, and will be folded into all users, don't
|
|
// emit it!
|
|
if (AllWillFold) return;
|
|
}
|
|
|
|
unsigned outputReg = getReg(I);
|
|
emitGEPOperation(BB, BB->end(), I.getOperand(0),
|
|
I.op_begin()+1, I.op_end(), outputReg);
|
|
}
|
|
|
|
/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
|
|
/// GEPTypes (the derived types being stepped through at each level). On return
|
|
/// from this function, if some indexes of the instruction are representable as
|
|
/// an X86 lea instruction, the machine operands are put into the Ops
|
|
/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
|
|
/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
|
|
/// addressing mode that only partially consumes the input, the BaseReg input of
|
|
/// the addressing mode must be left free.
|
|
///
|
|
/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
|
|
///
|
|
void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
|
|
std::vector<Value*> &GEPOps,
|
|
std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
|
|
unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
|
|
const TargetData &TD = TM.getTargetData();
|
|
|
|
// Clear out the state we are working with...
|
|
BaseReg = 0; // No base register
|
|
Scale = 1; // Unit scale
|
|
IndexReg = 0; // No index register
|
|
Disp = 0; // No displacement
|
|
|
|
// While there are GEP indexes that can be folded into the current address,
|
|
// keep processing them.
|
|
while (!GEPTypes.empty()) {
|
|
if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
|
|
// It's a struct access. CUI is the index into the structure,
|
|
// which names the field. This index must have unsigned type.
|
|
const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
|
|
|
|
// Use the TargetData structure to pick out what the layout of the
|
|
// structure is in memory. Since the structure index must be constant, we
|
|
// can get its value and use it to find the right byte offset from the
|
|
// StructLayout class's list of structure member offsets.
|
|
Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
|
|
GEPOps.pop_back(); // Consume a GEP operand
|
|
GEPTypes.pop_back();
|
|
} else {
|
|
// It's an array or pointer access: [ArraySize x ElementType].
|
|
const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
|
|
Value *idx = GEPOps.back();
|
|
|
|
// idx is the index into the array. Unlike with structure
|
|
// indices, we may not know its actual value at code-generation
|
|
// time.
|
|
assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
|
|
|
|
// If idx is a constant, fold it into the offset.
|
|
unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
|
|
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
|
|
Disp += TypeSize*CSI->getValue();
|
|
} else {
|
|
// If the index reg is already taken, we can't handle this index.
|
|
if (IndexReg) return;
|
|
|
|
// If this is a size that we can handle, then add the index as
|
|
switch (TypeSize) {
|
|
case 1: case 2: case 4: case 8:
|
|
// These are all acceptable scales on X86.
|
|
Scale = TypeSize;
|
|
break;
|
|
default:
|
|
// Otherwise, we can't handle this scale
|
|
return;
|
|
}
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(idx))
|
|
if (CI->getOperand(0)->getType() == Type::IntTy ||
|
|
CI->getOperand(0)->getType() == Type::UIntTy)
|
|
idx = CI->getOperand(0);
|
|
|
|
IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
|
|
}
|
|
|
|
GEPOps.pop_back(); // Consume a GEP operand
|
|
GEPTypes.pop_back();
|
|
}
|
|
}
|
|
|
|
// GEPTypes is empty, which means we have a single operand left. See if we
|
|
// can set it as the base register.
|
|
//
|
|
// FIXME: When addressing modes are more powerful/correct, we could load
|
|
// global addresses directly as 32-bit immediates.
|
|
assert(BaseReg == 0);
|
|
BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
|
|
GEPOps.pop_back(); // Consume the last GEP operand
|
|
}
|
|
|
|
|
|
/// isGEPFoldable - Return true if the specified GEP can be completely
|
|
/// folded into the addressing mode of a load/store or lea instruction.
|
|
bool ISel::isGEPFoldable(MachineBasicBlock *MBB,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, unsigned &BaseReg,
|
|
unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
|
|
if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
|
|
Src = CPR->getValue();
|
|
|
|
std::vector<Value*> GEPOps;
|
|
GEPOps.resize(IdxEnd-IdxBegin+1);
|
|
GEPOps[0] = Src;
|
|
std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
|
|
|
|
std::vector<const Type*> GEPTypes;
|
|
GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
|
|
gep_type_end(Src->getType(), IdxBegin, IdxEnd));
|
|
|
|
MachineBasicBlock::iterator IP;
|
|
if (MBB) IP = MBB->end();
|
|
getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
|
|
|
|
// We can fold it away iff the getGEPIndex call eliminated all operands.
|
|
return GEPOps.empty();
|
|
}
|
|
|
|
void ISel::emitGEPOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, unsigned TargetReg) {
|
|
const TargetData &TD = TM.getTargetData();
|
|
if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
|
|
Src = CPR->getValue();
|
|
|
|
std::vector<Value*> GEPOps;
|
|
GEPOps.resize(IdxEnd-IdxBegin+1);
|
|
GEPOps[0] = Src;
|
|
std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
|
|
|
|
std::vector<const Type*> GEPTypes;
|
|
GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
|
|
gep_type_end(Src->getType(), IdxBegin, IdxEnd));
|
|
|
|
// Keep emitting instructions until we consume the entire GEP instruction.
|
|
while (!GEPOps.empty()) {
|
|
unsigned OldSize = GEPOps.size();
|
|
unsigned BaseReg, Scale, IndexReg, Disp;
|
|
getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
|
|
|
|
if (GEPOps.size() != OldSize) {
|
|
// getGEPIndex consumed some of the input. Build an LEA instruction here.
|
|
unsigned NextTarget = 0;
|
|
if (!GEPOps.empty()) {
|
|
assert(BaseReg == 0 &&
|
|
"getGEPIndex should have left the base register open for chaining!");
|
|
NextTarget = BaseReg = makeAnotherReg(Type::UIntTy);
|
|
}
|
|
|
|
if (IndexReg == 0 && Disp == 0)
|
|
BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
|
|
else
|
|
addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg),
|
|
BaseReg, Scale, IndexReg, Disp);
|
|
--IP;
|
|
TargetReg = NextTarget;
|
|
} else if (GEPTypes.empty()) {
|
|
// The getGEPIndex operation didn't want to build an LEA. Check to see if
|
|
// all operands are consumed but the base pointer. If so, just load it
|
|
// into the register.
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
|
|
} else {
|
|
unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
|
|
BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
|
|
}
|
|
break; // we are now done
|
|
|
|
} else {
|
|
// It's an array or pointer access: [ArraySize x ElementType].
|
|
const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
|
|
Value *idx = GEPOps.back();
|
|
GEPOps.pop_back(); // Consume a GEP operand
|
|
GEPTypes.pop_back();
|
|
|
|
// idx is the index into the array. Unlike with structure
|
|
// indices, we may not know its actual value at code-generation
|
|
// time.
|
|
assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
|
|
|
|
// Most GEP instructions use a [cast (int/uint) to LongTy] as their
|
|
// operand on X86. Handle this case directly now...
|
|
if (CastInst *CI = dyn_cast<CastInst>(idx))
|
|
if (CI->getOperand(0)->getType() == Type::IntTy ||
|
|
CI->getOperand(0)->getType() == Type::UIntTy)
|
|
idx = CI->getOperand(0);
|
|
|
|
// We want to add BaseReg to(idxReg * sizeof ElementType). First, we
|
|
// must find the size of the pointed-to type (Not coincidentally, the next
|
|
// type is the type of the elements in the array).
|
|
const Type *ElTy = SqTy->getElementType();
|
|
unsigned elementSize = TD.getTypeSize(ElTy);
|
|
|
|
// If idxReg is a constant, we don't need to perform the multiply!
|
|
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
|
|
if (!CSI->isNullValue()) {
|
|
unsigned Offset = elementSize*CSI->getValue();
|
|
unsigned Reg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
|
|
.addReg(Reg).addImm(Offset);
|
|
--IP; // Insert the next instruction before this one.
|
|
TargetReg = Reg; // Codegen the rest of the GEP into this
|
|
}
|
|
} else if (elementSize == 1) {
|
|
// If the element size is 1, we don't have to multiply, just add
|
|
unsigned idxReg = getReg(idx, MBB, IP);
|
|
unsigned Reg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
|
|
--IP; // Insert the next instruction before this one.
|
|
TargetReg = Reg; // Codegen the rest of the GEP into this
|
|
} else {
|
|
unsigned idxReg = getReg(idx, MBB, IP);
|
|
unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
|
|
|
|
// Make sure we can back the iterator up to point to the first
|
|
// instruction emitted.
|
|
MachineBasicBlock::iterator BeforeIt = IP;
|
|
if (IP == MBB->begin())
|
|
BeforeIt = MBB->end();
|
|
else
|
|
--BeforeIt;
|
|
doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
|
|
|
|
// Emit an ADD to add OffsetReg to the basePtr.
|
|
unsigned Reg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
|
|
.addReg(Reg).addReg(OffsetReg);
|
|
|
|
// Step to the first instruction of the multiply.
|
|
if (BeforeIt == MBB->end())
|
|
IP = MBB->begin();
|
|
else
|
|
IP = ++BeforeIt;
|
|
|
|
TargetReg = Reg; // Codegen the rest of the GEP into this
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
|
|
/// frame manager, otherwise do it the hard way.
|
|
///
|
|
void ISel::visitAllocaInst(AllocaInst &I) {
|
|
// Find the data size of the alloca inst's getAllocatedType.
|
|
const Type *Ty = I.getAllocatedType();
|
|
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
|
|
|
|
// If this is a fixed size alloca in the entry block for the function,
|
|
// statically stack allocate the space.
|
|
//
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
|
|
if (I.getParent() == I.getParent()->getParent()->begin()) {
|
|
TySize *= CUI->getValue(); // Get total allocated size...
|
|
unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
|
|
|
|
// Create a new stack object using the frame manager...
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
|
|
addFrameReference(BuildMI(BB, X86::LEA32r, 5, getReg(I)), FrameIdx);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Create a register to hold the temporary result of multiplying the type size
|
|
// constant by the variable amount.
|
|
unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
|
|
unsigned SrcReg1 = getReg(I.getArraySize());
|
|
|
|
// TotalSizeReg = mul <numelements>, <TypeSize>
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
|
|
|
|
// AddedSize = add <TotalSizeReg>, 15
|
|
unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
|
|
|
|
// AlignedSize = and <AddedSize>, ~15
|
|
unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
|
|
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
|
|
|
|
// Put a pointer to the space into the result register, by copying
|
|
// the stack pointer.
|
|
BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
|
|
|
|
// Inform the Frame Information that we have just allocated a variable-sized
|
|
// object.
|
|
F->getFrameInfo()->CreateVariableSizedObject();
|
|
}
|
|
|
|
/// visitMallocInst - Malloc instructions are code generated into direct calls
|
|
/// to the library malloc.
|
|
///
|
|
void ISel::visitMallocInst(MallocInst &I) {
|
|
unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
|
|
unsigned Arg;
|
|
|
|
if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
|
|
Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
|
|
} else {
|
|
Arg = makeAnotherReg(Type::UIntTy);
|
|
unsigned Op0Reg = getReg(I.getOperand(0));
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
|
|
}
|
|
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Arg, Type::UIntTy));
|
|
MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
|
|
1).addExternalSymbol("malloc", true);
|
|
doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
|
|
}
|
|
|
|
|
|
/// visitFreeInst - Free instructions are code gen'd to call the free libc
|
|
/// function.
|
|
///
|
|
void ISel::visitFreeInst(FreeInst &I) {
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(I.getOperand(0)));
|
|
MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
|
|
1).addExternalSymbol("free", true);
|
|
doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
|
|
}
|
|
|
|
/// createX86SimpleInstructionSelector - This pass converts an LLVM function
|
|
/// into a machine code representation is a very simple peep-hole fashion. The
|
|
/// generated code sucks but the implementation is nice and simple.
|
|
///
|
|
FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
|
|
return new ISel(TM);
|
|
}
|